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Uniform machine

1. Introduction

The online scheduling on uniform machines problem, denoted by Qm/online/Cpqe (m > 2), can be described as follows.
We are given a sequence of independent jobs, which is denoted by {J;, J-, . . ., J.}. Each job J; has a positive size, denoted by
pi. Jobs arrive one by one, and we are required to schedule jobs irrevocably on machines as soon as they are given, without
any knowledge of the successive jobs. Let My, M, ..., My, be m parallel machines. The speed of M; is s, i.e., the time used
for J; to be scheduled on M; is p;/sj,i = 1,2,3,...,n,j = 1,2,..., m. Jobs and machines are available at time zero, and
no preemption is allowed. The goal is to minimize the maximum machine completion time. W.L.o.g., we assume s; = 1 and
S1<8 = =Snm

Algorithms for online scheduling problems are called online algorithms. The quality of the performance of an online
algorithm is measured by its competitive ratio. For an instance / and an algorithm 4, let 4 (1) be the objective value
produced by 4 and let @27 (£) be the optimal value in an offline version. Then the competitive ratio of 4, denoted by
C., is the infimum c such that for every sequence {,

A) <c- 02T ().

An online scheduling problem has a lower bound p if there is no online algorithm with a competitive ratio smaller than
p. An online algorithm, whose competitive ratio matches the lower bound of the problem, is called optimal.

Previous work. Whens; = 1(j = 1,2,...,m — 1) ands;; = s > 1, Cho et al. [2] showed that the greedy online algorithm
L4 has a competitive ratio c 5(s) < 1+ m’i;]] - min{2,s} < 3 — miJrl’ and the bound 3 — miﬂ is achieved when
s = 2. For m > 4, Rongheng et al. [6] presented an online algorithm with a significantly better competitive ratio than

LA whens; = 1(j =1,2,...,m— 1) and s, = 2. Besides, they showed that the bound 3 — miﬂ can be improved when
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ss=1G=1,2,....,m—1)andsy, =s > 1.Form > 4and 1 < s < 2, Cheng et al. [1] proposed an algorithm with a
competitive ratio 2.45.

For m = 2, Epstein et al. [3] showed £4$ has a competitive ratio min{
Q2/online/Cpqx, where the speed ratio s = s,/5s;.

Our results. In this paper, we investigate the online scheduling on three uniform machines problem Q 3/online/Cpqy. W.l.0.8.,
we assume s; = 1,5, = 5,53 = st and s, t > 1. In fact, s can be regarded as the speed ratio between the medium speed
machine and the low speed machine, and t can be regarded as the speed ratio between the high speed machine and the
medium speed machine. We prove the greedy online algorithm .£§ is an optimal online algorithm for Q 3/online/Cyq.x when
the speed ratios (s, t) € G; U G,, where

1431 3t }
6

25+1
s+1°7

%} and is an optimal online algorithm for

Gi=13(@G,0)|1<t< ,$ >
! {( = 54 2t — 6t2

and
G={6t)|st-—Dt>1+s,s>1,t>1}
The competitive ratio of £ is 1222 when (s, t) € Gy and 122 + 1 when (s, t) € G,. Besides, for the general speed ratios,
we show the competitive ratio of .£4 is no more than min{ “;f;[z“, 4, 1l’fs"jr3;f
which matches the overall lower bound of the problem.
The remainder of the paper is organized as follows. Section 2 presents several preliminary results. Section 3 deals with

the lower bounds of the problem Q 3/online/Cpqy. Section 4 is devoted to the upper bounds of .£4§. Finally, Section 5 contains
some remarks.

} and its overall competitive ratio is 2

2. Preliminaries

In this section, We prove thirteen Lemmata which are needed in Section 3.

Lemma 2.1. The sequence {x;}{°, is comprised of positive numbers. Assume x; < 2 ZJ,;} x; holds for every j > 2. Then, for any
real number y € [0, 2 Zﬁ‘zl x;], there exist b € {0,1,2},i=1,2,...,k suchthaty —x; < Zf‘zl bix; <y.
Proof. We use mathematical induction to prove this lemma.

(1) Assumey € [0, 2x1]. If 0 < y < xq, then there exists b = 0, such thaty — x; < b1x; = 0 < y; ifx; < y < 2xq, then
there exists by = 1, such that y — x; < b1x; = x; < y. So, the proposition holds when k = 1.

(2) Assume the proposition holds when k = m.

(3) Assumey € [0,2 Y1 x]

If 2xpy1 < y.Sincey < 2 Z:";]] x, wehave 0 < y — 2xppq < 2 Z:n:] x;. Then, according to assumption (2), there

exist b € {0,1,2},i = 1,2,...,m,such thaty — 2x;,11 — x; < Z,m:] bixi < y — 2Xm11. Let by = 2, we have
y—xi < Y b <.

IfXni1 <y < 2Xpmy1,then0 <y — Xpy1 < Xpmaq. According to the condition of this Lemma, we have x;,,,1 < 2 Z:"Zl Xi.
Hence,0 <y — xp41 < 2 Zl";] x;. Then, according to assumption (2), there exist b; € {0, 1,2},i = 1, 2, ..., m, such that
Y= Xmi1 — X1 < it biXi <Y — Xmy1. Let by = 1, we havey — x; < ZE] bix; < y.

If0 <y < Xp41. According to the condition of this Lemma, we have x4 <2 Y i, x;. Hence,0 <y < 2> " x;. Then,
according to assumption (2), there exist b; € {0, 1,2},i = 1,2, ..., m,suchthaty — x; < Z:n:] bix; <y.letbp,; =0, we
havey —x; < Y7 bixi < .

Therefore, the proposition holds whenk =m+ 1. O

Lemma 2.2. The inequalities 0 < 5 + 2t — 6t < t and s > 3 hold when (s, t) € G;.

144/31 3t _ @2
= and s > ST el Hence, we have 5 + 2t — 6t° =

6(131 _ ) (=B1 1 ¢) > 0and 5+t — 662 = (1 — £)(5 + 6t) < 0.Then, we have 0 < 5 + 2t — 6t2 < t and

3t 3t
> - > = =
sz 542t—6t2 — t 3. 0

Proof. According to the definition of G;, we have 1 < t <

Lemma 2.3. The inequality 2 > ™2 holds when (s, t) € Gy.

Proof. According to the definition of G; and Lemma 2.2, we have 1 <t < HT‘/ﬁ <1.1ands > 3.

The inequality 2 > 52 can be deduced from 2(s +st) > t(1+ s+ 2st), which is equivalent to 2s 4 st — 2st> —t > 0.
We prove the last inequality as follows.
It is easy to verify that [1, 1.1] is a decreasing interval of the function 2 + t — 2t2, hence

2s4st—2st> —t=Q+t—-2tDs—t>24+11-2x1.1%)s—-1.1=068—1.1>0. O
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Lemma 2.4. The inequality stzf(’;iff)‘mz > 2 holds when (s, t) € G.

Proof. According to the definition of G; and Lemma 2.2, we have 1 <t < @ <1.1ands > 3.
The inequality W > 2 can be deduced from 1+ 2s — t + 2st — 2st> > 2t(1 + t), which is equivalent to
14 2s — 3t 4 2st — 2t% — 2st? > 0. We prove the last inequality as follows.
1425 —3t+2st —2t* —2st> = 1+ 25— 3t —2t> — 2st(t — 1) > 1+2s — 3 x 1.1
—2x 117 =2sx1.1x (1.1-1)
1.785—4.72>0. O

Lemma 2.5. The inequality st > 2L holds when (s, t) € Gy.

Proof. According to the definition of G; and Lemma 2.2, wehave 1 <t < ”g/i < 1.1ands > 3.
The inequality st > 2 can be deduced from st (s+st) > 1+s42st, which is equivalent to st —2st +s*t* —s—1 > 0.
We prove the last inequality as follows.

St—2st+s 2 —s—1=(=Dst+[(s— D2 =1]s+(st*=1)>0. O

2
Lemma 2.6. The inequality 5(225&1;’)1) > 2L holds when (s, t) € Gy.

Proof. According to the definition of G; and Lemma 2.2, we have 1 <t < 1+E/ﬁ <1.1lands > 3.

The inequality S(Zzs(fist;)l) > M5 can be deduced from s(s + st)(2st? + t — 1) > 2(1 4 st)(1 + s + 2st), which is
equivalent to 253t + 25312 — 3s?t2 — 252t — 6st — s> — 2 — 2s > 0. We prove the last inequality as follows.

It is easy to verify that [3, 4+00) is an increasing interval of the function 4s> — 6.83s?> — 8.6s — 2, hence

3t3—}—253t2—352t2—252t—6st—52—2—25
>23 x P 423 x 1232 x 117 -2 x 1.1—6s x 1.1 — s> =2 — 2s
=45> — 683> —865s—2=4x3>—-683x3>-86x3—-2=1873>0. O

Lemma 2.7. The inequality (1;{1)3353:;1) > 2L holds when (s, t) € Gy.

Proof. According to the definition of G; and Lemma 2.2, we have 1 <t < L‘/ﬁ < 1.1lands > 3.
The inequality “er(?f;;” > ”S““ can be deduced from (s + st)(1 + t)(25 +1) > 2(1 + st)(1 + s + 2st), which is
equivalent to 2s% 4 2s%t — 2s°t2 + st2 4st — s — 2 > 0. We prove the last inequality as follows.
It is easy to verify that [1, 1.1] is a decreasing interval of the functions 14 t — t? and —1 — 4t + t2, hence
252 425t — 2522 4 st? —4st —s —2 =221+t —t}) +s(—1—4t +t>) =2
>22(14+11-11)4+s(-1—-4x 1.1+ 1.1%) —2 = 1.785* — 4.195s — 2 = (1.785 — 4.19)s — 2
> (178 x3—-4.19)x3—-2=145>0. O

Lemma 2.8. The inequality 2st > 2‘;215:;“ holds when (s, t) € G;.

Proof. According to the definition of G; and Lemma 2.2, we have 1 <t < 1+(‘3/ﬁ <1.1lands > 3.

The inequality 2st > 2;“(215:;“ canbe deduced from st (14-t) > 14s+2st, which is equivalent to s>t?+s*t —2st—s—1 > 0.
We prove the last inequality as follows.

It is easy to verify that [3, 4+-00) is an increasing interval of the function 25> — 3.2s — 1, hence

22 42t —2t—5s—1>2x124+2x1—-25x1.1—-5s—1=22—-32s—1>2x32-32x3-1
=74>0. O

. . _ 2 2 2, 2_ 9242 _p243 244
Lemma 2.9. The inequality 22220 > ZHAABt A B ast B3 holds when (s, t) € Gi.

Proof. According to the definition of G; and Lemma 2.2, we have 1 <t < @ <1.1ands > 3.

. s 2425+2st—2st2 2+4s+2s%+ast+4s2t—4st2 —2s%t2 — 4521342524 2
The inequality ) > D) can be deduced from (1 + st)(1 4+ s + st — st*) >
1425452 4 2st + 25%t — 2st? — s2t2 — 2523 4 s2t4, which is equivalent to —s — s2 — s2t 4 st 4 252t + s2t3 — ?t4 > 0.

We prove the last inequality as follows.
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It is easy to verify that [1, 1.1] is an increasing interval of the function —1 — t + 2t? + t> — t*, hence

—s =2 —Pt4st? 4222+ 23 — Pt =s(?P — 1)+ (—=1 =t + 22+ 2 =t
>s(P—D+s2(-1—-1+2x1>+1°—1H=0. O

. . s(2+4s+25 —t+4st+4s2t—t2 —5st2 —252 12 —st3 —452t3 4 252 t4) 1+4s+2st
Lemma 2.10. The inequality RSN P o > s holds when (s, t) € G.

Proof. According to the definition of G; and Lemma 2.2, we have 1 < t < @ < 11,s > 3,5 > 5+2[ o2
542t —6t2 > 0.
The inequality

and

$(2-+45+252 —t+4st+4s2t —t2 —55t2 —252t2 —st3 —45% 13 +252t4) l+s+2st
> —_
D) (2+25+25t =) can be deduced from s(s + st)(2 + 4s + 2s°

t 4 4st + 45>t — t2 — 5s5t% — 252t —st3 — 45213 +25%t%) > (1 45+ 25t)(1 +5t)(2 4+ 25+ 2st — 2st?), which is equivalent to
—2—4s+4s3+254 —8st — 952t +653t + 651t + 252 — 1052t — 75312 + 2512 + 5523 — 85313 — 6513 + 35311 — 2544+ 25%¢° > 0.
We prove the last inequality as follows.

It is easy to verify that [1, 1.1] is a decreasing interval of the functions —4 — 8t + 2t2, —9t — 10t?> 4 5t and 4 + 6t —
7t% — 2t3 4 3t% And it is easy to verify that [1, 1.1] is an increasing interval of the function 2 4+ 6t — 8t% — 10t3 4 10t + 2¢°.

Besides, since s > mfﬁ and 5 + 2t — 6t2 > 0, we have 65t — 25%t?(5 + 2t — 6t?) < 0. Hence

—2 — 45+ 45> 4 25 — 8st — 95%t + 65°t + 65t + 2st2 — 10s2t? — 753t + 25%t? + 552t — 8533 — 6573
+3s3t% — 25%t4 4 2540
> —2 — 4s + 45> + 2% — 8st — 95%t + 653t + 65t + 25t — 10s%t2 — 753t% + 25?2 4 5523 — 8533 — 6573
+ 3534 — 25%t* + 2% + [65313 — 25*t2(5 + 2t — 6t2)]
= =2+ (=4 — 8t + 2t%)s + (=9t — 10> 4 5t°)s* + (4 + 6t — 7t> — 2> + 3t%)s>
+ (2 + 6t — 8t2 — 10t + 10t* + 2¢°)s*
> 24 (—4—-8x114+2x1.1)s+ (=9 x 1.1 =10 x 1.12 + 5 x 1.1%)s?
+(44+6x11-7x1.172=2x1134+3x1.1H*+2+6x1-8x12—-10x 12+ 10 x 1*4+2 x 1°)s*
—2 —10.38s — 15.345s° + 3.8603s> + 2s*
—2 —10.385 — 15.345s5% 4 3.8603 x 3s° + 2 x 9s°
—2 —10.385 + 1452
—2—10.385 4+ 14 x 3s
—2+s>0. O

IV IV IV IV

. o 24454252 465t 452t —t2 —st2 —35t3 —25213 14s+2st
Lemma 2.11. The inequality SL(Ltst) (T4 st stsiD) > S holds when (s, t) € G;.
Proof. According to the definition of G; and Lemma 2.2, we have 1 < t < @ < 11,s > 3,5 > 5+2t =2
542t —6t2 > 0.
The inequality

and

24454252 4t 465t +4s2t —t2 —st2 —35¢3 25243 1s+2st 2 2
SE(LEst) (T ot otsiD) > =5 can be deduced from (s+st) (2 +4s+2s“ +t + 6st +4s°t

t2 —st? —3st3 —252t3) > 2t(1+st) (1454 2st) (14 s+ st — st?), which is equivalent to —2t 4 25 — st — 8st? +st> +4s? +

852t — 55212 — 125213 + 3s%t* + 253 + 653t + 25312 — 85313 — 45314 + 453t > 0. We prove the last inequality as follows.
It is easy to verify that [1, 1.1] is a decreasing interval of the functions 2 — t — 8t2 + t3 and 4 + 8t — 5t2 — 6¢3 4 3t%.

And it is easy to verify that [1, 1.1] is an increasing interval of the function 2 + 6t — 8t> — 12t3 4 8t* + 4t°. Besides, since

s> H;ﬁ and 5 + 2t — 6t% > 0, we have 652t — 2s3t2(5 + 2t — 6t?) < 0. Hence

—2t + 25 — st — 8st? + st> + 4s% + 85%t — 55212 — 125%t3 + 35°t* + 25% + 65°t + 2532 — 85313 — 4534 + 45°t°

> —2t 4+ 25 — st — 8st? + st> + 4s? + 85?t — 55%t2 — 125%t3 + 3s%t* + 25° + 65°t + 25°t% — 8533 — 453t
+453t° + [65°t3 — 25%t2(5 + 2t — 6t2)]

=2t4+ (2 —t—8t2+t3)s+ (4 + 8t — 5t — 6t> + 3tH)s? + (2 + 6t — 8t2 — 12t + 8t* + 4t°)s°
—2x114+2-11-8x1.124+1.1)s+ @ +8x1.1-5x 1.12 =6 x 1.1° + 3 x 1.1%)s?
+2+6x1-8x12—-12x1P+8x1*+4x 1°)s

= —2.2 — 7.449s + 3.1563s>

—2.2 — 7.449s + 3.1563 X 3s

—2.2+42.0199s > 0. O

vVl
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. . 2.2, 2.2 2 2 0219242 42,3
Lemma 2.12. The inequality 25+ e ) > st +655tt“(“]6itt)(£it;rzs =45t holds when (s, t) € G;.

Proof. According to the definition of G; and Lemma 2.2, wehave 1 <t < H—‘/ﬁ <1l.1ands > 3.

. . 2,2, 2.2 2 2_ 42,3
The inequality 25+S T ) > 24dst2s? +65;;fi[§(]€ifs[;r2‘ =45 can be deduced from st(1 4+ t)(s + s2 + 52t — s2t?) >

142545+ 3st + 352t —st2 +s%t2 —2s%t3, which is equivalent to —1—2s— 3st 4-st? —s> — 252t +252t3 453t +-2s3t2 —s3t% > 0.
We prove the last inequality as follows.

It is easy to verify that [1, 1.1] is a decreasing interval of the function —2 — 3t + t2. And it is easy to verify that [1, 1.1]
is an increasing interval of the functions —1 — 2t + 2t and t + 2t> — t*. Hence

—1—2s — 3st + st — s? — 25°t + 25%t3 + $°t + 2532 — $°t*
=14 (=2 =3t +t)s+ (=1 =2t + 2t})s? + (¢t + 2% — tHs*

> 14 (=2=-3x114+11%)s+(-1-2x14+2x 12+ (1+2 x 12 = 145>
=—1—4.095s — s* 4+ 25°

> —1—4.095 — s> + 2 x 3s?

= —1—4.09s + 55°

>—-1—4.095s+5 x 3s

>—-14+10s>0. O

p . —2—25—4st+2t2425t2 4 4st3
Lemma 2.13. The inequality 0 < RIS < 2 holds when (s, t) € Gj.

Proof. According to the definition of G; and Lemma 2.2, wehave 1 <t < %ﬁ < 1.1ands > 3.

Since —2 — 25 — 4st 4+ 2t2 4 2st2 +4st3 = (2t2 —2) + (2st2 — 25) + (4st> — 4st) > 0, we have _2_25_[?1S$f([12132§2+4“3 > 0.

The inequality _2‘252?]5;’;?;12:52:)[2““4“3 < 2 canbe deduced from —1—s— 2st +t2 +st? +2st> < t(14t)(14st), which is

equivalent to 14t +s-+2st —st> > 0. The last inequality can be easily proved. 1+t +s42st —st> = 14+t 45+ (2 — t?)st
>0. O

3. The lower bounds of Q 3/online/Cpqy

In this section, we investigate the lower bound of Q 3/online/Cqx.

1+4s+2st

Theorem 3.1. When (s, t) € Gy, any online algorithm + for Q3/online/Cpqx has a competitive ratio c . (s, t) > 1 P

Proof. According to the definition of G; and Lemma 2.2, wehave 1 <t < 1+‘F ,S> 3,5 > 5+2t o2 and 5+ 2t — 6t% > 0.

t—s+2st2 HTV < 1.1and s > 3, we have

—2st24-st—t+2s’

—2st? +st—t+2s> —2sx 1.124+sx1—1.1+2s = 0.585s— 1.1 > 0. Therefore, the inequality 1 < x = ﬁﬁfﬂs <2

can be deduced from —2st? 4st —t+2s < t —s+2st> < 2(—2st?+st —t+2s), which is equivalent to 4st? —3s —st +2t > 0
and 5s — 3t 4 2st — 65t > 0. It is easy to see that 4st?> — 3s — st + 2t > 0 holds since t > 1and s > 3. And it is easy to see
that 55 — 3t + 2st — 6st2 > 0 holds since s > Hzfﬁ and 5 + 2t — 6t% > 0.

Denote by {* the sequence {J1, J2, - . ., Jok» Jak+1, Jak+2, Jok+3}. The sizes of the 2k + 3 jobs in 4* are defined as follows.

Let x = we prove 1 < x < 2 as follows. Since 1 < t <

pp=p=1=a,
P3 = P4 =X =0y,

2
D5 = Ds = ( ai>X=a3,
i=1

3
pr=ps = (Zaf>><=a4,

i—1

k—1
D2k—1 = D2k = E a | X = ag,
i=1

1425 —t+2st —2st2 &
1+¢ -2 a

DP2ik+1 =
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t(142s —t + 2st — 2st?) k 25t2—|—t— 1 <
— 2 _ _ i .
Daks2 = [Zst 2st+t—1+ ] ( E 1ot E aj,

1+t
k
Dok+3 = 2st Z aj.
i=1

Denote by £** the sequence {J1, J5, . .. ,]2,<,]2k+1,jgk+2,]§k+3}. The first 2k + 1 jobs in £** is the same as those in £*, and
the sizes of the last two jobs in £** are defined as follows.

k

2+ 4s + 25% — t + 4st + 4s*t — t? — 5st% — 25%t% — st3 — 45?3 + 2524

= ai,
A2k+2 td+ 00 +s0) i

i=1
2(s + 5% + st — 52t2) &

= . a;.
q2k+3 11 st - i

It is easy to verify that limy_, Zf;l a; = +o0.
Now we investigate the schedules produced by algorithm « for £* and £**.

Case 1. Not each of the two machines M, and M3 is assigned one of the two jobs J; and J5.

In this case, either at least one of J; and J, is assigned to M, or both ]1 and J, are assigned to M,, or both J; and J, are
assigned to Ms. Denote by 4, the sequence {/1,]2} Then, 4(4;) > min{1, 2 <, 3} = min{1, 527} = % Since we can assign J;
to M, and assign J, to M3, we have O P T (41) < ;.

Thus, combining with Lemma 2.3, we get

A(L1) 2 1+s+2st
> >

Ca(s,t) > — > —
40 = OPT) —t—  sst
Case 2. Each of the two machines M, and M3 is assigned one of the two jobs J; and J,. But not each of the two machines M,
and M is assigned one of the two jobs J5,,_1 and Jo,, forevery2 < m < k.

In this case, there exists the sequence 4, = {J1,J2,J3,J4, - .,J2n—1,J2n}, Where 2 < h < k, such that each of the two
machines M, and M3 is assigned one of the two jobs J5;_1 and J5, for every 1 < | < h — 1, but not each of the two machines
M, and Mjs is assigned one of the two jobs J5,_1 and J,;,. Hence, either at least one of J,;,_1 and J,y, is assigned to My, or both
Jon—1 and J, are assigned to M-, or both J,;,_1 and J,, are assigned to Ms.

If atleast one of J,;,_1 and J,j, is assigned to My, then A(d,) > a, = (Z?;f a;)x; if both Jo,_1 and o, are assigned to M-, then

20+ 0 6 gugi

2+ g ot h—1 _ .. . b1

Alp) > === = =23 a;; if both Jop 1 and [ are assigned to M3, then A(Jy) > —5=1— = = . 3 "7 a;;
therefore

h—1 h— h—1 h— h—

. 2X + 2Xx + 1 2x+1 2x+1
sz (Sa ) 2 T 20 Sl s fu 2] S0 2 5
i=1 = i=1 i=1 i=1
Since we can assign J1, J3, ..., Jon—1 to M, and assign J,, Ja, . . ., Jop to M3, we have

h h—1 h—1 h—1
Sai @+ Y a <Zai>x+zai

= P = = X+ 1 h-1
OPT (4 < i=1 — i=1 — i=1 i=1 — . a;
() = = , - : ; ;
Thus,
2441 i ,
t—s+2st
a6 > A7) . 5 x+1 2 St _ 1ds+ast
T OPT -1 t(x+l t—s-+2st2 s+ st
(42) © Z ) t (72$t2+st7r+25 + 1)

Case 3. Each of the two machines M, and M3 is assigned one of the two jobs Jo,,—1 and Jo,, for every 1 < m < k. And Jo41 is
assigned to M.
Denote by {5 the sequence {J1, J2, . . ., Jak, Jax+1}- Then,

1425 — ¢+ 2st — 2st2 &
AL3) > a1 = . Z a;

1+t
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Since we can assign the first 2k jobs to M, and assign J5¢11 to M3, and combining this with Lemma 2.4, we have

OPT (13) < max Zi;al Pret b nax ia 125 = ¢+ 2st = 2517 ia
3= s st . st(1+1) :

1425 —t + 2st — 2st2 i
= . a;
st(1+1) =2

Thus, combining with Lemma 2.5, we get
142s5—t+2st—2st2 Sa
1

G > 2D " S _ . Lhs+2st
A = 0PT3) — :

" =
142s—t-+2st—2st2 a S+ st
st(1+t) !

297

Case 4. Each of the two machines M, and M3 is assigned one of the two jobs J,,,_1 and J,, for every 1 < m < k. And J5441 is

assigned to M.

Subcase 4.1. ], is assigned to My or M.
Denote by {4 the sequence {J1, J2, . .., Jok, Jok+1, Jok42}. Then,

. i=1
A(L4) = min { paia, ’ = min
S

k
Pak+1 + P2 + ) ai {
i

2st> 4+t — 254+1 ¢
S et e
Since we can assign J1, J3, . . ., Jok—1, Jak+1 t0 Mo, and assign J5, Ja, - . ., Jok, Jak+2 to M3, we have

OPT (14) < max =L =1 = max
s st

k k
Pok+1+ 20 Doz + DG [

i=1 i=1

2 + 25 + 2st — 2st? i 2+ 2st ’Z‘
a
s(1+1t) "s(1+t) ’

242t Xk:a
T s+t &

Thus, combining with Lemmas 2.6 and 2.7, we get

25t2+t 1 25+1
min a; a
A (14) N { 1+t Z I g Z l}

cu(s, t) >
A0 2 OPT(1g) —

2+-2st .
s(1+0) l; ai

i {5(25t2 +t—1) A+0)Q2s+ 1)}

2(14st)  ~ 2(1+4st)
1+ s+ 2st
> — .
S+ st

Subcase 4.2. Joy4 is assigned to Ms.
In this subcase, combining with Lemma 2.8, no matter which machine is assigned J,3, we have

D2k+1 + Pak3 + Z a;i Doky2 + Doky3 + Z a;

AWF) > min { pass, = =l
S st

\

k k
2+ 2s + 4st
= min { 2st E aj, ——— - E aj,
=T s+ 45
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2+ 25+ 4st Zk: 2425+ 4st i“‘
s+ S si+n &

Since we can assign the first 2k jobs to My, assign Jox+1, Jak+2 to Mo, and assign poy3 to M3, we have

k k k k k
+
PT(4*) < max :2 Zai, P+t S p2k+2, stkt+3 } = max {ZZai, ZZai, 2 Za,- =2 Zai.
=1 i=1 i=1 i=1 =1

Thus,
2425-+4st k
s+4s .
ALY i 244 1454 2st
Ccu(s, t) > > = .
OPT(4*) k s+ st
2 Z ai
i=1

Case 5. Each of the two machines M, and M3 is assigned one of the two jobs J,,,—1 and J,,, for every 1 < m < k. And Jo441 is
assigned to Ms.

Subcase 5.1.]§’k+2 is assigned to M, or Ms.
Denote by {5 the sequence {J1, J2, - - ., Jaks Jak+1 ,]§,<+2}. Then,

k
Pok+1 + Qargz + D G
i=1

A(Ls) > min | Gaky2, po

. 25% — t + 4st + 452t — t2 — 5st2 — 252¢2 — st3 — 45213 + 2524 & .
B t(1+£)(1+ st) L ™

2+ 4s + 252 4 t + 6st + 45>t — t2 — st? — 3st3 — 25213 &

st2(1+ 0)(1+ st)

i=1

Since we can assign J, Ja, . . . ,]2;<,]§k+2 to My, and assign J, J3, . . ., Jak—1, Jok+1 to M3, combining with Lemma 2.9, we
have

Qo2 + Z ai Pak1 + Z a;
PT (Is) < max =l , =1
s st

2+ 4s + 252 + Ast + 4s2t — 4st? — 25212 — 45213 + 2524 K
= max : ai,
st(14t)(1 + st) :

i=1

2 + 25 + 2st — 2st? Z
. ai

k
st(1+1) =

1

2 + 25 + 2st — 2st? 2":
= . a;.
st(141t) =

Thus, combining with Lemmas 2.10 and 2.11, we get

k
24454252 —t+ast+4s?t—t2 —5st2 —252t2 —st3 4523 2524 S
1

( 5) t(14t) (1+st)
ca(s, t) > > min ,
k
OPT (45) 2425425t 2512 ia‘
st(14t) t

k
24454252+t 465t +4s2t —t2 —st2 —3st3 —25%¢3 . Z a
st2(14t) (14st) !

k
2425425t —2st2 )
st(1+t) 2 ai
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)

S(2 + 4s + 25> — t + 4st + 4s*t — t2 — 5st% — 252t2 — st3 — 4523 + 25%t%)
(1 +st)(2 + 2s + 2st — 2st?)

= min{
2+ 4s + 25% + t + 65t + 4s*t — t? — st? — 3st3 — 25%¢3
2t(1 +st)(1 + s + st — st?)

1454 2st
>
s+ st

Subcase 5.2. ], is assigned to Ma.
In this subcase, combining with Lemma 2.12, no matter which machine is assigned J5 , ;, we have

k k
Q2k+2 + Qok+3 + Z Qi Pak+1 + Qok+3 + Z a;
AW™) > min { quss, =t =
S N
2 £ 5% 42— 522 &
— min | 2¢ L 3
1+ st =
2 + 4s + 252 + Bst + 652t — 2st? + 2522 — 45213 &
. a;,
st(146)(1+ st) L ™
2 + 4s + 252 + Bst + 652t — 2st2 + 25212 — 4523 K
. a;
st(1+ £)(1 + st) il

k

2+ 4s + 25 + 65t + 65t — 25t + 25%t% — 45t
- ) a.
st(1+ t)(1 +st) =il
—2-2sdsti20 a4 Sk g according to Lemma 2.13, we have z € [0,2 Y, ajl.

Letz = qz"%g = D2k+1 — Qakt2 = (116 (10
Besides, we have 1 < x < 2 and we can verify that the positive number sequence {g;}7°, meets the condition in Lemma 2.1
., Jok—1, Jok}, such that the total size of fg is betweenz — 1 and z.

Hence, there exists a subset, denoted by g, of {J1, |2, ..
Since we can assign all the jobs in {J, ]2, - .., Jok—1, J2k} \ Lo to My; assign12k+1,]§k+2 and all the jobs in {y to M,; and

assign J3, .  to Ms; we have
k
z
OPT ™) < max |2 Zﬂi -1, + Pak+1 + Q2k+2’ Q2k+3
— s st
L q2k+3  q2k+3 k q2k+3
+
= max { 2 a—z+1, s = max { 2 ag—z+1, ——
; : st st } { ; imet LTy }
2(1+s+st —st?) & 2(14+s+st —st?) &
= max ( )-Zai+1, ( )-Zai
t(1 4+ st) P t(1 4+ st) o

2(1 45+ st —st2) &
= . a+ 1.
t(1+ st) ; i+

Thus,

k
2+45+25% +65t+652t—25t2 42522 — 4523 S g
st(1+t) (1+st) = 1

=

A(l**) -
OPT(I**) — 2(14s+st—st?) k
i=1 I

IV

Ca(s, t)
t(1+st)

2-++45+25%+65t 4652t —25t2 425212 —45% 13
st(1+t)(1+st)
2(14s+st—st?) + 1 ’
t(1+st) k

aj
&

1:
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let k — oo, we get

2+445+25%+65t+652t —25t2 42522 —452¢3

Cals, t) > st(1+6)(1+st) 145+ 2st
e 20145 tst—st?) = Tsxs
t(1+4st)

Theorem 3.2. Any online algorithm A for Q 3/online/Cyqx has a competitive ratio

1+s
1+s - - i
Ca (s, t)zmin{t, 1*s +1} =1 o t1 60D et,
st £, if (s.t) & Go.

Proof. Denote by J{ the sequence {J1, J2, . .., Jkr2}. The sizes of the 2k + 2 jobs in { are defined as follows.
pi=(1+9)"", 1<i<k+1,
Pryz = (14 9)t.
Now we investigate the schedule produced by algorithm 4 for J.

Case 1. Not all of the first k + 1 jobs in { are assigned to Ms.
In this case, there exists an integer m, where 0 < m < k; such that the first m jobs are assigned to M3; but J;, 1, is not
assigned to Ms. Denote by 4, the sequence {J1, J5, . . ., Jm+1}, then we have
A+9"] _ (A+9)"
s - s

A(do) = min {(1 +3)",

Since we can assign the last job of 4o to M3, assign the second last job of {4y (if it exists) to M,, and assign the jobs
U1, 2, - - ., Jm—1} (if they exist) to My, we have

m—1 m
max:gw b, 09 0+ ]

OPT (Lo)

IA

{(1 +m T —1 1+ (1 +S)'"} (1+s)m1
= max , , = .

s s st s
Thus,
(4™
A(Lo) — 1+s 1+s
Cca(s, t) > > =14+s>14+41> —+1> —+1.
Al ) = OPT (Jg) — Utsm! tszltlz =4tz
S

Case 2. All of the first k + 1 jobs in { are assigned to Ms.
In this subcase, no matter which machine is assigned the job Ji.,, we have

k
1+ 9%+ > (1+5s)
. k (l‘i‘s)kt( ) zg(:l( )
min { (14 s)°t, ,
s st

A(L)

v

k
k i
(1+S)kt (1+5s) t+§)(]+$) . {(1+S)kt (1+S)k (1+S)k+1—1}
= min + .

= min
s st s s s2t

Since we can assign the first k jobs to My, assign the job Ji1 to M, and assign the job J;., to M3, we have

k—1 k k
max{Z(1+ N (H—s) (9t }

OPT 1)
= st

IA

{ 1+5¢—1 (1 +s)’< (1 +s)"} (1 4+ s)*
max S s = .
S S S S
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Thus,

49k | A4kt
s + s2t

k
A(l) . (I+s)"t

S

> min = -
OPT (1) Atk Atk
S N

C4(s,t)

1 k+1 _q (]—I—S)—¥
min{t,]—l—(_'—s)}:min{t,]—i-ms)k

(14 s)kst st

let k — 00, we get c(s, t) > min{t, £ +1}. O

4. The upper bounds of £3

The greedy algorithm £4 is an online algorithm that assigns the current job to the machine on which the job can be
finished as early as possible. In this section, we prove .£§ has three upper bounds, i.e., ”stf“, % + 1and 11”;3;‘ .

Throughout this section, we will use the following notation. Denote by J; the job with the maximum completion time in
the schedule produced by £$. And denote by y; the completion time of machine M; just before J; is assigned by .£4§, where

i=1,2,3.1Itis easy to see that 027 (1) > & and OPT (4) > %.

< 1+s+2st

Theorem 4.1. The online algorithm L8 has the competitive ratio c5(s, t) P

Proof. Since 027 (1) > % and 02T (1) > MR, we have py < st - OPT (1) and sy, +stys +pr < y1 +5y2 +
stys+p < (1+s+st) - OPT(4).
According to the design thought of .£8, we have

£8(1) = minfyr +prys + 2y + 2 < ! s (e +2) +st (15 + 2]
S st S+ st S st
_ Y tstys+p N p_(+4s+st)-0PT ) N St-O0PT() _ (1+5+2st) - (9337(1)’
S+ st S+st S+ st S+ st s+ st
thus,
L8(4) - 1+ s+ 2st
OPTL) — s+st

Therefore, cz5(s, t) < 2L [
Theorem 4.2. The online algorithm L8 has the competitive ratio c,5(s, t) < % + 1.
Proof. According to the design thought of .£8, we have .£8(4) = min{y; + p;,y2 + &, y3 + &} < y3 + E. Combining this
with O PT (1) > LI BWsER e haye

1+4s+st
L5W) y3+ 5 (stys+p)(1+s+st) _1dstst 1—|—s+1
OPT(§) T LN (i sy, +stys+p)st T st st '

Therefore, c,5(s, ) < 22 +1. O

1+4s+3st
1+4s+st *
Proof. Since 027 (1) > & and 027 (4) > LE2EWEN we have p; < st - OPT (L) and (1+ s+ st) - OPT (1) >
Y1+ 8y2 +stys +pu.
Case 1. ]; is assigned to M.
In this case, according to the design thought of .£§, we have L8(L) = y1 + pi, LE(L) <y2 + % and L8(L) <y3+ %.
Then, sy, + sty3 > [s- L8(L) — pid + [st - LE(L) —pi] = (s + st) - LB(L) — 2py.
Therefore, (14 s+ st) - OPT (L) > y1 + sy + stys + p1 = L) + (sy2 + stys) > (1 + 5+ st) - L) — 2p, >
(14s+st) - LEL) —2st- OPT (1), thus

L£8(1) _ 14s+3st
OPT) ~ 14s+st’

Case 2. ], is assigned to M.
In this case, according to the design thought of £38, we have £L8(4) =y, + &, £8(4) <y; +pjand L5(J) < y3 + 2.
Then, y; + stys > [£8(4) — pi] + [st - LEW) — pi]l = (14 st) - LS(L) — 2p;.

Theorem 4.3. The online algorithm L8 has the competitive ratio c5(s, t) <
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Therefore, (1 +s+st) - OPT (L) > y1+ sy, +stys +p =5 - LEU) + (y1 +stys) = (1 +s+st) - LE(L) — 2p; >
(14+s+st)-LEUL) —2st - OPT (1), thus
LA5(1) - 1454 3st
OPTL) ~ 14+s+st’

Case 3. ], is assigned to M3.
In this case, according to the design thought of £8, we have £8(4) =ys + &, £8(1) <y; +prand £L5(1) <y, + 2.

L
Then, y1 + sy > [£L8(L) —pi] + [s- LEU) —pil = (1 +5) - L) — 2. ’
Therefore, (1 + s +st) - OPT (L) = y1 + 8y +stys +py = st - LEU) + Y1 +5y2) = (1 +5+st) - LEU) — 2p >

(1+4+s+st)-LEUL) —2st - OPT (L), thus
L8(L) - 14 s+ 3st
OPT) ~ 14s+st’

L5(1) < 1ts+3st
OPT (L) — T1+4s+st

1+5+3st
T+s+st *

As we have seen, no matter which machine is assigned J;, we have .Hence, c4(s, t) <

Corollary 1. The online algorithm £48 has the competitive ratio cp4(s, t) < min{%, 4, %} <2
Proof. According to Theorems 4.1-4.3, we have

| 1+4+s+2st 1+s 1+ s+ 3st 1+ s+ 2st s+ s+ 2st
Ces(s, t) < min , +1, < < =2
s+ st S+ st

s+ st st 1+s+st

5. Conclusions and open problem

By Theorems 3.1, 3.2, 4.1 and 4.2, we come to the conclusion that the greedy algorithm .£4 is an optimal online algorithm

for Q3/online/Cpex When (s, t) € Gy U Gy, where G; = {(5, t)|1 <t < 1+g/ﬁ, s> 5+2?[_6t2} and G, = {(s, t)|s(t — 1t >

1+s,s > 1,t > 1}. The competitive ratio of £4 is 122t when (s, t) € Gy and 22 + 1 when (s, t) € G,. Besides, by
Theorem 3.2 and Corollary 1, we come to the conclusion that the overall competitive ratio of .£4 is 2 which matches the
overall lower bound of the problem.

When (s,t) = (1, 1), the problem Q3/online/Cpqy is well known as P3/online/Cpq. Faigle et al. [4] and Graham [5]
showed that £ is an optimal online algorithm for P3/online/Cq and its competitive ratio is 5/3. It is an open problem
whether £4 is still optimal for Q 3/online/C,.x when the speed ratios (s, t) € G; U G, U {(1, 1)}.
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