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A B S T R A C T

Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield
losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale
farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from
Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced
resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We
show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to
the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent.
The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the
expression of endogenous pathogen defense genes.
ã 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Loose smut of wheat is favored by a cool and moist climate
during anthesis. Therefore, losses can be significant in regions with
such favorable climatic conditions, although losses have also been
reported in dry and warm regions. The optimum time for infection
is between early and mid anthesis, but successful infection can
occur even after anthesis. The pathogen and remains dormant in
the mature seed at the growing point. After seed germination, the
mycelium grows in the crown node and later invades inflorescence
tissues. This allows the fungus to be transported into the
developing spike, where it sporulates, and disperses telio spores
at spike emergence [1].

Although losses due to loose smut infestation are not
devastating, it can cause moderate economic losses, resulting in
profit reductions of 5–20% at an infection level of 1–2% [2]. Several
methods are currently available to control loose smut; in many
parts of the world, the use of resistant wheat cultivars, certified
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E-mail address: csautter@retired.ethz.ch (C. Sautter).

http://dx.doi.org/10.1016/j.btre.2016.08.002
2215-017X/ã 2016 The Authors. Published by Elsevier B.V. This is an open access article un
seed and fungicide seed treatments is highly effective in
controlling loose smut of wheat. However, most of the resistant
wheat cultivars detected to have a narrow resistance spectrum and
seed treatment is either not used or can have limited efficacy [2].
Therefore, genetically modified (GM) wheat might be an environ-
mentally safe and economically advantageous alternative to
control loose smut infections.

Inter-strain inhibition in Ustilago maydis was first reported by
Puhalla in 1968 [3]. The system was described as the production of
an “extracellular substance” by certain races of U. maydis that
inhibit other, sensitive, races of the same species. Moreover, the
ability of producing or being sensitive to this inhibitor was
heritable and under extranuclear control. Today, these inhibitors
are known as killer proteins (KPs) and more have been reported,
e.g. KP4 and KP6 [4].

The KPs are encoded by double strand RNA viruses. While
KP1 and KP6 are processed by the protease Kex2 into one and two
active products, KP4 activity is independent of post-transcriptional
modifications [4–6]. Mature KP4 is a 105 amino acid polypeptide
encoded by the U. maydis virus 4 (UMV4). It inhibits growth of
sensitive U. maydis races by deregulating transmembrane calcium
channels [7,8]. Using seed in vitro assays, Clausen et al. [9] showed
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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that genetically modified (GM) wheat expressing kp4 under the
control of a maize ubiquitin promoter specifically inhibited the
growth of sensitive U. maydis strains. Antifungal activity of the
KP4 wheat lines was further confirmed both in the field and the
greenhouse leading to increased resistance to Tilletia caries, a
wheat pathogen of the Ustilaginales order that causes stinking
smut [10]. In addition, KP4 wheat showed in vitro inhibited growth
of Ustilago tritici another seed-borne wheat pathogen that is
responsible for loose smut. These results were consistent with data
reported by Koltin and Day [11] showing that KPs inhibit growth of
the grass-infecting species in the Ustilaginales order, that cause
smut and bunt diseases. This inhibition is highly specific since the
growth in vitro of several bacterial and of fungal species was not
affected by KP4 [10]. In this work we show that KP4 wheat lines
have increased quantitative resistance to the loose smut pathogen,
Ustilago tritici (Persoon) Rostrup. and that the strength of the
KP4 effect depends on the U. tritici race used for inoculation. We
also compare the expression profile of genes involved in pathogen
defense between KP4 and non-KP4 control wheat.

2. Material and methods

2.1. Inoculation of plant material

Two GM lines of spring wheat varieties Golin and Greina, one
line of each variety, already characterized in detail previously [9,10]
were used in this study. Greenhouse grown seeds of non-
KP4 controls, Greina null segregant (plants which lost their
transgene by mendelian segregation) and non-transformed Golin,
and of KP4 lines of the 6th generation after gene transfer (T6) of
KP4, were grown by 3–5 seeds in pots of 12 cm of diameter in the
greenhouse for fungal infection assays. Growth conditions were as
follows: 19 �C/14 �C (day/night temperature), 60%/50% (day/night
humidity); 16 h of light; minimum 3400 lx (cd sr m�2) light
intensity. Infection of plant material was performed as described
by Wilcoxon and Saari [2] by injecting spore suspensions into
flowering spikes. Dose effect was performed by applying different
spore concentrations in the injection suspension. A natural spore
field collection (“Furrer collection”), which contained different
unknown races, was used for a first greenhouse assay. This
collection was kindly provided by H.R. Furrer, Research Station
Agroscope Reckenholz-Tänikon ART, Zurich, Switzerland (www.
agroscope.admin.ch). In a second greenhouse experiment isolated
races, U. tritici races T9, T10 and T39, were used for a race and dose
experiment. The teliospores from these races were obtained from
Agriculture and Agri-Food Canada (http://www.agr.gc.ca) by
courtesy of J. Menzies. A second field spore collection (“Spiess
collection”), also containing different unknown races, used in field
trials 2010 were kindly provided by H. Spiess from Getreidezüch-
tungsforschung Dottenfelderhof, Dottenfelderhof, 61118 Bad Vil-
bel, Germany.

2.2. Greenhouse and field trials

Growth conditions used in the greenhouse were as described
above. In the dose response assay with spore collection, per dose
50 inoculated seeds of Greina KP4 and its non- KP4 control (null
segregant) and 70 inoculated seeds of Golin KP4 and non-
KP4 control (non-transformed Golin) were sown in pots of
12 cm in diameter. In the dose response assay with different
races, an average of 60 (�10) hand-inoculated greenhouse grown
seeds were sown for each combination of genotype (Golin and
Greina KP4 and both non-KP4 controls), dose and race used for
inoculation. Scoring of disease symptoms was done in all assays at
BBCH61-69 [12,13] as percentage of infected spikes. Infected spikes
were identified by the presence of telio spores instead of
developing seeds. Statistical analysis was done by Fischer Exact
Test.

Field trials were carried out at AgroBioTechnikum Groß
Lüsewitz, Groß Lüsewitz, Germany (http://www.biovativ.de) in
two different field sites: Gross Lüsewitz and Üpplingen. Seeds from
greenhouse grown, hand-inoculated plants were sown in March
2010. Microplots containing 100 seeds of each line were organized
in randomized blocks in four independent replicates from the
same inoculation. As described earlier, scoring for disease
symptoms and collection of the material was performed at BBCH
61-69 (flowering). Agronomic treatment was done according to
common local farmers practice, but without any fungicide
treatment.

2.3. Plant material for expression profiles

In the field trial, three biological replicates of 15 fifth leaves
(leaf 5) samples were collected separately from tillers with and
without symptoms. In the dose response greenhouse experiment
with different races, plants having tillers with and without
symptoms were sampled, collecting separately leaf number
5 from each scoring result, dose and race used for inoculation.
Samples were collected between BBCH61-69, frozen in liquid
nitrogen immediately after collection and stored at �80 �C until
RNA extraction.

RNA was extracted using TRIzol reagent (Invitrogen, Basel,
Switzerland), according to the manufacturer's instructions. To
avoid DNA contamination, RNA samples were treated with
RQ1 RNase-free DNase kit (Promega).The quality of the isolated
RNA was determined with a NanoDrop ND 1000 (NanoDrop
Technologies, Delaware, USA) and gel electrophoresis. Total RNA
samples (1.5 mg) were reverse-transcribed into double-stranded
cDNA with RevertAidTM First Strand cDNA Synthesis Kit (Fer-
mentas).

2.4. Dynamic arrays

Fluidigm1 48.48 Dynamic ArrayTMIFCs (Integrated Fluidic
Circuits) dynamic arrays were performed. Three technical repli-
cates per sample and a non-template control were tested. The
dynamic arrays were performed as described by Fluidigm1

48.48 Dynamic ArrayTMIFCs (PN 100-1208 B) with minor
modifications. Total reaction volumes were changed: “STA (specific
target amplification) reaction volume” was 6 ml instead of 5 ml and
“sample pre-mix volume” was 8 ml instead of 5 ml. The total
volume per inlet for the “assay mix” chosen was 6 ml. BiomarkTM-

System was used to run the chips and data was collected with
FluidigmTMReal-Time PCR Analysis Software.

Supplementary Tables 1 and 2 show the lists of primers used in
the experiment. Genes were selected either because they have
been reported to be involved in plant defence response or they
were differentially expressed in microarray experiments per-
formed with KP4 and control lines (Fammartino et al. [16]). Three
reference primers for RT-qPCR normalization in wheat were used:
Ta542297, Ta2291 and Ta2776 [14]. Primers whose melting curves
had more than one peak and, therefore, different melting
temperatures (Tm) were eliminated from further analysis. Ct
values were calculated by FluidigmTMReal-Time PCR Analysis
Software, linear derivative and automatic detectors methods were
set for baseline correction. PCR efficiencies were calculated with
LinRegPCR (12.x) software and DCt calculated according to Karlen
et al. [15]. The expression stability of the reference genes was
checked using the geNorm technology within qbasePLUS software
which recommended to use only Ta542297 and Ta2291 as
reference targets. Graphs and statitiscal analysis were performed
in SigmaPlot for Windows Version 12.0, Copywrightã2011, Systat
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Software, Inc. Principal component analysis was performed using R
language (http://www.R-project.org).

3. Results

3.1. KP4 wheat shows enhanced resistance to loose smut

From earlier experiments that investigated the antifungal
specificity of the kp4 transgene [9] we expected that KP4 could
also inhibit the development of loose smut (caused by Ustilago
tritici). KP4 wheat was tested in a greenhouse trial for quantitative
loose smut resistance using different doses of U. tritici spores
(Furrer collection). Fig. 1 shows the number of plants with and the
number of plants without symptoms for the varieties Greina and
Golin both KP4 lines and non-KP4 controls for four different
U. tritici spore doses. The scoring results are shown in
Fig.1. Greenhouse scoring results for infection test of two wheat varieties, genetically mo
Plants were inoculated with different doses of loose smut spores, 1, 5, 10 and 20 g per li
(black) and without (grey) symptoms for Golin KP4 and non-KP4 control. (B) The bars re
KP4 and non-KP4 control. The asterisks represent the probability (Fischer Exact Test) tha
the transgene. * = P < 0.05, ** = P < 0.01, *** = P < 0.001, **** = P < 0.0001, n.s.= non signifi
compared to their non-KP4 control.
Supplementary Table 3. The presence of the transgene had a
significant effect (Fischer Exact Test) on the number of plants with
and without symptoms for the doses 1, 5 and 10 g/L in both
varieties. For the 20 g/L dose, the difference between the number of
plants with and without symptoms was not significant for the
presence of the transgene. The highest increase in resistance was
for the dose 5 g/L, 31% and 57% less plants with symptoms for
Greina and Golin KP4 respectively. There was no significant
correlation between dose and percentage of plants with symptoms
for non-KP4 control lines for the three lower U. tritici doses. On the
other hand, there was a significant correlation for dose (logarithm
base 10) and percentage of plants with symptoms in the KP4 lines,
R2 0.94440 and 0.9415 for Greina and Golin KP4 respectively
(Pearson correlation coefficient, P < 0.05). This indicates that
KP4 provides quantitative resistance to loose smut telio spore
development in wheat plants expressing the killer protein 4 and
dified by KP4 Golin and Greina, inoculated with different doses of loose smut spores.
ter of spores suspended in water. (A) The bars represent the number of plants with
present the number of plants with (black) and without (grey) symptoms for Greina
t the difference observed in plants with symptoms is independent of the presence of
cant = P > 0.05. In both varieties there was an increase in resistance in KP4 plants
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that the relationship between dose and percentage of plants with
symptoms is exponential.

The KP4 Greina line and its non-KP4 control were also tested in
a field trial in 2010 in two locations in Germany: Üpplingen and
Groß Lüsewitz. In order to ensure the viability of the spores used in
the field trial, a fresh collection (Spiess collection) was used. The U.
Fig. 2. Scoring results of field trial with KP4 and non-KP4 control plants inoculated with 

symptoms for Golin and Greina, KP4 and non-KP4 control in: (A) field site Üpplingen (thre
�SEM). There is no significant difference between KP4 wheat and non-KP4 control.
tritici spore concentration used for inoculation was 5 g/L because
this dose had shown the highest difference between KP4 lines and
non-KP4 control in the greenhouse experiment. The infected ears
developed a mass of spores instead of the cereal grain and were
easily detected during the flowering stage (BBCH 62-68) by their
black color. The numbers for infected and non-infected ears were
loose smut. The bars represent the number of plants with (black) and without (grey)
e biological replicates �SEM) (B) field site Gross Lüsewitz (four biological replicates
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determined and percentage of infected spikes was calculated. In
this field trial, no significant difference was observed between
KP4 and its non-KP4 control line in both locations (Fig. 2). The
scoring results are shown in Supplementary Table 4.

3.2. KP4 enhanced resistance is race and dose dependent

The field spore collections used in the greenhouse (Furrer
collection) and field (Spiess collection) experiments were different,
thus their infection pressure might differ depending on their
respective race composition. We therefore tested whether the
enhanced resistance provided by KP4 varied, if different U. tritici
races were used for inoculation. Three different representative
isolated U. tritici races of defined virulence, T9, T10 and T39 were
used for inoculation with the doses that showed a significant
increase in resistance in the greenhouse trial: 1, 5 and 10 g/L. Fig. 3
shows the number of plants with and the number of plants without
symptoms for the varieties Greina and Golin both KP4 lines and
Fig. 3. Variation of resistance in KP4 plants according to different races used for inoculatio
(black) and without (grey) symptoms for Golin KP4 and non-KP4 control. (B) The bars re
KP4 and non-KP4 control. Increase of resistance in KP4 plants is race dependent. The ast
plants with symptoms is independent of the presence of the transgene. * = P < 0.05, ** 
non-KP4 controls for the different doses. The scoring results are
shown in Supplementary Table 5.

In case of the dose 5 g/L, both for Golin and Greina inoculated
with T10 and T39, the number of plants with or without symptoms
is not independent of the presence of the transgene, but no
dependence was detectable when the plants are inoculated with
T9. Therefore, the resistance provided by KP4 depends on the U.
tritici race used for inoculation. The scoring results for all three
doses are shown in Supplementary Table 5. The results for doses
1 and 10 g/L were summarized in Supplementary Table 6 and
confirmed that the resistance provided by KP4 depends both on the
U. tritici race used for inoculation and the dose.

3.3. Effect of different races on expression of genes related to plant
pathogen defense

In order to find possible explanations for the difference
between races (Fig. 3), we studied the expression profiles of genes
n for a 5 g/L spore suspension dose. (A) The bars represent the number of plants with
present the number of plants with (black) and without (grey) symptoms for Greina
erisks represent the probability (Fischer Exact Test) that the difference observed in
= P < 0.01, *** = P < 0.001, **** = P < 0.0001, n.s.= non significant = P > 0.05.
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related to plant pathogen defense in leaves (pool of leaf number 5)
from plants inoculated with the different races at the same spore
concentration. Twentytwo genes were selected either because
they were found to be differentially regulated in microarray
analysis previously performed using a KP4 line inoculated with
Tilletia caries [16] or because they are known to be related to
pathogen-defense. The absence of loose smut symptoms in the
spikes might be due to unsuccessful inoculation or unsuccessful
pathogen infection, as a result of plant defense mechanisms or
KP4 inhibiting effects. We observed plants that had spikes both
with and without symptoms. Therefore, in order to confirm that
the spikes without symptoms came from successfully inoculated
plants, we used leaves from tillers with spikes with symptoms and
leaves from tillers with spikes without symptoms coming from the
same plant. Given that the only dose that had tillers with and
without symptoms on the same plant in both KP4 and non-
KP4 control line for the three races was 10 g/l and only in Golin
lines, the samples for the expression profile correspond to this
variety and dose. Fig. 4 shows a Principal Component Analysis
(PCA) which visualizes the relationship between the mentioned
samples regarding the transcript abundance of 15 genes (Supple-
mentary Table 1) measured with Fluidigm Dynamic ArrayTMIFCs.
Principal component 1 (PC1) accounted for 77% of the variance and
PC2 accounted for 13%. The genes that contribute most to
differences among samples along PC1 are: polyubiquitin, Pto
kinase interactor 1 and an ef-hand calcium-binding protein. Those
that contribute most to differences among samples along PC2 are:
xylanase inhibitor, Pto kinase interactor 1 and an alternative
oxidase. Samples do not cluster separately according to the race
they have been inoculated with. Interestingly, while samples from
plants inoculated with T39 are grouped together according to the
absence or presence of symptoms, samples from plants inoculated
with T9 are grouped together according to their genotype, Golin
KP4 or Golin non-KP4 control.
Fig. 4. PCA of transcript abundance using samples from greenhouse experiment
with different races. Samples inoculated with race T39 (circled) are grouped
together while samples inoculated with races T9 and T10 do not show a grouping
pattern. S: symptoms. NS: no symptoms.
3.4. Pathogen defense related genes are down-regulated in KP4 wheat
and others correlate with kp4 expression

Transcript abundance of 22 genes (Supplementary Table 2) was
measured by Fluidigm Dynamic ArrayTMIFCs in leaves samples
(pool of 15 leaves, leaf number 5) from tillers with and without
symptoms collected in the field trial at Groß Lüsewitz in 2010. The
results were used to perform the PCA in Fig. 5 that visualizes the
relationship between the mentioned samples regarding the
transcript abundance of the 22 genes (Supplementary Table 2).
PC1 accounted for 55% and PC2 for 32% of the variation. The gene
that contributes the most to variation along PC1 is chalcone
synthase and along PC2 is pathogen-related (PR) 1.1 protein.
Interestingly, there is no clear separation by genotype or biological
replicate. However, PC2 differentiates between samples coming
from tillers with and without symptoms except for one sample.

In order to find possible explanations for the differentiation of
two groups, with and without symptoms, in the field trial analyzed
with PCA (Fig. 5), we analyzed the transcript abundance of each of
the 22 genes (Supplementary Table 2) individually. We found five
genes that were significantly up-regulated in samples from tillers
with symptoms compared to those without symptoms: PR
1.1 protein (P = 0.022), thaumatin-like protein (P = 0.025), chalcone
synthase (P = 0.025), PR10 protein (P = 0.028) and a class I chitinase
transcripts abundance (P < 0.001) (Fig. 6A). The down-regulation
of these genes in samples without symptoms indicates that these
genes might not be involved in loose smut defense. Moreover, we
observed that thaumatin-like protein and a class I chitinase mRNAs
abundance was significantly lower (P = 0.045 and P = 0.023,
respectively) in KP4 compared with non- KP4 control line (not
shown). The down-regulation of these defense genes in the
Fig. 5. PCA of transcript abundance with samples from field trial at Gross Lüsewitz.
Symptomatic and asymptomatic samples are grouped separately from each other
but there is no clear separation by genotype or replicate. S: symptoms. NS: no
symptoms.
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Fig. 6. Significant differences in transcript abundance and correlations with polyubitin and kp4. (A) Genes differentially expressed in tillers with and without symptoms. Data
are normalized to the reference genes transcript abundance mean of three replicates collected at the field trial (Gross Lüsewitz) �SEM. Significance was calculated using
ANOVA. T. aestivum PR1.1, thaumatin- like protein, chalcone synthase, T. aestivum PR 10 and T. aestivum chitinase chitinase class I are significantly up-regulated in samples that
showed symptoms. (B) and (C) Correlation of tested genes with polyubiquitin and KP4 respectively. Data are the transcript abundance of three biological replicates of Greina
KP4 and non-KP4 control from tillers with and without symptoms. CC = Pearson’s correlation coefficient.
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KP4 line might be due to the fact that plants expressing kp4 do not
require the expression of these genes to maintain the same
percentage of infected spikes as plants that do not express kp4.

Previous results in our group have shown that a race of Tilletia
caries is able to down-regulate polyubiquitin as a possible way of
overcoming plant defenses [16]. Thus, we measured the mRNA
abundance of polyubiquitin in our samples. No significant
difference was observed between KP4 and its non-KP4 control
nor between samples with and without symptoms. However, we
found that some of the pathogen defense genes transcript
abundances correlated with polyubiquitin mRNA abundance both
in Greina KP4 and non-KP4 control: calcineurin B-like protein
(CBL) interaction protein kinase 5; cell wall invertase; xylanase
inhibitor; a jasmonate-induced protein; b-1,3-glucanase (Glc2)
(Fig. 6B). Interestingly, for some of the defense genes, the
polyubiquitin expression profile correlated only in Greina
KP4 plants, and not in the non-KP4 control, indicating the
transgene has a pleiotropic effect in the expression of the
following pathogen defense genes: a multi antimicrobial extrusion
(MATE) protein; subtilisin-chymotrypsin inhibitor 2; PR4 protein
(Fig. 6C).

4. Discussion

4.1. KP4 plants are more resistant under greenhouse conditions to
Ustilago tritici than their non-KP4 control

Previous work had shown that KP4 was able to enhance wheat
resistance to Tilletia caries in green house and field conditions
[9,10]. The objective of this work was to test this increased
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resistance with another important fungus of the same order:
Ustilago tritici causing loose smut. The results in the greenhouse
showed that KP4 wheat plants are up to 60% more resistant to U.
tritici. Moreover, the significant correlation between the logarithm
of the dose and the percentage of infected plants showed this
resistance is quantitative. In addition, we observed that the
resistance provided by the transgene is also dependent on the race
used for inoculation, possibly due to differences in virulence
among races [17,18]. Furthermore, in the PCA using transcript
abundance of known pathogen-defense related genes, the lines
grouped according either to their genotype or to the symptoms
depending whether the race used for inoculation was T9 or T39.
This indicates that each race might have a different effect on the
expression profiles of the lines, at least for the studied genes.
Therefore, we conclude that the resistance provided by KP4 will be
different for each collection of wild spores depending on its race
composition and dose. Consequently, in order to be able to test
KP4 effects quantitatively, a dose response experiment would be
necessary for each new spore collection.

4.2. Indirect effects of KP4 transgene in endogenous gene expression

In samples coming from tillers of infected plants with no
symptoms in the field, significantly lower transcript abundance
was observed for PR1.1 protein, thaumatin-like protein, chalcone
synthase, PR10 protein and class I chitinase. These genes are all
reported to be involved in plant pathogen defenses [19–23].
Therefore, it is conceivable that the corresponding transcripts are
less abundant in tillers with no symptoms because they are not
involved in defense against loose smut. Remarkably, two of these
genes are down-regulated in KP4 plants compared to the non-
KP4 control: thaumatin-like protein and class I chitinase. It is
unlikely that KP4 participates in the regulation of endogenous
genes, but it might indirectly affect the expression of these genes.
We hypothesize that even when the observed symptoms showed
no evidence of KP4 enhanced resistance under these dose and
spore collection conditions, KP4 plants are able to maintain the
same symptom status (i.e. amount of infected spikes) as non-
KP4 control without the expression of some pathogen defense
genes that non-KP4 control plants need for protection.

In agreement with previous work (Fammartino et al.), we found
that wheat polyubiquitin gene expression correlates positively
with the expression of kp4. This correlation is not surprising, since
kp4 is under the regulation of a maize ubiquitin promoter [9]. In
addition, we found other genes whose transcript abundance
correlated with the polyubiquitin transcript abundance: calci-
neurin B-like protein (CBL) interaction protein kinase 5, cell wall
invertase, xylanase inhibitor, a jasmonate–induced protein and
b-1,3-glucanase (Glc2). The positive correlation of the transcript
abundance of these genes with polyubiquitin expression is
conceivable since they are related to pathogen defense [24–28],
and, thus, possibly regulated by the same pathways. Interestingly,
other genes involved in pathogen defense, i.e. subtilisin-chymo-
tripsin inhibitor 2 [29], PR4 protein 4 [20], and a multi
antimicrobial extrusion (MATE) protein [30] correlated positively
only in KP4 plants (with the high mRNA abundance of the
polyubiquitin gene) and not in non-KP4 control plants. Apparently,
in KP4 plants, the expression of certain pathogen defense related
genes is induced with increasing amounts of kp4.

These results show that either expression of KP4 under the
control of a maize ubiquitin promoter and/or the effects of the
toxin may have pleiotropic effects on the expression of pathogen-
related genes, either increasing or decreasing their transcript
abundance depending of the gene. However, it is worth mention-
ing that no undesired phenotypic effects were observed in these
KP4 plants [9,31].
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