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For every linear binary code C, we construct a geometric triangular
configuration � so that the weight enumerator of C is obtained by
a simple formula from the weight enumerator of the cycle space
of �. The triangular configuration � thus provides a geometric
representation of C which carries its weight enumerator. This is
the first step in the suggestion by M. Loebl, to extend the theory
of Pfaffian orientations from graphs to general linear binary codes.
Then we carry out also the second step by constructing, for every
triangular configuration �, a triangular configuration �′ and a
bijection between the cycle space of � and the set of the perfect
matchings of �′.
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1. Introduction

A seminal result of Galluccio and Loebl [2] asserts that the weight enumerator of the cut space C
of a graph G may be written as a linear combination of 4g(G) Pfaffians, where g(G) is the minimal
genus of a surface in which G can be embedded. Recently, a topological interpretation of this result
was given by Cimasoni and Reshetikhin [1]. Viewing the cut space C as a binary linear code, a graph G
may be considered as a useful geometric representation of C which provides an important structure
for the weight enumerator of C .
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This motivated Martin Loebl to ask, about 10 years ago, the following question: Which binary
codes are cycle spaces of simplicial complexes? In general, for the binary codes with a geometric
representation, one may hope to obtain a formula analogous to that of Galluccio and Loebl [2]. This
question remains open. We construct geometric representations which carry over only the weight
enumerator. We note that this construction is still sufficient for the extension of the theory of Pfaffian
orientations.

We present a construction which shows that a useful geometric representation exists for all binary
codes. The first main result is as follows:

Theorem 1. For each binary linear code C of length n, one can construct a triangular configuration � and a
positive integer e linear in n, so that if the weight enumerator of the cycle space of � equals

∑m
i=0 ai xi then

the weight enumerator of C satisfies

W C (x) =
m∑

i=0

aix
i mod e.

The second main result of the paper is to construct, for every triangular configuration �, a tri-
angular configuration �′ and a bijection between the cycle space of � and the set of the perfect
matchings of �′ . This carries over the second step in the Loebl’s suggestion to extend the theory of
Pfaffian orientations to the general binary linear codes.

2. Preliminaries

We begin with definitions of the basic concepts. Let n be a positive integer. A binary linear code
C of length n is a subspace of GF(2)n , and each vector in C is called a codeword. The weight of a
codeword c is the number of non-zero coordinates, denoted by w(c). A binary linear code C is even if
all codewords have an even weight. We define a partial order on C as follows: Let c = (c1, . . . , cn),d =
(d1, . . . ,dn) be codewords of C . Then c � d if ci = 1 implies di = 1 for all i = 1, . . . ,n. A codeword d
is minimal if c � d implies c = d for all c. The weight enumerator of the code C is defined according to
the formula

W C (x) :=
∑
c∈C

xw(c).

An abstract simplicial complex on a finite set V is a family � of subsets of V closed under taking
subsets. Let X be an element of �. The dimension of X is |X | − 1, denoted by dim X . The dimension
of � is max{dim X | X ∈ �}, denoted by dim�.

A simplex in R
n is the convex hull of an affine independent set V in R

d . The dimension of the
simplex is |V | − 1. The convex hull of any non-empty subset of V that defines a simplex is called a
face of the simplex. A simplicial complex � is a set of simplices fulfilling the following conditions:

• Every face of a simplex from � belongs to �.
• The intersection of every two simplices of � is a face of both.

We denote the subset of d-dimensional simplices of � by �d . Every simplicial complex defines an
abstract simplicial complex on the set of vertices V , namely the family of sets of vertices of simplexes
of �. We denote this abstract simplicial complex by A(�).

The geometric realization of an abstract simplicial complex � is a simplicial complex �′ such that
� = A(�′). It is well known that every finite d-dimensional abstract simplicial complex can be re-
alized as a simplicial complex in R

2d+1. We choose a geometric realization of an abstract simplicial
complex � and denote it by G(�). This paper studies 2-dimensional simplicial complexes where each
maximal simplex is a triangle. We call them triangular configurations. The number of triangles in an



292 P. Rytíř / Advances in Applied Mathematics 45 (2010) 290–301
(abstract) simplicial complex � is denoted by |�|. A subconfiguration of a triangular configuration �

is a triangular configuration �′ such that �′ ⊆ �. A cycle of a triangular configuration is a subcon-
figuration such that every edge is incident with an even number of triangles. A circuit is a minimal
non-empty cycle under inclusion.

Let �1, �2 be subconfigurations of a triangular configuration �. The difference of �1 and �2,
denoted by �1 − �2, is defined to be the triangular configuration obtained from �0

1 ∪ �1
1 ∪ �2

1 \ �2
2

by removing the edges and vertices that are not contained in any triangle in �2
1 \ �2

2. The symmetric
difference of �1 and �2, denoted by �1 � �2, is defined to be �1 � �2 := (�1 ∪ �2) − (�1 ∩ �2).
Let �1,�2 be triangular configurations. The union of �1,�2 is defined to be �1 ∪ �2 := G(A(�1) ∪
A(�1)).

Let � be a d-dimensional simplicial complex. We define the incidence matrix A = (Aij) as follows:
the rows are indexed by (d − 1)-dimensional simplices and the columns by d-dimensional simplices.
We set

aij :=
{

1 if (d − 1)-simplex i belongs to d-simplex j,
0 otherwise.

The cycle space C of � is the kernel ker� of the incidence matrix of � over GF(2), and C = ker�

is said to be represented by �. For a subconfiguration C of �, we let χ(C) = (χ(C)t1 , . . . ,χ(C)t|�| ) ∈
{0,1}|�| denote its incidence vector, where χ(C)t = 1 if C contains the triangle t , and χ(C)t = 0 oth-
erwise. It is well known that the kernel of � is the set of incidence vectors of cycles of �. Let
C ⊆ {0,1}n be a binary linear code and let S be a subset of {1, . . . ,n}. Puncturing a code C along S
means deleting the entries indexed by the elements of S from each codeword of C . The resulting code
is denoted by C/S .

3. Triangular representation of binary codes

First, we define three basic triangular configurations.

3.1. Triangular configuration Bn

The triangular configuration Bn consists of n disjoint triangles as is depicted in Fig. 1. We denote
the triangles of Bn by Bn

1, . . . , Bn
n .

3.2. Triangular sphere S m

The triangular sphere S m , depicted in Fig. 2, is a triangulation of a 2-dimensional sphere by m
triangles. This triangulation exists for every even m � 4. We denote the triangles of S m by S m

1 , . . . , S m
m .

Fig. 1. Triangular configuration Bn .

Fig. 2. Triangular sphere S m .
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Fig. 3. Triangular tunnel T .

Fig. 4. �C
bi

represents a basis vector (1,0, . . . ,1,0) of C .

3.3. Triangular tunnel T

The triangular tunnel T is depicted in Fig. 3.
In particular, triangles {1,2,3} and {a,b, c} are not elements of T .

3.4. Joining triangles by tunnels

Let � be a triangular configuration. Let t1 and t2 ∈ � be two disjoint triangles of �. The join of t1
and t2 in � is the triangular configuration �′ defined as follows. Let T be a triangular tunnel as in
Fig. 3. Let t1

1, t2
1, t3

1 and t1
2, t2

2, t3
2 be edges of t1 and t2, respectively. We relabel edges of T such that

{a,b, c} = {t1
1, t2

1, t3
1} and {1,2,3} = {t1

2, t2
2, t3

2}. Then �′ is defined to be � ∪ T .

3.5. Construction

Let C be a binary code of length n and dimension d. Let B = {b1, . . . ,bd} be a basis of C . We con-
struct its triangular representation �C

B as follows. For every basis vector bi we construct a triangular
configuration �C

bi
. The triangular configuration �C

bi
is obtained from Bn ∪ S m , where m is even and

m � n, m � 4. Let J i be the set of indices of non-zero entries of bi . For each j ∈ J i we join the tri-
angle S m

j of S m with the triangle Bn
j . Then we remove the triangle S m

j from S m . Finally, we remove

the triangles of Bn that are not joined with the sphere. An example of �C
bi

for bi = (1,0, . . . ,1,0) is

depicted in Fig. 4. Thus, the triangular configuration �C
bi

contains Bn
j if and only if j ∈ J i . We note

that

Proposition 2. The number |�C
b | − w(bi) is always even.
i
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Fig. 5. An example of triangular representation �C
B of C .

Triangular configurations �C
bi

, i = 1, . . . ,d, share triangles of Bn and do not share spheres S m .

Hence, A(�C
bi

) ∩ A(�C
b j

) ⊆ A(Bn) holds for i < j, i, j ∈ {1, . . . ,d}.

Finally, the triangular representation �C
B of C is the union of �C

bi
, i = 1, . . . ,d. An example of a

triangular representation �C
B of C is depicted in Fig. 5. A triangular representation �C

B of C is balanced
if there is an integer e such that |�C

bi
| − w(bi) = e for all i = 1, . . . ,d. This e is denoted by e(�C

B ).

We denote the addition modulo 2 by +2 or
∑2. Let c be a codeword of C and let c = ∑2

i∈I bi be the
unique expression of c, where bi ∈ B . The degree of c with respect to a basis B is defined to be the
cardinality |I| of the index set. The degree is denoted by d(c).

We denote by ker�C
B the cycle space of the triangular configuration �C

B . We define a linear map-

ping f : C �→ ker�C
B in the following way: Let c be a codeword of C and let c = ∑2

i∈I bi be the unique
expression of c, where bi ∈ B . We define f (c) := χ(�i∈I�

C
bi

). The entries of f (c) are indexed by the

triangles of �C
B . We have f (c)Bn

j = 1 if and only if �i∈I�
C
bi

contains the triangle Bn
j .

Proposition 3. Denote | �i∈I �C
bi

| by m. Let c = (c1, . . . , cn) and

f (c) = (
f (c)Bn

1 , . . . , f (c)Bn
n , f (c)n+1, . . . , f (c)m)

.

Then f (c)Bn
j = c j for all j = 1, . . . ,n and all c ∈ C .

Proof. We show the proposition by induction on the degree d(c) of c. The codeword c is equal to∑2
i∈I bi . If d(c) = 0, then c = 0 and f (c) = 0. Thus, f (c) is the incidence vector of the empty triangular

configuration. Hence, the proposition holds for vectors of degree 0. If d(c) is greater than 0, then
|I| � 1. We choose some k from I . The codeword c +2 bk has a degree less than c. By the induction
assumption, the proposition holds for c +2 bk . Let bk = (b1

k , . . . ,bn
k). From the definition of �C

bk
, the

equality b j
k = χ(�C

bk
)

Bn
j holds for all j = 1, . . . ,n. Therefore,

c j = (
c j +2 b j

k

) +2 b j
k = χ

(�i∈I\{k}�C
bi

)Bn
j +2 χ

(
�C

bk

)Bn
j = f (c)Bn

j

for all j = 1, . . . ,n. �
Corollary 4. The mapping f is injective.

Lemma 5. Every non-empty cycle of �C
B contains �C

b − Bn as a subconfiguration for some i ∈ {1, . . . ,d}.

i
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Fig. 6. Triangle subdivision.

Proof. Every cycle of �C
B contains either all triangles or no triangle of �C

bi
− Bn , since �C

bi
∩ �C

b j
⊆ Bn

for all distinct i, j ∈ {1, . . . ,d}. The configuration Bn does not contain non-empty cycles, since the
triangles of Bn are disjoint. Therefore, every non-empty cycle contains a triangle of �C

bi
− Bn for some

i ∈ {1, . . . ,d}. Hence, every non-empty cycle contains �C
bi

− Bn for some i ∈ {1, . . . ,d}. �
Theorem 6. Let C be a binary code and let �C

B be its triangular representation with respect to a basis B. The
mapping f defined above is a bijection of the binary linear codes C and ker�C

B which maps minimal codewords
to minimal codewords.

Proof. By Corollary 4, the mapping f is injective. It remains to be proven that dim C = dim ker�C
B .

Suppose on the contrary that some codeword of ker�C
B is not in the span of { f (b1), . . . , f (bd)}. Let

c be such a codeword with the minimal possible weight w(c). Let K be a cycle of �C
B such that

χ(K ) = c. By Lemma 5, the cycle K contains �C
bi

− Bn for some i ∈ {1, . . . ,d}. Since |�C
bi

− Bn| > |Bn|,
the inequality |K � �C

bi
| < |K | holds. Therefore, w(c) > w(χ(K � �C

bi
)). This is a contradiction.

Finally, we show that f maps minimal codewords to minimal codewords. Let d be a minimal
codeword. Suppose on the contrary that f (d) is not a minimal codeword of ker�C

B . Then f (c) ≺ f (d)

for some codeword c. However, ci = f (c)i = 1 implies that di = f (d)i = 1. Therefore, c ≺ d. This
contradicts the minimality of d. �

Let t be a triangle of a triangular configuration �. The subdivision of the triangle t is the triangular
configuration obtained from � by exchanging the triangle t by triangles t1, t2, t3 in the way depicted
in Fig. 6.

Proposition 7. Every binary code C of length n and dimension d has a balanced triangular representation �C
B

such that e(�C
B ) > n, where B is an arbitrary basis of C .

Proof. Let �C
B be an arbitrary triangular representation of C with respect to a basis B = {b1, . . . ,bd}.

We denote by ki the number |�C
bi

| − w(bi). Every ki is even by Proposition 2. Let n′ be the smallest
even number greater than n and let k denote max{n′,ki | i = 1, . . . ,d}. For each i ∈ {1, . . . ,d} such
that ki �= k, the following step is applied. We choose a triangle t from �C

bi
− Bn and subdivide it.

The number ki is increased by 2. If ki still does not equal to k, then we repeat this step. After this
procedure, the configuration �C

B is balanced and e(�C
B ) > n. �

Proposition 8. Let C be an even binary linear code and let �C
B be its balanced triangular representation with

respect to a basis B. Then w( f (c)) = w(c) + d(c)e(�C
B ) for every codeword c ∈ C .

Proof. Write c as
∑2

i∈I bi , where bi ∈ B . Then f (c) = χ(�i∈I�
C
bi

). Now, the configuration �i∈I�
C
bi

contains all triangles of �C
bi

− Bn for all i ∈ I . The number of these triangles is d(c)e(�C
B ), since |�C

bi
−

Bn| = e(�C
B ) and |I| = d(c). By Proposition 3, the configuration �i∈I�

C
bi

contains the triangle Bn
k if and

only if ck = 1. The number of these triangles is w(c). Therefore, w( f (c)) = w(c) + d(c)e(�C
B ). �
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4. Weight enumerator

In this section, we state the connection between the weight enumerator of a code and the weight
enumerator of its triangular representation. This provides a proof of Theorem 1.

We define the extended weight enumerator (with respect to a fixed basis) by

W k
C (x) :=

∑
c∈C

d(c)=k

xw(c).

If a code C has dimension d, then

W C (x) =
d∑

k=0

W k
C (x).

Proposition 9. Let C be a binary code and let �C
B be its balanced triangular representation �C

B with respect
to the fixed basis B. Then

W k
ker �C

B
(x) = W k

C (x)xke(�C
B ).

Proof. Let f be the mapping defined in Section 3. For every codeword c of degree k of C there is
codeword f (c) of degree k of ker�C

B . By Proposition 8, w( f (c)) = w(c) + ke(�C
B ). Therefore,

W k
ker �C

B
(x) =

∑

f (c)∈ker�C
B

d( f (c))=k

xw( f (c)) =
∑
c∈C

d(c)=k

xw(c)+ke(�C
B ) = W k

C (x)xke(�C
B ). �

Proposition 10. Let C be a binary code of length n and let �C
B be a balanced triangular representation of C .

The inequality ke(�C
B ) � w(c) � ke(�C

B ) + n holds for every codeword c of degree k of ker�C
B .

Proof. By Proposition 8, w(c) = w( f −1(c)) + ke(�C
B ). Since 0 � w( f −1(c)) � n for every c ∈ ker�C

B ,
the inequality ke(�C

B ) � w(c) � ke(�C
B ) + n holds. �

Corollary 11. Let C be a binary code of dimension d and length n and let �C
B be a balanced triangular repre-

sentation of C such that n < e(�C
B ). Denote e(�C

B ) by e. Let
∑de+n

i=0 ai xi be the weight enumerator of ker�C
B .

Then

W k
ker �C

B
(x) =

ke+n∑
i=ke

aix
i .

Proof. By Proposition 10, w(c) � (k − 1)e + n for all codewords c ∈ ker�C
B of a degree less than k.

Since n < e, the inequality w(c) � ke − e + n < ke holds. By Proposition 10, ( j + 1)e � w(c) for all
codewords c ∈ ker�C

B of a degree greater than k. Since n < e, the inequality ke + e < ke + n � w(c)
holds. Hence, the enumerator W k

ker�C
B
(x) is the sum over all codewords of a weight between ke and

ke + n. �
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Theorem 12. Let C be a binary code of dimension d and length n and let �C
B be a balanced triangular repre-

sentation of C such that n < e(�C
B ). Denote e(�C

B ) by e. Let
∑de+n

i=0 ai xi be the weight polynomial of ker�C
B .

Then

W C (x) =
de+n∑
i=0

aix
i mod e.

Proof. The inequality w(c) � n holds for every codeword c ∈ C . Let f be the mapping defined in
Section 3. By Proposition 8, w( f (c)) = w(c) + d(c)e for every codeword c of C . Since n < e, the
following equality holds.

w
(

f (c)
)

mod e = (
w(c) + d(c)e

)
mod e = w(c).

Hence,

W C (x) =
de+n∑
i=0

aix
i mod e. �

Now, we prove Theorem 1.

Proof of Theorem 1. Let C be a linear binary code of length n. By Proposition 7, we can construct
a balanced triangular representation � of C such that e(�) > n. Denote e(�) by e. Let W�(x) =∑de+n

i=0 ai xi be the weight enumerator of �. By Theorem 12, the following equality holds.

W C (x) =
de+n∑
i=0

aix
i mod e. �

5. Matching

In this section we reduce the computation of the weight enumerator of the even subconfigurations
to the computation of the weight enumerator of the perfect matchings.

Let � be a triangular configuration. A matching of � is a subconfiguration M of � such that t1 ∩ t2
does not contain an edge for every distinct t1, t2 ∈ T (M). Let � be a triangular configuration. Let M
be a matching of �. Then the defect of M is the set E(T ) \ E(M). We denote the matching with this
defect by ME(T )\E(M) . The perfect matching of � is a matching with empty defect. We denote the set
of all perfect matchings of � by P (�). The weight enumerator of perfect matchings in � is defined
to be P�(x) = ∑

P∈P (�) xw(P ) , where w(P ) := ∑
t∈P wt .

Now, we define some basic triangular configurations.

5.1. Triangular configuration P

The triangular configuration P is depicted in Fig. 7.

Proposition 13. The triangular configuration P has exactly two perfect matchings {t1, t3, t5, t7}, {t2, t4, t6, t8}.
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Fig. 7. Triangular configuration P .

Fig. 8. Closed triangular tunnel T .

Fig. 9. Matching triangular edge.

5.2. Closed triangular tunnel T

The closed triangular tunnel T is depicted in Fig. 8. We call triangles {a,b, c} = t2 and {1,2,3} = t1
ending triangles.

Proposition 14. A closed triangular tunnel T has two perfect matchings MT
t1

= {t1, s4, s5, s6}, MT
t2

=
{t2, s1, s2, s3}.

5.3. Triangular configuration E pq

The matching triangular edge is the triangular configuration which is obtained from the triangular
configuration P and two closed triangular tunnels T in the following way: Let T1 and T2 be closed

triangular tunnels. Let tT1
1 , pT1 and tT2

1 ,qT2 be the ending triangles of T1 and T2, respectively. We

identify tT1
1 with t P

1 and tT2
1 with t P

3 . The configuration E pq is defined to be T1 � P � T2. The triangular
configuration E pq is depicted in Fig. 9.

Proposition 15. A matching triangular edge has two perfect matchings.
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Fig. 10. Matching triangle.

Proof. There are two matchings. The first matching is N0
pq := MT1

t1
∪ MT2

t1
∪{t P

5 , t P
7 }. The second match-

ing is N1
pq := MT1

p ∪ MT2
q ∪ {t P

2 , t P
4 , t P

6 , t P
8 }.

Any perfect matching of E pq contains {t P
5 , t P

7 } or {t P
2 , t P

4 , t P
6 , t P

8 }. This determines remaining trian-
gles in a perfect matching. Hence, there are just two perfect matchings. �

We denote the matching N1
pq by M1

pq and the matching N0
pq \ p,q by M0

pq .

5.4. Triangular configuration T pqr

The matching triangular triangle is the triangular configuration which is obtained from the triangular
configuration P and three closed triangular tunnels T in the following way: Let T1, T2 and T3 be
closed triangular tunnels. Let tT1

1 , pT1 ; tT2
1 ,qT2 and tT3

1 , rT3 be the ending triangles of T1, T2 and T3,

respectively. We identify tT1
1 with t P

1 ; tT2
1 with t P

3 and tT3
1 with t P

5 . The configuration T pqr is defined
to be T1 � P � T2 � T3. The triangular configuration T pqr is depicted in Fig. 10.

Proposition 16. A matching triangular triangle has two perfect matchings.

Proof. There are two matchings. The first matching is N0
pqr := MT1

t1
∪ MT2

t1
∪ MT3

t1
∪ {t P

7 }. The second

matching is N1
pqr := MT1

p ∪ MT2
q ∪ MT3

r ∪ {t P
2 , t P

4 , t P
6 , t P

8 }.

Any perfect matching of T pqr contains {t P
5 , t P

7 } or {t P
2 , t P

4 , t P
6 , t P

8 }. This determines remaining trian-
gles in a perfect matching. Hence, there are just two perfect matchings. �

We denote the matching N1
pqr by M1

pqr and the matching N0
pqr \ p,q, r by M0

pqr .

5.5. Triangular configuration Ct1t2...tn

This part of the reduction is analogous to the reduction for graphs described in Galluccio et al.
[3]. Let t1, t′

1 be empty disjoint triangles. Let t2, . . . , tn, t′
2, . . . , t′

n be disjoint triangles. Then Ct1t2...tn

is defined to be (�n
i=1ti) � (�n

i=1t′
i) � (�n

i=1 Etit
′
i
) � (�n

i=2 Etit
′
i−1

) � (�n−1
i=1 Et′i t′i+1

). The configuration is
depicted in Fig. 11.

Proposition 17. Let M I
C denote the perfect matching containing triangles ti, i ∈ I . Then there exists exactly

one perfect matching M I
C of Ct1t2...tn if and only if |I| is even.
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Fig. 11. Triangular configuration Ct1t2 ...tn .

Proof. We construct the perfect matching M by the following algorithm. The first step is defined as
follows. If t1 ∈ I then we set M1 to M0

t1t′1
∪ {t1} otherwise we set M1 to M1

t1t′1
.

Let i � 2. In the i-th step, we extend the matching Mi−1 in the following way.

(a) If t′
i−1 is covered by Mi−1 and ti ∈ I then Mi := Mi−1 ∪ M0

t′i−1ti
∪ {ti} ∪ M0

tit
′
i
∪ M0

t′i−1t′i
.

(b) If t′
i−1 is not covered by Mi−1 and ti ∈ I then Mi := Mi−1 ∪ M0

t′i−1ti
∪ {ti} ∪ M0

tit
′
i
∪ M1

t′i−1t′i
.

(c) If t′
i−1 is covered by Mi−1 and ti /∈ I then Mi := Mi−1 ∪ M0

t′i−1ti
∪ M1

tit
′
i
∪ M0

t′i−1t′i
.

(d) If t′
i−1 is not covered by Mi−1 and ti /∈ I then Mi := Mi−1 ∪ M1

t′i−1ti
∪ M0

tit
′
i
∪ M0

t′i−1t′i
.

Let i � 1. We say that the i-th step is even if t′
i is covered by Mi otherwise it is odd. Every step is

determined by the previous steps and the set I . Therefore, the perfect matching exists if and only if
the algorithm succeeds. The algorithm succeeds if and only if the last step is even. The parity of the
i-th step is different from the previous step if ti ∈ I . Hence, the algorithm succeeds if and only if the
cardinality |I| is even. The desired matching M is Mn . �
5.6. Reduction

Let � be a triangular configuration. We construct the triangular configuration �′ such that every
even subconfiguration of � uniquely corresponds to one perfect matching of �′ and a natural weight-
preserving bijection between the set of the even subconfiguration of � and the set of the perfect
matchings of �′ . We put into �′ empty disjoint triangles te for every tuple (t, e), where e ∈ E(�)

and t ∈ T (�). We add to �′ matching triangles Ttatbtc for every triangle t ∈ T (�), where a,b, c are
edges of t . We assign weight 1 to one arbitrary triangle in the matching M1

t and weight 0 to all
remaining triangles of Ttatbtc . We add to �′ triangular configurations Ct1

e ...tn
e

for every edge e ∈ E(�),

where t1
e , . . . , tn

e are triangles incident with e in �. We assign weight 0 to all triangles of Ct1
e ...tn

e
.

Theorem 18. Let � be a triangular configuration and let �′ be a matching reduction of � and let C be an even
subconfiguration of �. Then there exists exactly one perfect matching MC in �′ , and �′ does not contain any
others perfect matchings.

Proof. Let C be an even subconfiguration of �. We construct a perfect matching MC in �′ . We denote
matchings M1

tatbtc
and M0

tatbtc
of Ttatbtc by M1

t and M0
t , respectively. We denote the set {i | e ∈ T (ti),

ti ∈ C} by Ie and define

MC := {
M1

t

∣∣ t ∈ C
} ∪ {

M0
t

∣∣ t /∈ C, t ∈ T (�)
} ∪ {

M Ie
e

∣∣ e ∈ E(�)
}
.

The matching MC is perfect.
We show that there is no other perfect matching. Every matching triangle Tt is covered by M1

t
or M0

t . Thus Ce is covered by M I
e for some even I . Therefore, every perfect matching in �′ defines an

even subset in �. �
Proposition 19. Let � be a triangular configuration and let �′ be its matching representation and let C be an
even subconfiguration and let MC be the corresponding perfect matching. Then |C | = w(MC ).
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Proof.

w(MC ) =
∑
t∈C

w
(
M1

t

) +
∑

t /∈C, t∈T (�)

w
(
M0

t

) +
∑

e∈E(�)

w
(
M{i|e∈T (ti), ti∈C}

e
)

=
∑
t∈C

1 +
∑

t /∈C, t∈T (�)

0 +
∑

e∈E(�)

0

= |C |. �
The following theorem is a consequence of Proposition 19.

Theorem 20. Let � be a triangular configuration and let �′ be its matching representation. Then W�(x) =
P�′ (x).
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