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a b s t r a c t

This paper investigates the online scheduling on three uniformmachines problem. Denote
by sj the speed of each machine, j = 1, 2, 3. Assume 0 < s1 ≤ s2 ≤ s3, and let s = s2/s1
and t = s3/s2 be two speed ratios. We show the greedy algorithm LS is an optimal online
algorithm when the speed ratios (s, t) ∈ G1 ∪ G2, where G1 = {(s, t)|1 ≤ t < 1+

√
31

6 , s ≥

3t
5+2t−6t2

} and G2 = {(s, t)|s(t − 1)t ≥ 1 + s, s ≥ 1, t ≥ 1}. The competitive ratio of LS

is 1+s+2st
s+st when (s, t) ∈ G1 and 1+s

st + 1 when (s, t) ∈ G2. Moreover, for the general speed
ratios, we show the competitive ratio of LS is no more thanmin{ 1+s+2st

s+st , 1+s
st + 1, 1+s+3st

1+s+st }

and its overall competitive ratio is 2whichmatches the overall lower boundof theproblem.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The online scheduling on uniform machines problem, denoted by Qm/online/Cmax (m ≥ 2), can be described as follows.
We are given a sequence of independent jobs, which is denoted by {J1, J2, . . . , Jn}. Each job Ji has a positive size, denoted by
pi. Jobs arrive one by one, and we are required to schedule jobs irrevocably on machines as soon as they are given, without
any knowledge of the successive jobs. Let M1,M2, . . . ,Mm be m parallel machines. The speed of Mj is sj, i.e., the time used
for Ji to be scheduled on Mj is pi/sj, i = 1, 2, 3, . . . , n, j = 1, 2, . . . ,m. Jobs and machines are available at time zero, and
no preemption is allowed. The goal is to minimize the maximummachine completion time. W.l.o.g., we assume s1 = 1 and
s1 ≤ s2 ≤ · · · ≤ sm.

Algorithms for online scheduling problems are called online algorithms. The quality of the performance of an online
algorithm is measured by its competitive ratio. For an instance I and an algorithm A, let A(I) be the objective value
produced by A and let OPT (I) be the optimal value in an offline version. Then the competitive ratio of A, denoted by
cA, is the infimum c such that for every sequence I,

A(I) ≤ c · OPT (I).

An online scheduling problem has a lower bound ρ if there is no online algorithm with a competitive ratio smaller than
ρ. An online algorithm, whose competitive ratio matches the lower bound of the problem, is called optimal.
Previous work. When sj = 1(j = 1, 2, . . . ,m − 1) and sm = s ≥ 1, Cho et al. [2] showed that the greedy online algorithm
LS has a competitive ratio cLS(s) ≤ 1 +

m−1
m+s−1 · min{2, s} ≤ 3 −

4
m+1 , and the bound 3 −

4
m+1 is achieved when

s = 2. For m ≥ 4, Rongheng et al. [6] presented an online algorithm with a significantly better competitive ratio than
LS when sj = 1(j = 1, 2, . . . ,m − 1) and sm = 2. Besides, they showed that the bound 3 −

4
m+1 can be improved when
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sj = 1(j = 1, 2, . . . ,m − 1) and sm = s ≥ 1. For m ≥ 4 and 1 ≤ s ≤ 2, Cheng et al. [1] proposed an algorithm with a
competitive ratio 2.45.

For m = 2, Epstein et al. [3] showed LS has a competitive ratio min{ 2s+1
s+1 , s+1

s } and is an optimal online algorithm for
Q2/online/Cmax, where the speed ratio s = s2/s1.
Our results. In this paper, we investigate the online scheduling on three uniformmachines problem Q3/online/Cmax. W.l.o.g.,
we assume s1 = 1, s2 = s, s3 = st and s, t ≥ 1. In fact, s can be regarded as the speed ratio between the medium speed
machine and the low speed machine, and t can be regarded as the speed ratio between the high speed machine and the
medium speedmachine. We prove the greedy online algorithmLS is an optimal online algorithm for Q3/online/Cmax when
the speed ratios (s, t) ∈ G1 ∪ G2, where

G1 =


(s, t) | 1 ≤ t <

1 +
√
31

6
, s ≥

3t
5 + 2t − 6t2


and

G2 = {(s, t) | s(t − 1)t ≥ 1 + s, s ≥ 1, t ≥ 1}.

The competitive ratio of LS is 1+s+2st
s+st when (s, t) ∈ G1 and 1+s

st + 1 when (s, t) ∈ G2. Besides, for the general speed ratios,
we show the competitive ratio of LS is no more than min{ 1+s+2st

s+st , 1+s
st + 1, 1+s+3st

1+s+st } and its overall competitive ratio is 2
which matches the overall lower bound of the problem.

The remainder of the paper is organized as follows. Section 2 presents several preliminary results. Section 3 deals with
the lower bounds of the problem Q3/online/Cmax. Section 4 is devoted to the upper bounds ofLS. Finally, Section 5 contains
some remarks.

2. Preliminaries

In this section, We prove thirteen Lemmata which are needed in Section 3.

Lemma 2.1. The sequence {xi}∞i=1 is comprised of positive numbers. Assume xj ≤ 2
∑j−1

i=1 xi holds for every j ≥ 2. Then, for any
real number y ∈ [0, 2

∑k
i=1 xi], there exist bi ∈ {0, 1, 2}, i = 1, 2, . . . , k, such that y − x1 ≤

∑k
i=1 bixi ≤ y.

Proof. We use mathematical induction to prove this lemma.
(1) Assume y ∈ [0, 2x1]. If 0 ≤ y ≤ x1, then there exists b1 = 0, such that y − x1 ≤ b1x1 = 0 ≤ y; if x1 < y ≤ 2x1, then

there exists b1 = 1, such that y − x1 ≤ b1x1 = x1 ≤ y. So, the proposition holds when k = 1.
(2) Assume the proposition holds when k = m.
(3) Assume y ∈ [0, 2

∑m+1
i=1 xi].

If 2xm+1 ≤ y. Since y ≤ 2
∑m+1

i=1 xi, we have 0 ≤ y − 2xm+1 ≤ 2
∑m

i=1 xi. Then, according to assumption (2), there
exist bi ∈ {0, 1, 2}, i = 1, 2, . . . ,m, such that y − 2xm+1 − x1 ≤

∑m
i=1 bixi ≤ y − 2xm+1. Let bm+1 = 2, we have

y − x1 ≤
∑m+1

i=1 bixi ≤ y.
If xm+1 ≤ y < 2xm+1, then 0 ≤ y − xm+1 < xm+1. According to the condition of this Lemma, we have xm+1 ≤ 2

∑m
i=1 xi.

Hence, 0 ≤ y − xm+1 ≤ 2
∑m

i=1 xi. Then, according to assumption (2), there exist bi ∈ {0, 1, 2}, i = 1, 2, . . . ,m, such that
y − xm+1 − x1 ≤

∑m
i=1 bixi ≤ y − xm+1. Let bm+1 = 1, we have y − x1 ≤

∑m+1
i=1 bixi ≤ y.

If 0 ≤ y < xm+1. According to the condition of this Lemma, we have xm+1 ≤ 2
∑m

i=1 xi. Hence, 0 ≤ y ≤ 2
∑m

i=1 xi. Then,
according to assumption (2), there exist bi ∈ {0, 1, 2}, i = 1, 2, . . . ,m, such that y − x1 ≤

∑m
i=1 bixi ≤ y. Let bm+1 = 0, we

have y − x1 ≤
∑m+1

i=1 bixi ≤ y.
Therefore, the proposition holds when k = m + 1. �

Lemma 2.2. The inequalities 0 < 5 + 2t − 6t2 ≤ t and s ≥ 3 hold when (s, t) ∈ G1.

Proof. According to the definition of G1, we have 1 ≤ t < 1+
√
31

6 and s ≥
3t

5+2t−6t2
. Hence, we have 5 + 2t − 6t2 =

6( 1+
√
31

6 − t)(−1+
√
31

6 + t) > 0 and 5 + t − 6t2 = (1 − t)(5 + 6t) ≤ 0. Then, we have 0 < 5 + 2t − 6t2 ≤ t and
s ≥

3t
5+2t−6t2

≥
3t
t = 3. �

Lemma 2.3. The inequality 2
t ≥

1+s+2st
s+st holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.
The inequality 2

t ≥
1+s+2st

s+st can be deduced from 2(s+ st) ≥ t(1+ s+2st), which is equivalent to 2s+ st −2st2 − t ≥ 0.
We prove the last inequality as follows.

It is easy to verify that [1, 1.1] is a decreasing interval of the function 2 + t − 2t2, hence

2s + st − 2st2 − t = (2 + t − 2t2)s − t ≥ (2 + 1.1 − 2 × 1.12)s − 1.1 = 0.68s − 1.1 ≥ 0. �
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Lemma 2.4. The inequality 1+2s−t+2st−2st2
st(1+t) ≥

2
s holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.

The inequality 1+2s−t+2st−2st2
st(1+t) ≥

2
s can be deduced from 1 + 2s − t + 2st − 2st2 ≥ 2t(1 + t), which is equivalent to

1 + 2s − 3t + 2st − 2t2 − 2st2 ≥ 0. We prove the last inequality as follows.

1 + 2s − 3t + 2st − 2t2 − 2st2 = 1 + 2s − 3t − 2t2 − 2st(t − 1) ≥ 1 + 2s − 3 × 1.1
− 2 × 1.12

− 2s × 1.1 × (1.1 − 1)
= 1.78s − 4.72 ≥ 0. �

Lemma 2.5. The inequality st ≥
1+s+2st

s+st holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.
The inequality st ≥

1+s+2st
s+st can be deduced from st(s+st) ≥ 1+s+2st , which is equivalent to s2t−2st+s2t2−s−1 ≥ 0.

We prove the last inequality as follows.

s2t − 2st + s2t2 − s − 1 = (s − 2)st + [(s − 1)t2 − 1]s + (st2 − 1) ≥ 0. �

Lemma 2.6. The inequality s(2st2+t−1)
2(1+st) ≥

1+s+2st
s+st holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.

The inequality s(2st2+t−1)
2(1+st) ≥

1+s+2st
s+st can be deduced from s(s + st)(2st2 + t − 1) ≥ 2(1 + st)(1 + s + 2st), which is

equivalent to 2s3t3 + 2s3t2 − 3s2t2 − 2s2t − 6st − s2 − 2 − 2s ≥ 0. We prove the last inequality as follows.
It is easy to verify that [3, +∞) is an increasing interval of the function 4s3 − 6.83s2 − 8.6s − 2, hence

2s3t3 + 2s3t2 − 3s2t2 − 2s2t − 6st − s2 − 2 − 2s
≥ 2s3 × 13

+ 2s3 × 12
− 3s2 × 1.12

− 2s2 × 1.1 − 6s × 1.1 − s2 − 2 − 2s
= 4s3 − 6.83s2 − 8.6s − 2 = 4 × 33

− 6.83 × 32
− 8.6 × 3 − 2 = 18.73 ≥ 0. �

Lemma 2.7. The inequality (1+t)(2s+1)
2(1+st) ≥

1+s+2st
s+st holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.
The inequality (1+t)(2s+1)

2(1+st) ≥
1+s+2st

s+st can be deduced from (s + st)(1 + t)(2s + 1) ≥ 2(1 + st)(1 + s + 2st), which is
equivalent to 2s2 + 2s2t − 2s2t2 + st2 − 4st − s − 2 ≥ 0. We prove the last inequality as follows.

It is easy to verify that [1, 1.1] is a decreasing interval of the functions 1 + t − t2 and −1 − 4t + t2, hence

2s2 + 2s2t − 2s2t2 + st2 − 4st − s − 2 = 2s2(1 + t − t2) + s(−1 − 4t + t2) − 2
≥ 2s2(1 + 1.1 − 1.12) + s(−1 − 4 × 1.1 + 1.12) − 2 = 1.78s2 − 4.19s − 2 = (1.78s − 4.19)s − 2
≥ (1.78 × 3 − 4.19) × 3 − 2 = 1.45 ≥ 0. �

Lemma 2.8. The inequality 2st ≥
2+2s+4st
s(1+t) holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.
The inequality 2st ≥

2+2s+4st
s(1+t) canbededuced from s2t(1+t) ≥ 1+s+2st , which is equivalent to s2t2+s2t−2st−s−1 ≥ 0.

We prove the last inequality as follows.
It is easy to verify that [3, +∞) is an increasing interval of the function 2s2 − 3.2s − 1, hence

s2t2 + s2t − 2st − s − 1 ≥ s2 × 12
+ s2 × 1 − 2s × 1.1 − s − 1 = 2s2 − 3.2s − 1 ≥ 2 × 32

− 3.2 × 3 − 1
= 7.4 ≥ 0. �

Lemma 2.9. The inequality 2+2s+2st−2st2
st(1+t) ≥

2+4s+2s2+4st+4s2t−4st2−2s2t2−4s2t3+2s2t4
st(1+t)(1+st) holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.

The inequality 2+2s+2st−2st2
st(1+t) ≥

2+4s+2s2+4st+4s2t−4st2−2s2t2−4s2t3+2s2t4
st(1+t)(1+st) can be deduced from (1 + st)(1 + s + st − st2) ≥

1 + 2s + s2 + 2st + 2s2t − 2st2 − s2t2 − 2s2t3 + s2t4, which is equivalent to −s − s2 − s2t + st2 + 2s2t2 + s2t3 − s2t4 ≥ 0.
We prove the last inequality as follows.
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It is easy to verify that [1, 1.1] is an increasing interval of the function −1 − t + 2t2 + t3 − t4, hence

−s − s2 − s2t + st2 + 2s2t2 + s2t3 − s2t4 = s(t2 − 1) + s2(−1 − t + 2t2 + t3 − t4)
≥ s(12

− 1) + s2(−1 − 1 + 2 × 12
+ 13

− 14) = 0. �

Lemma 2.10. The inequality s(2+4s+2s2−t+4st+4s2t−t2−5st2−2s2t2−st3−4s2t3+2s2t4)
(1+st)(2+2s+2st−2st2)

≥
1+s+2st

s+st holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1, s ≥ 3, s ≥
3t

5+2t−6t2
and

5 + 2t − 6t2 > 0.
The inequality s(2+4s+2s2−t+4st+4s2t−t2−5st2−2s2t2−st3−4s2t3+2s2t4)

(1+st)(2+2s+2st−2st2)
≥

1+s+2st
s+st can be deduced from s(s + st)(2 + 4s + 2s2 −

t + 4st + 4s2t − t2 − 5st2 − 2s2t2 − st3 − 4s2t3 + 2s2t4) ≥ (1+ s+ 2st)(1+ st)(2+ 2s+ 2st − 2st2), which is equivalent to
−2−4s+4s3+2s4−8st−9s2t+6s3t+6s4t+2st2−10s2t2−7s3t2+2s4t2+5s2t3−8s3t3−6s4t3+3s3t4−2s4t4+2s4t5 ≥ 0.
We prove the last inequality as follows.

It is easy to verify that [1, 1.1] is a decreasing interval of the functions −4 − 8t + 2t2, −9t − 10t2 + 5t3 and 4 + 6t −

7t2 −2t3 +3t4. And it is easy to verify that [1, 1.1] is an increasing interval of the function 2+6t −8t2 −10t3 +10t4 +2t5.
Besides, since s ≥

3t
5+2t−6t2

and 5 + 2t − 6t2 > 0, we have 6s3t3 − 2s4t2(5 + 2t − 6t2) ≤ 0. Hence

−2 − 4s + 4s3 + 2s4 − 8st − 9s2t + 6s3t + 6s4t + 2st2 − 10s2t2 − 7s3t2 + 2s4t2 + 5s2t3 − 8s3t3 − 6s4t3

+3s3t4 − 2s4t4 + 2s4t5

≥ −2 − 4s + 4s3 + 2s4 − 8st − 9s2t + 6s3t + 6s4t + 2st2 − 10s2t2 − 7s3t2 + 2s4t2 + 5s2t3 − 8s3t3 − 6s4t3

+ 3s3t4 − 2s4t4 + 2s4t5 + [6s3t3 − 2s4t2(5 + 2t − 6t2)]
= −2 + (−4 − 8t + 2t2)s + (−9t − 10t2 + 5t3)s2 + (4 + 6t − 7t2 − 2t3 + 3t4)s3

+ (2 + 6t − 8t2 − 10t3 + 10t4 + 2t5)s4

≥ −2 + (−4 − 8 × 1.1 + 2 × 1.12)s + (−9 × 1.1 − 10 × 1.12
+ 5 × 1.13)s2

+ (4 + 6 × 1.1 − 7 × 1.12
− 2 × 1.13

+ 3 × 1.14)s3 + (2 + 6 × 1 − 8 × 12
− 10 × 13

+ 10 × 14
+ 2 × 15)s4

= −2 − 10.38s − 15.345s2 + 3.8603s3 + 2s4

≥ −2 − 10.38s − 15.345s2 + 3.8603 × 3s2 + 2 × 9s2

≥ −2 − 10.38s + 14s2

≥ −2 − 10.38s + 14 × 3s
≥ −2 + s ≥ 0. �

Lemma 2.11. The inequality 2+4s+2s2+t+6st+4s2t−t2−st2−3st3−2s2t3

2t(1+st)(1+s+st−st2)
≥

1+s+2st
s+st holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1, s ≥ 3, s ≥
3t

5+2t−6t2
and

5 + 2t − 6t2 > 0.
The inequality 2+4s+2s2+t+6st+4s2t−t2−st2−3st3−2s2t3

2t(1+st)(1+s+st−st2)
≥

1+s+2st
s+st can be deduced from (s+ st)(2+4s+2s2 + t +6st +4s2t −

t2 − st2 −3st3 −2s2t3) ≥ 2t(1+ st)(1+ s+2st)(1+ s+ st − st2), which is equivalent to−2t +2s− st −8st2 + st3 +4s2 +

8s2t − 5s2t2 − 12s2t3 + 3s2t4 + 2s3 + 6s3t + 2s3t2 − 8s3t3 − 4s3t4 + 4s3t5 ≥ 0. We prove the last inequality as follows.
It is easy to verify that [1, 1.1] is a decreasing interval of the functions 2 − t − 8t2 + t3 and 4 + 8t − 5t2 − 6t3 + 3t4.

And it is easy to verify that [1, 1.1] is an increasing interval of the function 2 + 6t − 8t2 − 12t3 + 8t4 + 4t5. Besides, since
s ≥

3t
5+2t−6t2

and 5 + 2t − 6t2 > 0, we have 6s2t3 − 2s3t2(5 + 2t − 6t2) ≤ 0. Hence

−2t + 2s − st − 8st2 + st3 + 4s2 + 8s2t − 5s2t2 − 12s2t3 + 3s2t4 + 2s3 + 6s3t + 2s3t2 − 8s3t3 − 4s3t4 + 4s3t5

≥ −2t + 2s − st − 8st2 + st3 + 4s2 + 8s2t − 5s2t2 − 12s2t3 + 3s2t4 + 2s3 + 6s3t + 2s3t2 − 8s3t3 − 4s3t4

+ 4s3t5 + [6s2t3 − 2s3t2(5 + 2t − 6t2)]
= −2t + (2 − t − 8t2 + t3)s + (4 + 8t − 5t2 − 6t3 + 3t4)s2 + (2 + 6t − 8t2 − 12t3 + 8t4 + 4t5)s3

≥ −2 × 1.1 + (2 − 1.1 − 8 × 1.12
+ 1.13)s + (4 + 8 × 1.1 − 5 × 1.12

− 6 × 1.13
+ 3 × 1.14)s2

+ (2 + 6 × 1 − 8 × 12
− 12 × 13

+ 8 × 14
+ 4 × 15)s3

= −2.2 − 7.449s + 3.1563s2

≥ −2.2 − 7.449s + 3.1563 × 3s
= −2.2 + 2.0199s ≥ 0. �
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Lemma 2.12. The inequality 2(s+s2+s2t−s2t2)
1+st ≥

2+4s+2s2+6st+6s2t−2st2+2s2t2−4s2t3
st(1+t)(1+st) holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.

The inequality 2(s+s2+s2t−s2t2)
1+st ≥

2+4s+2s2+6st+6s2t−2st2+2s2t2−4s2t3
st(1+t)(1+st) can be deduced from st(1 + t)(s + s2 + s2t − s2t2) ≥

1+2s+s2+3st+3s2t−st2+s2t2−2s2t3, which is equivalent to−1−2s−3st+st2−s2−2s2t+2s2t3+s3t+2s3t2−s3t4 ≥ 0.
We prove the last inequality as follows.

It is easy to verify that [1, 1.1] is a decreasing interval of the function −2 − 3t + t2. And it is easy to verify that [1, 1.1]
is an increasing interval of the functions −1 − 2t + 2t3 and t + 2t2 − t4. Hence

−1 − 2s − 3st + st2 − s2 − 2s2t + 2s2t3 + s3t + 2s3t2 − s3t4

= −1 + (−2 − 3t + t2)s + (−1 − 2t + 2t3)s2 + (t + 2t2 − t4)s3

≥ −1 + (−2 − 3 × 1.1 + 1.12)s + (−1 − 2 × 1 + 2 × 13)s2 + (1 + 2 × 12
− 14)s3

= −1 − 4.09s − s2 + 2s3

≥ −1 − 4.09s − s2 + 2 × 3s2

= −1 − 4.09s + 5s2

≥ −1 − 4.09s + 5 × 3s
≥ −1 + 10s ≥ 0. �

Lemma 2.13. The inequality 0 ≤
−2−2s−4st+2t2+2st2+4st3

t(1+t)(1+st) ≤ 2 holds when (s, t) ∈ G1.

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 ≤ 1.1 and s ≥ 3.

Since−2−2s−4st+2t2 +2st2 +4st3 = (2t2 −2)+ (2st2 −2s)+ (4st3 −4st) ≥ 0, we have −2−2s−4st+2t2+2st2+4st3
t(1+t)(1+st) ≥ 0.

The inequality −2−2s−4st+2t2+2st2+4st3
t(1+t)(1+st) ≤ 2 can be deduced from−1− s−2st+ t2 + st2 +2st3 ≤ t(1+ t)(1+ st), which is

equivalent to 1+ t + s+2st − st3 ≥ 0. The last inequality can be easily proved. 1+ t + s+2st − st3 = 1+ t + s+ (2− t2)st
≥ 0. �

3. The lower bounds of Q 3/online/Cmax

In this section, we investigate the lower bound of Q3/online/Cmax.

Theorem 3.1. When (s, t) ∈ G1, any online algorithm A for Q3/online/Cmax has a competitive ratio cA(s, t) ≥
1+s+2st

s+st .

Proof. According to the definition of G1 and Lemma 2.2, we have 1 ≤ t < 1+
√
31

6 , s ≥ 3, s ≥
3t

5+2t−6t2
and 5+ 2t − 6t2 > 0.

Let x =
t−s+2st2

−2st2+st−t+2s
, we prove 1 ≤ x ≤ 2 as follows. Since 1 ≤ t < 1+

√
31

6 < 1.1 and s ≥ 3, we have

−2st2 + st − t +2s > −2s×1.12
+ s×1−1.1+2s = 0.58s−1.1 > 0. Therefore, the inequality 1 ≤ x =

t−s+2st2

−2st2+st−t+2s
≤ 2

can be deduced from−2st2+st−t+2s ≤ t−s+2st2 ≤ 2(−2st2+st−t+2s), which is equivalent to 4st2−3s−st+2t ≥ 0
and 5s − 3t + 2st − 6st2 ≥ 0. It is easy to see that 4st2 − 3s − st + 2t ≥ 0 holds since t ≥ 1 and s ≥ 3. And it is easy to see
that 5s − 3t + 2st − 6st2 ≥ 0 holds since s ≥

3t
5+2t−6t2

and 5 + 2t − 6t2 > 0.
Denote by I∗ the sequence {J1, J2, . . . , J2k, J2k+1, J2k+2, J2k+3}. The sizes of the 2k + 3 jobs in I∗ are defined as follows.

p1 = p2 = 1 = a1,
p3 = p4 = x = a2,

p5 = p6 =


2−

i=1

ai


x = a3,

p7 = p8 =


3−

i=1

ai


x = a4,

. . .

p2k−1 = p2k =


k−1−
i=1

ai


x = ak,

p2k+1 =
1 + 2s − t + 2st − 2st2

1 + t
·

k−
i=1

ai,
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p2k+2 =

[
2st2 − 2st + t − 1 +

t(1 + 2s − t + 2st − 2st2)
1 + t

]
·


k−

i=1

ai


=

2st2 + t − 1
1 + t

·

k−
i=1

ai,

p2k+3 = 2st
k−

i=1

ai.

Denote by I∗∗ the sequence {J1, J2, . . . , J2k, J2k+1, J
q
2k+2, J

q
2k+3}. The first 2k + 1 jobs in I∗∗ is the same as those in I∗, and

the sizes of the last two jobs in I∗∗ are defined as follows.

q2k+2 =
2 + 4s + 2s2 − t + 4st + 4s2t − t2 − 5st2 − 2s2t2 − st3 − 4s2t3 + 2s2t4

t(1 + t)(1 + st)
·

k−
i=1

ai,

q2k+3 =
2(s + s2 + s2t − s2t2)

1 + st
·

k−
i=1

ai.

It is easy to verify that limk→∞

∑k
i=1 ai = +∞.

Now we investigate the schedules produced by algorithm A for I∗ and I∗∗.

Case 1. Not each of the two machinesM2 and M3 is assigned one of the two jobs J1 and J2.
In this case, either at least one of J1 and J2 is assigned to M1, or both J1 and J2 are assigned to M2, or both J1 and J2 are

assigned to M3. Denote by I1 the sequence {J1, J2}. Then, A(I1) ≥ min{1, 2
s ,

2
st } = min{1, 2

st } =
2
st . Since we can assign J1

toM2 and assign J2 to M3, we have OPT (I1) ≤
1
s .

Thus, combining with Lemma 2.3, we get

cA(s, t) ≥
A(I1)

OPT (I1)
≥

2
t

≥
1 + s + 2st

s + st
.

Case 2. Each of the two machines M2 and M3 is assigned one of the two jobs J1 and J2. But not each of the two machines M2
andM3 is assigned one of the two jobs J2m−1 and J2m for every 2 ≤ m ≤ k.

In this case, there exists the sequence I2 = {J1, J2, J3, J4, . . . , J2h−1, J2h}, where 2 ≤ h ≤ k, such that each of the two
machines M2 and M3 is assigned one of the two jobs J2l−1 and J2l for every 1 ≤ l ≤ h − 1, but not each of the two machines
M2 and M3 is assigned one of the two jobs J2h−1 and J2h. Hence, either at least one of J2h−1 and J2h is assigned to M1, or both
J2h−1 and J2h are assigned toM2, or both J2h−1 and J2h are assigned toM3.

If at least one of J2h−1 and J2h is assigned toM1, thenA(I2) ≥ ah = (
∑h−1

i=1 ai)x; if both J2h−1 and J2h are assigned toM2, then

A(I2) ≥
2ah+

∑h−1
i=1 ai

s =
2x+1

s ·
∑h−1

i=1 ai; if both J2h−1 and J2h are assigned toM3, then A(I2) ≥
2ah+

∑h−1
i=1 ai

st =
2x+1
st ·

∑h−1
i=1 ai;

therefore

A(I2) ≥ min


h−1−
i=1

ai


x,

2x + 1
s

·

h−1−
i=1

ai,
2x + 1

st
·

h−1−
i=1

ai


= min


x,

2x + 1
st


·

h−1−
i=1

ai =
2x + 1

st
·

h−1−
i=1

ai.

Since we can assign J1, J3, . . . , J2h−1 toM2 and assign J2, J4, . . . , J2h to M3, we have

OPT (I2) ≤

h∑
i=1

ai

s
=

ah +

h−1∑
i=1

ai

s
=


h−1∑
i=1

ai


x +

h−1∑
i=1

ai

s
=

x + 1
s

·

h−1−
i=1

ai.

Thus,

cA(s, t) ≥
A(I2)

OPT (I2)
≥

2x+1
st ·

h−1∑
i=1

ai

x+1
s ·

h−1∑
i=1

ai

=
2x + 1
t(x + 1)

=
2 ·

t−s+2st2

−2st2+st−t+2s
+ 1

t


t−s+2st2
−2st2+st−t+2s

+ 1
 =

1 + s + 2st
s + st

.

Case 3. Each of the two machines M2 and M3 is assigned one of the two jobs J2m−1 and J2m for every 1 ≤ m ≤ k. And J2k+1 is
assigned toM1.

Denote by I3 the sequence {J1, J2, . . . , J2k, J2k+1}. Then,

A(I3) ≥ p2k+1 =
1 + 2s − t + 2st − 2st2

1 + t
·

k−
i=1

ai.
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Since we can assign the first 2k jobs toM2 and assign J2k+1 toM3, and combining this with Lemma 2.4, we have

OPT (I3) ≤ max


2

k∑
i=1

ai

s
,
p2k+1

st

 = max


2
s

·

k−
i=1

ai,
1 + 2s − t + 2st − 2st2

st(1 + t)
·

k−
i=1

ai



=
1 + 2s − t + 2st − 2st2

st(1 + t)
·

k−
i=1

ai.

Thus, combining with Lemma 2.5, we get

cA(s, t) ≥
A(I3)

OPT (I3)
≥

1+2s−t+2st−2st2
1+t ·

k∑
i=1

ai

1+2s−t+2st−2st2
st(1+t) ·

k∑
i=1

ai

= st ≥
1 + s + 2st

s + st
.

Case 4. Each of the two machines M2 and M3 is assigned one of the two jobs J2m−1 and J2m for every 1 ≤ m ≤ k. And J2k+1 is
assigned toM2.
Subcase 4.1. J2k+2 is assigned toM1 or M2.

Denote by I4 the sequence {J1, J2, . . . , J2k, J2k+1, J2k+2}. Then,

A(I4) ≥ min

p2k+2,

p2k+1 + p2k+2 +

k∑
i=1

ai

s

 = min


2st2 + t − 1

1 + t
·

k−
i=1

ai,
2s + 1

s
·

k−
i=1

ai


.

Since we can assign J1, J3, . . . , J2k−1, J2k+1 to M2, and assign J2, J4, . . . , J2k, J2k+2 to M3, we have

OPT (I4) ≤ max


p2k+1 +

k∑
i=1

ai

s
,

p2k+2 +

k∑
i=1

ai

st

 = max


2 + 2s + 2st − 2st2

s(1 + t)
·

k−
i=1

ai,
2 + 2st
s(1 + t)

·

k−
i=1

ai



=
2 + 2st
s(1 + t)

·

k−
i=1

ai.

Thus, combining with Lemmas 2.6 and 2.7, we get

cA(s, t) ≥
A(I4)

OPT (I4)
≥

min


2st2+t−1
1+t ·

k∑
i=1

ai, 2s+1
s ·

k∑
i=1

ai


2+2st
s(1+t) ·

k∑
i=1

ai

= min

s(2st2 + t − 1)

2(1 + st)
,
(1 + t)(2s + 1)

2(1 + st)


≥

1 + s + 2st
s + st

.

Subcase 4.2. J2k+2 is assigned toM3.
In this subcase, combining with Lemma 2.8, no matter which machine is assigned J2k+3, we have

A(I∗) ≥ min

p2k+3,

p2k+1 + p2k+3 +

k∑
i=1

ai

s
,

p2k+2 + p2k+3 +

k∑
i=1

ai

st


= min


2st

k−
i=1

ai,
2 + 2s + 4st

s(1 + t)
·

k−
i=1

ai,
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2 + 2s + 4st
s(1 + t)

·

k−
i=1

ai


=

2 + 2s + 4st
s(1 + t)

·

k−
i=1

ai.

Since we can assign the first 2k jobs toM1, assign J2k+1, J2k+2 toM2, and assign p2k+3 to M3, we have

OPT (I∗) ≤ max


2

k−
i=1

ai,
p2k+1 + p2k+2

s
,
p2k+3

st


= max


2

k−
i=1

ai, 2
k−

i=1

ai, 2
k−

i=1

ai


= 2

k−
i=1

ai.

Thus,

cA(s, t) ≥
A(I∗)

OPT (I∗)
≥

2+2s+4st
s(1+t) ·

k∑
i=1

ai

2
k∑

i=1
ai

=
1 + s + 2st

s + st
.

Case 5. Each of the two machines M2 and M3 is assigned one of the two jobs J2m−1 and J2m for every 1 ≤ m ≤ k. And J2k+1 is
assigned toM3.
Subcase 5.1. Jq2k+2 is assigned toM1 orM3.

Denote by I5 the sequence {J1, J2, . . . , J2k, J2k+1, J
q
2k+2}. Then,

A(I5) ≥ min

q2k+2,

p2k+1 + q2k+2 +

k∑
i=1

ai

st


= min


2 + 4s + 2s2 − t + 4st + 4s2t − t2 − 5st2 − 2s2t2 − st3 − 4s2t3 + 2s2t4

t(1 + t)(1 + st)
·

k−
i=1

ai,

2 + 4s + 2s2 + t + 6st + 4s2t − t2 − st2 − 3st3 − 2s2t3

st2(1 + t)(1 + st)
·

k−
i=1

ai


.

Since we can assign J2, J4, . . . , J2k, J
q
2k+2 to M2, and assign J1, J3, . . . , J2k−1, J2k+1 to M3, combining with Lemma 2.9, we

have

OPT (I5) ≤ max


q2k+2 +

k∑
i=1

ai

s
,

p2k+1 +

k∑
i=1

ai

st


= max


2 + 4s + 2s2 + 4st + 4s2t − 4st2 − 2s2t2 − 4s2t3 + 2s2t4

st(1 + t)(1 + st)
·

k−
i=1

ai,

2 + 2s + 2st − 2st2

st(1 + t)
·

k−
i=1

ai



=
2 + 2s + 2st − 2st2

st(1 + t)
·

k−
i=1

ai.

Thus, combining with Lemmas 2.10 and 2.11, we get

cA(s, t) ≥
A(I5)

OPT (I5)
≥ min


2+4s+2s2−t+4st+4s2t−t2−5st2−2s2t2−st3−4s2t3+2s2t4

t(1+t)(1+st) ·

k∑
i=1

ai

2+2s+2st−2st2
st(1+t) ·

k∑
i=1

ai

,

2+4s+2s2+t+6st+4s2t−t2−st2−3st3−2s2t3

st2(1+t)(1+st)
·

k∑
i=1

ai

2+2s+2st−2st2
st(1+t) ·

k∑
i=1

ai


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= min

s(2 + 4s + 2s2 − t + 4st + 4s2t − t2 − 5st2 − 2s2t2 − st3 − 4s2t3 + 2s2t4)

(1 + st)(2 + 2s + 2st − 2st2)
,

2 + 4s + 2s2 + t + 6st + 4s2t − t2 − st2 − 3st3 − 2s2t3

2t(1 + st)(1 + s + st − st2)


≥

1 + s + 2st
s + st

.

Subcase 5.2. Jq2k+2 is assigned toM2.
In this subcase, combining with Lemma 2.12, no matter which machine is assigned Jq2k+3, we have

A(I∗∗) ≥ min

q2k+3,

q2k+2 + q2k+3 +

k∑
i=1

ai

s
,

p2k+1 + q2k+3 +

k∑
i=1

ai

st


= min


2(s + s2 + s2t − s2t2)

1 + st
·

k−
i=1

ai,

2 + 4s + 2s2 + 6st + 6s2t − 2st2 + 2s2t2 − 4s2t3

st(1 + t)(1 + st)
·

k−
i=1

ai,

2 + 4s + 2s2 + 6st + 6s2t − 2st2 + 2s2t2 − 4s2t3

st(1 + t)(1 + st)
·

k−
i=1

ai



=
2 + 4s + 2s2 + 6st + 6s2t − 2st2 + 2s2t2 − 4s2t3

st(1 + t)(1 + st)
·

k−
i=1

ai.

Let z =
q2k+3

t − p2k+1 − q2k+2 =
−2−2s−4st+2t2+2st2+4st3

t(1+t)(1+st) ·
∑k

i=1 ai, according to Lemma 2.13, we have z ∈ [0, 2
∑k

i=1 ai].
Besides, we have 1 ≤ x ≤ 2 and we can verify that the positive number sequence {ai}∞i=1 meets the condition in Lemma 2.1.
Hence, there exists a subset, denoted by I0, of {J1, J2, . . . , J2k−1, J2k}, such that the total size of I0 is between z − 1 and z.

Since we can assign all the jobs in {J1, J2, . . . , J2k−1, J2k} \ I0 to M1; assign J2k+1, J
q
2k+2 and all the jobs in I0 to M2; and

assign Jq2k+3 toM3; we have

OPT (I∗∗) ≤ max


2

k−
i=1

ai − (z − 1),
z + p2k+1 + q2k+2

s
,
q2k+3

st



= max


2

k−
i=1

ai − z + 1,
q2k+3

st
,
q2k+3

st


= max


2

k−
i=1

ai − z + 1,
q2k+3

st



= max


2(1 + s + st − st2)

t(1 + st)
·

k−
i=1

ai + 1,
2(1 + s + st − st2)

t(1 + st)
·

k−
i=1

ai



=
2(1 + s + st − st2)

t(1 + st)
·

k−
i=1

ai + 1.

Thus,

cA(s, t) ≥
A(I∗∗)

OPT (I∗∗)
≥

2+4s+2s2+6st+6s2t−2st2+2s2t2−4s2t3
st(1+t)(1+st) ·

k∑
i=1

ai

2(1+s+st−st2)
t(1+st) ·

k∑
i=1

ai + 1

=

2+4s+2s2+6st+6s2t−2st2+2s2t2−4s2t3
st(1+t)(1+st)

2(1+s+st−st2)
t(1+st) +

1
k∑

i=1
ai

,
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let k → ∞, we get

cA(s, t) ≥

2+4s+2s2+6st+6s2t−2st2+2s2t2−4s2t3
st(1+t)(1+st)

2(1+s+st−st2)
t(1+st)

=
1 + s + 2st

s + st
. �

Theorem 3.2. Any online algorithm A for Q3/online/Cmax has a competitive ratio

cA(s, t) ≥ min

t,

1 + s
st

+ 1


=

1 + s
st

+ 1, if (s, t) ∈ G2,

t, if (s, t) ∉ G2.

Proof. Denote by I the sequence {J1, J2, . . . , Jk+2}. The sizes of the 2k + 2 jobs in I are defined as follows.

pi = (1 + s)i−1, 1 ≤ i ≤ k + 1,
pk+2 = (1 + s)kt.

Now we investigate the schedule produced by algorithm A for I.

Case 1. Not all of the first k + 1 jobs in I are assigned to M3.
In this case, there exists an integer m, where 0 ≤ m ≤ k; such that the first m jobs are assigned to M3; but Jm+1, is not

assigned toM3. Denote by I0 the sequence {J1, J2, . . . , Jm+1}, then we have

A(I0) ≥ min

(1 + s)m,

(1 + s)m

s


=

(1 + s)m

s
.

Since we can assign the last job of I0 to M3, assign the second last job of I0 (if it exists) to M2, and assign the jobs
{J1, J2, . . . , Jm−1} (if they exist) toM1, we have

OPT (I0) ≤ max


m−2−
i=0

(1 + s)i,
(1 + s)m−1

s
,
(1 + s)m

st



= max


(1 + s)m−1
− 1

s
,
(1 + s)m−1

s
,
(1 + s)m

st


=

(1 + s)m−1

s
.

Thus,

cA(s, t) ≥
A(I0)

OPT (I0)
≥

(1+s)m

s
(1+s)m−1

s

= 1 + s ≥ 1 + 1 ≥
1 + s
t

+ 1 ≥
1 + s
st

+ 1.

Case 2. All of the first k + 1 jobs in I are assigned toM3.
In this subcase, no matter which machine is assigned the job Jk+2, we have

A(I) ≥ min

(1 + s)kt,
(1 + s)kt

s
,

(1 + s)kt +

k∑
i=0

(1 + s)i

st


= min


(1 + s)kt

s
,

(1 + s)kt +

k∑
i=0

(1 + s)i

st

 = min


(1 + s)kt
s

,
(1 + s)k

s
+

(1 + s)k+1
− 1

s2t


.

Since we can assign the first k jobs to M1, assign the job Jk+1 to M2, and assign the job Jk+2 toM3, we have

OPT (I) ≤ max


k−1−
i=0

(1 + s)i,
(1 + s)k

s
,
(1 + s)kt

st



= max


(1 + s)k − 1
s

,
(1 + s)k

s
,
(1 + s)k

s


=

(1 + s)k

s
.
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Thus,

cA(s, t) ≥
A(I)

OPT (I)
≥ min


(1+s)kt

s
(1+s)k

s

,

(1+s)k

s +
(1+s)k+1

−1
s2t

(1+s)k
s


= min


t, 1 +

(1 + s)k+1
− 1

(1 + s)kst


= min


t, 1 +

(1 + s) −
1

(1+s)k

st


let k → ∞, we get cA(s, t) ≥ min{t, 1+s

st + 1}. �

4. The upper bounds of LS

The greedy algorithm LS is an online algorithm that assigns the current job to the machine on which the job can be
finished as early as possible. In this section, we prove LS has three upper bounds, i.e., 1+s+2st

s+st , 1+s
st + 1 and 1+s+3st

1+s+st .
Throughout this section, we will use the following notation. Denote by Jl the job with the maximum completion time in

the schedule produced by LS. And denote by yi the completion time of machine Mi just before Jl is assigned by LS, where
i = 1, 2, 3. It is easy to see that OPT (I) ≥

pl
st and OPT (I) ≥

y1+sy2+sty3+pl
1+s+st .

Theorem 4.1. The online algorithm LS has the competitive ratio cLS(s, t) ≤
1+s+2st

s+st .

Proof. Since OPT (I) ≥
pl
st and OPT (I) ≥

y1+sy2+sty3+pl
1+s+st , we have pl ≤ st · OPT (I) and sy2 + sty3 + pl ≤ y1 + sy2 +

sty3 + pl ≤ (1 + s + st) · OPT (I).
According to the design thought of LS, we have

LS(I) = min

y1 + pl, y2 +

pl
s
, y3 +

pl
st


≤

1
s + st

·


s

y2 +

pl
s


+ st


y3 +

pl
st


=

sy2 + sty3 + pl
s + st

+
pl

s + st
≤

(1 + s + st) · OPT (I)

s + st
+

st · OPT (I)

s + st
=

(1 + s + 2st) · OPT (I)

s + st
,

thus,

LS(I)

OPT (I)
≤

1 + s + 2st
s + st

.

Therefore, cLS(s, t) ≤
1+s+2st

s+st . �

Theorem 4.2. The online algorithm LS has the competitive ratio cLS(s, t) ≤
1+s
st + 1.

Proof. According to the design thought of LS, we have LS(I) = min{y1 + pl, y2 +
pl
s , y3 +

pl
st } ≤ y3 +

pl
st . Combining this

with OPT (I) ≥
y1+sy2+sty3+pl

1+s+st , we have

LS(I)

OPT (I)
≤

y3 +
pl
st

y1+sy2+sty3+pl
1+s+st

=
(sty3 + pl)(1 + s + st)
(y1 + sy2 + sty3 + pl)st

≤
1 + s + st

st
=

1 + s
st

+ 1.

Therefore, cLS(s, t) ≤
1+s
st + 1. �

Theorem 4.3. The online algorithm LS has the competitive ratio cLS(s, t) ≤
1+s+3st
1+s+st .

Proof. Since OPT (I) ≥
pl
st and OPT (I) ≥

y1+sy2+sty3+pl
1+s+st , we have pl ≤ st · OPT (I) and (1 + s + st) · OPT (I) ≥

y1 + sy2 + sty3 + pl.
Case 1. Jl is assigned toM1.

In this case, according to the design thought of LS, we have LS(I) = y1 + pl, LS(I) ≤ y2 +
pl
s and LS(I) ≤ y3 +

pl
st .

Then, sy2 + sty3 ≥ [s · LS(I) − pl] + [st · LS(I) − pl] = (s + st) · LS(I) − 2pl.
Therefore, (1 + s + st) · OPT (I) ≥ y1 + sy2 + sty3 + pl = LS(I) + (sy2 + sty3) ≥ (1 + s + st) · LS(I) − 2pl ≥

(1 + s + st) · LS(I) − 2st · OPT (I), thus

LS(I)

OPT (I)
≤

1 + s + 3st
1 + s + st

.

Case 2. Jl is assigned toM2.
In this case, according to the design thought of LS, we have LS(I) = y2 +

pl
s , LS(I) ≤ y1 + pl and LS(I) ≤ y3 +

pl
st .

Then, y1 + sty3 ≥ [LS(I) − pl] + [st · LS(I) − pl] = (1 + st) · LS(I) − 2pl.
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Therefore, (1 + s + st) · OPT (I) ≥ y1 + sy2 + sty3 + pl = s · LS(I) + (y1 + sty3) ≥ (1 + s + st) · LS(I) − 2pl ≥

(1 + s + st) · LS(I) − 2st · OPT (I), thus

LS(I)

OPT (I)
≤

1 + s + 3st
1 + s + st

.

Case 3. Jl is assigned toM3.
In this case, according to the design thought of LS, we have LS(I) = y3 +

pl
st , LS(I) ≤ y1 + pl and LS(I) ≤ y2 +

pl
s .

Then, y1 + sy2 ≥ [LS(I) − pl] + [s · LS(I) − pl] = (1 + s) · LS(I) − 2pl.
Therefore, (1 + s + st) · OPT (I) ≥ y1 + sy2 + sty3 + pl = st · LS(I) + (y1 + sy2) ≥ (1 + s + st) · LS(I) − 2pl ≥

(1 + s + st) · LS(I) − 2st · OPT (I), thus

LS(I)

OPT (I)
≤

1 + s + 3st
1 + s + st

.

As we have seen, no matter which machine is assigned Jl, we have LS(I)

OPT (I)
≤

1+s+3st
1+s+st . Hence, cLS(s, t) ≤

1+s+3st
1+s+st . �

Corollary 1. The online algorithm LS has the competitive ratio cLS(s, t) ≤ min{ 1+s+2st
s+st , 1+s

st + 1, 1+s+3st
1+s+st } ≤ 2.

Proof. According to Theorems 4.1–4.3, we have

cLS(s, t) ≤ min

1 + s + 2st

s + st
,
1 + s
st

+ 1,
1 + s + 3st
1 + s + st


≤

1 + s + 2st
s + st

≤
s + s + 2st

s + st
= 2. �

5. Conclusions and open problem

By Theorems 3.1, 3.2, 4.1 and 4.2, we come to the conclusion that the greedy algorithmLS is an optimal online algorithm
for Q3/online/Cmax when (s, t) ∈ G1 ∪ G2, where G1 = {(s, t)|1 ≤ t < 1+

√
31

6 , s ≥
3t

5+2t−6t2
} and G2 = {(s, t)|s(t − 1)t ≥

1 + s, s ≥ 1, t ≥ 1}. The competitive ratio of LS is 1+s+2st
s+st when (s, t) ∈ G1 and 1+s

st + 1 when (s, t) ∈ G2. Besides, by
Theorem 3.2 and Corollary 1, we come to the conclusion that the overall competitive ratio of LS is 2 which matches the
overall lower bound of the problem.

When (s, t) = (1, 1), the problem Q3/online/Cmax is well known as P3/online/Cmax. Faigle et al. [4] and Graham [5]
showed that LS is an optimal online algorithm for P3/online/Cmax and its competitive ratio is 5/3. It is an open problem
whether LS is still optimal for Q3/online/Cmax when the speed ratios (s, t) ∉ G1 ∪ G2 ∪ {(1, 1)}.
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