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Abstract

Given a smooth, compact, oriented 4-manifold X with a homology sphere Y as boundary and b+2 (X ) = 1,
and given an embedded surface � ⊂ X of self-intersection 1, we prove an inequality relating h(Y ), the genus
of �, and a certain invariant of the orthogonal complement of [�] in the intersection form of X .
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In [10] we de8ned a surjective group homomorphism from the homology cobordism group of
oriented (integral) homology 3-spheres to the integers,

h : �H
3 → Z;

using instanton Floer theory. The main purpose of this paper is to establish the following property
of this invariant.

Theorem 1. Let X be a smooth, compact, oriented 4-manifold with a homology sphere Y as bound-
ary and with b+2 (X ) = 1. Let � ⊂ X be a closed surface of genus g and self-intersection � ·�=1,
and let L ⊂ H 2(X ;Z)=torsion be the sublattice consisting of all vectors which vanish on [�]. Then
the intersection form of X restricts to a unimodular negative de�nite form on L, and we have

h(Y ) + �g=2�¿ e(L);
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where e(L) is a non-negative integer which depends only on L. Moreover,

• e(L) = 0 precisely when L is diagonal
• e(−kE8 ⊕L) = k if L is diagonal and k¿ 0.

By “surface in X ” we mean a two-dimensional compact, oriented, connected smooth submanifold
of X . �x� denotes the smallest integer ¿ x.

See Section 2 for a slightly more general statement and the de8nition of e(L). To compute the
term �g=2� in the inequality we rely on Muñoz’ description [14] of the ring structure of the Floer
cohomology of the SO(3) bundle E → S1 × � where E is the pull-back of the non-trivial SO(3)
bundle over �.
Note that if Z is a negative de8nite 4-manifold with a homology sphere Y as boundary then

one can apply the theorem to X = Z #CP2 with g = 0. When Y = S3 one recovers Donaldson’s
diagonalization theorem [3,4].

As another example, we obtain bounds on how much h may change under ±1 surgery on knots:

Corollary 1. Let Y be an oriented homology 3-sphere and � a knot in Y of slice genus g. If Y�;−1

is the result of −1 surgery on � then

06 h(Y�;−1)− h(Y )6 �g=2�:

Here the slice genus may be de8ned as the smallest non-negative integer g for which there exists
a smooth rational homology cobordism W from Y to some rational homology sphere Y ′ and a genus
g surface � ⊂ W such that 9�= �. (We do not know whether this de8nition agrees with the usual
one for Y = S3.)
To deduce the corollary from the theorem, let Z be the surgery cobordism from Y to Y�;−1 and set

W ′=W∪Y ′ PW∪Y Z , which is a cobordism from Y to Y�;−1. By attaching a suitable 1-handle to W ′ we
obtain a smooth, compact, oriented 4-manifold X with boundary PY # Y�;−1 and such that X contains
a closed surface of genus g and self-intersection −1 representing a generator of H2(X ;Z)=torsion.
Now apply Theorem 1 to X with both orientations and the Corollary follows, since h is additive
under connected sums.

If � is the (p; q) torus knot in S3, where p; q are mutually prime integers ¿ 2, then Y�;−1 is
diQeomorphic to the Brieskorn sphere �(p; q; pq− 1). In this case one can also apply Theorem 1 to
the minimal resolution of the corresponding Brieskorn singularity to get a lower bound on h(Y�;−1).
In general, this lower bound does not coincide with the upper bound given by Corollary 1. However,
we will show in the next section that they do coincide when p= 2, allowing us to compute

h(�(2; 2k − 1; 4k − 3)) = �k=2

for k¿ 2, where �x
 is the largest integer 6 x.

2. The general inequality

We will now state the main result of this paper, which is more general than Theorem 1. We 8rst
recall some de8nitions from [10].
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By a lattice we shall mean a 8nitely generated free abelian group L with a non-degenerate
symmetric bilinear form L×L → Z. The dual lattice Hom(L;Z) will be denoted L#.

De�nition 1. Let L be a (positive or negative) de8nite lattice. A vector w∈L is called extremal
if |w2|6 |z2| for all z ∈w + 2L. If w∈L, a∈L#, and m is a non-negative integer satisfying
w2 ≡ mmod 2 set

 (L; w; a; m) =
∑
z

(−1)((z+w)=2)2(a · z)m;

where the sum is taken over all z ∈w+2L such that z2 =w2. If m=0 then we interpret (a · z)m=1
and write  (L; w) =  (L; w; a; m).

Notice that (−1)((z+w)=2)2(a ·z)m remains the same when z is replaced with −z. Therefore, if w �= 0
then this de8nition of  diQers from that in [10] by a factor of 2.

Theorem 2. Let X be a smooth, compact, oriented 4-manifold with a homology sphere Y as bound-
ary and with b+2 (X )¿ 1. For i = 1; : : : ; b+2 (X ) let �i ⊂ X be a closed surface of self-intersection
1, such that �i ∩ �j = ∅ for i �= j. Set g = genus(�1) and suppose genus(�i) = 1 for i¿ 2. Let
L ⊂ H 2(X ;Z)=torsion be the sublattice consisting of all vectors which vanish on all the classes
[�i]. Thus, L is a unimodular, negative de�nite form. Let w∈L be an extremal vector, let
a∈H2(X ;Z), and let m be a non-negative integer such that w2 ≡ mmod 2 and  (L; w; a; m) �= 0.
Then

h(Y ) + �g=2� + b+2 (X )− 1¿ (|w2| − m)=4:

The author does not see any natural generalization of the theorem in which the roles of the �i

are symmetric. (See Section 10 for an explanation of this.)

De�nition 2. For any de8nite lattice L let e(L) be the supremum of the set of all integers �(|w2|−
m)=4� where w is any extremal vector in L and m any non-negative integer such that (i) w2 ≡
mmod 2, and (ii)  (L; w; a; m) �= 0 for some a∈L#.

With this de8nition of e(L), the inequality in Theorem 1 follows from Theorem 2. Since every
unimodular lattice can be realized as the intersection form of a smooth, compact, oriented 4-manifold
with a homology sphere as boundary, Theorem 2 implies that e(L) is 8nite for any unimodular
de8nite lattice L.

Applying Theorem 2 to (CP2#kCP2)\(open ball) we see that e(L)=0 when L is diagonal. (Of
course, one can also verify this directly.) If L is not diagonal then e(L)¿ 0 by the proof of [10,
Corollary 2]. In a similar fashion one can show that e(−kE8 ⊕ L) = k if L is diagonal (cf. the
proof of Proposition 2 below).

Before embarking on the proof of Theorem 2 we apply it to compute h in some examples.

Proposition 1. h(�(2; 2k − 1; 4k − 3)) = �k=2
 for k¿ 2.
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Proof. Set Yk=�(2; 2k−1; 4k−3). The minimal resolution of the corresponding Brieskorn singularity
has intersection form isomorphic to

#4k =
{∑

xiei ∈R4k |
∑

xi ∈ 2Z; 2xi ∈Z; xi − xj ∈Z
}
; (1)

where {ei} is an orthonormal basis for R4k . This is an even form precisely when k is even. Set
‘= �k=2
. It is easy to see that w=

∑4‘
i=1 ei is an extremal vector in #4k with  (#4k ; w) �= 0. Hence

h(Yk)¿ |w2|=4= ‘ by Theorem 2. On the other hand, Yk is also −1 surgery on the (2; 2k − 1) torus
knot, which has genus k − 1. Since �(k − 1)=2� = �k=2
 = ‘, Corollary 1 gives h(Yk)6 ‘.

The 8rst step in our proof of Theorem 2 is the following proposition, which uses the additivity
of h to reduce the theorem to the case h(Y )=0, at the expense of perhaps increasing b+2 (X ). In the
simplest case b+2 (X ) = 1 it is natural to ask for an alternative proof which only uses 4-manifolds
with b+2 = 1. Unfortunately, such a proof would seem to require an extensive discussion of bubbles,
which we will not take up here.

Proposition 2. If Theorem 2 holds when h(Y ) = 0 and b1(X ) = 0 then it holds in general.

Proof. Performing surgery on a set of loops in X representing a basis for the free part of H1(X ;Z)
yields a 4-manifold with b1=0 but with the same intersection form and the same torsion in H1(·;Z).
Since the loops can be chosen disjoint from the surfaces �i, it suRces to prove the theorem when
b1(X ) = 0.
Let X1 denote the (negative de8nite) E8-manifold with boundary S =�(2; 3; 5). Let X2 denote the

oriented 4-manifold described by the right-handed trefoil in S3 with framing +1. Then 9X2 = PS and
X2 contains an embedded torus of self-intersection +1 which represents a generator of H2(X2;Z)=Z.
For any pair Z1; Z2 of oriented 4-manifolds with non-empty and connected boundaries let Z1 #9 Z2

denote their “boundary sum”, formed by joining the boundaries of Z1 and Z2 by a 1-handle (respecting
the orientations of Z1 and Z2).

If h(Y )=−k ¡ 0 we replace X in the theorem by the k-fold boundary connected sum X ′=X #9 kX1.
Then 9X ′ = Y # kS has h = 0. Also, replace w by w′ = w +

∑k
j=1 qj, where qj is supported on the

jth copy of X1 and is given by qj = e1 + e2 + e3 + e4 ∈E8 = #8, in the notation of (1). Since
 (E8; e1 + e2 + e3 + e4) = 16, we have altered  (L; w; a; m) by a factor of 16k . This reduces the
theorem to the case h(Y )¿ 0.

If h(Y ) = k ¿ 0 replace X by X ′ = X #9 kX2, so 9X ′ = Y # k PS, which has h= 0. The k copies of
X2 provide k embedded tori in X ′ with self-intersection 1.

3. Outline of proof

It remains to prove Theorem 2 in the case h(Y ) = 0 = b1(X ). In this outline we will assume
Y = S3, since the proof in the case h(Y ) = 0 is almost the same. We can then just as well assume
X is closed. We will also take b+2 (X ) = 1, H1(X ;Z) = 0, and m= 0. What we need to prove then
is that if w∈L is an extremal vector such that w2 is even and  (L; w) �= 0 then

2q¿ n+ 1;

where q= �g=2� and n+ 1 = |w2|=2.
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Let N be a closed tubular neighbourhood of � and W the result of replacing N ⊂ X by V =
N #CP2. After choosing orientations of � and S = CP1 ⊂ CP2 we form two internal connected
sums �± ⊂ V of � and S, in one case preserving orientations and in the other case reversing them.
Thus �± has self-intersection number 0. We construct a smooth 1-parameter family of metrics g(t)
on W , independent of t outside V , as follows: First choose an initial metric in which a small tubular
neighbourhood of C = 9V is isometric to [0; T ] × C, where T � 0. Then stretch this initial metric
along the link of �+ (for t ¿ 1) and along the link of �− (for t ¡−1). More precisely, when t ¿ 1
then W should contain a cylinder [0; t]× S1 × �+, and similarly for t ¡ − 1.
Let s∈H 2(W ;Z) be the PoincarSe dual of [S]. Choose an integral lift w′ of w and for any integer

k let Ek → W be the U (2) bundle with c1 = w′ + s and c2 = k. For each t let Mk;t be the moduli
space of projectively g(t) anti-self-dual connections in Ek . Let Mk denote the disjoint union of the
Mk;t , t ∈R. For suitable, small perturbations of the ASD equations, the irreducible part M∗

k of Mk

will be a smooth manifold of dimension

dimM∗
k = 8k + 4n+ 1:

In Section 6 we will show that Mk contains no reducibles for k ¡ 0, while M0 contains a 8nite
number of reducibles (for a generic choice of initial metric). Moreover, one can describe explicitly, in
terms of L and w only, the splittings of E0 (into complex line bundles) that correspond to reducibles
in M0. To each such splitting there is associated a “degree” (always ±1) which measures the number
of times (counted with sign) that this splitting occurs. In addition to the degree, each splitting also
comes with a sign which measures whether the overall orientation of a certain determinant line bundle
over the orbit space of connections in E0 agrees with the “complex orientation” at the corresponding
reducible points. The sum of (degree) · (sign) over all the splittings is equal to 2 (L; w).

Let M′
0 ⊂ M0 be the result of removing from M0 a small open neighbourhood about each

reducible point. For k ¡ 0 set M′
k = Mk . Recall that to any base-point in W one can associate a

principal SO(3) bundle E → M′
k called the base-point 8bration. For j¿ 0 and any subset S of

M′
k let xj · S denote the intersection of S with j generic geometric representatives for − 1

4 p1(E), in
the sense of [12]. These representatives should depend only on the restriction of elements of S to
suitable compact subsets of W\V where the metric does not vary with t.
We also need a variant of this construction where the location of the base-point depends on t;

in this case the result is denoted xj1 · S. To make this more precise: for ±t � 0 the geometric
representatives should be de8ned through restriction to subsets of some tubular neighbourhood of
�± where the metric does not vary, while for intermediate values of t we interpolate, in a certain
sense.

Now suppose the theorem does not hold, i.e. that 2q6 n, and set

M̂= one-dimensional part of xn−2q · (x21 − 4)q ·
∑
k60

M′
k :

This is a formal linear combination of oriented 1-manifolds with boundary. The number of boundary
points of M̂, counted with multiplicity, equals ±4−n (L; w). On the other hand, it follows from
Muñoz’ description of the ring structure of the Floer cohomology of S1 × �± that the number of
ends of M̂, counted with multiplicity, is zero. This contradiction proves the theorem in the case
considered.
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4. Parametrized moduli spaces

In this section we study instanton moduli spaces over a 4-manifold W with tubular ends, para-
metrized by a family of tubular end metrics. We are interested in questions of orientations and
reducibles.

4.1. Orientations

Let W be an oriented Riemannian 4-manifold with tubular ends R+ × Yj; j = 1; : : : ; r, so
W\⋃j (R+ × Yj) is compact. Let E → W be a U (2) bundle. We denote by gE the bundle of
Lie algebras associated to E and the adjoint representation of U (2) on its Lie algebra u(2), and by
g′E the subbundle corresponding to the subalgebra su(2) ⊂ u(2).

Choose an isomorphism E|R+×Yj = R × Ej, where Ej is a U (2) bundle over Yj. Let .j be a
connection in Ej such that the induced connection in g′Ej

is non-degenerate Uat. (As usual, ‘Uat
connections’ will in practice mean critical points of the perturbed Chern–Simons functional as in
[8].) Let /j¿ 0 be small, and /j ¿ 0 if .j is reducible. Fix an even integer p¿ 4. Choose a smooth
connection A0 in E which agrees with the pull-back of .j over the jth end, and de8ne the Sobolev
space of connections

A=A(E; .) = {A0 + a | a∈Lp;/
1 (T ∗W ⊗ g′E)}:

Here Lp;/
k is the space of sections s such that (∇A0)

j(ews)∈Lp weakly for 06 j6 k, where w :
W → R is any smooth function with w(t; y) = e/jt for (t; y)∈R+ × Yj. As explained in [6] there is
a Banach Lie group G consisting of Lp

2; loc gauge transformations, such that G acts smoothly on A

and the following holds: If A; B∈A and there is an Lp
2; loc gauge transformation u such that u(A)=B

then u∈G.
There is a real determinant line bundle det(4) over B=A=G associated to the family of Fredholm

operators

4A = d∗
A + d+

A :Lp;/
1 → Lp;/;

see [7,6] and Appendix A. It is proved in [6] that det(4) is orientable. An orientation of det(4)
de8nes an orientation of the regular part of the instanton moduli space M ∗ ⊂ B∗ cut out by the
equation F+

0 (A)= 0, where F0(A) is the curvature of the connection that A induces in g′E . As usual,
B∗ denotes the irreducible part of B, etc. As for the choice of orientation, the important thing for
us will be that orientations of the various moduli spaces involved be chosen compatible with gluing
maps, and this can be done at least in the situations we will consider.

More generally, let g(t) be a smooth family of Riemannian metrics on W , where t runs through
some parameter space Rb, such that g(t) is constant in t outside some compact set in W . In the
following let 7j be the bundle of j-forms and 7+

t the bundle of g(t) self-dual 2-forms over W .
There is then a parametrized moduli space

M ⊂ B × Rb

consisting of all pairs ([A]; t) satisfying

P+
t F0(A) = 0; (2)
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where Pt :72 → 7+
t . Generically, the irreducible part of this moduli space, M∗, will be a smooth

manifold. (In the situations encountered in this paper it will suRce to start with the usual trans-
lationary invariant perturbations over the ends of W , given by perturbations of the Chern–Simons
functional as in [8], and add further perturbations de8ned in terms of holonomy along a 8nite num-
ber of thickened loops in W . In general, perturbations should be small so that one can control
reducibles.)

To orient M∗ we note that if t is suRciently close to a reference point 9 then (2) is equivalent
to

P+
9 P

+
t F0(A) = 0:

The derivative of (A; t) �→ P+
9 P

+
t F0(A) at (A; 9) is the operator

TA;9 :L
p;/
1 (71 ⊗ g′E)× Rb → Lp;/(7+

9 ⊗ g′E)

(a; x) �→ P+
9 dAa+ SA;9x;

where for any (A; 9)∈A × Rb we de8ne

SA;9x =
9
9s

∣∣∣∣
0

P+
9 P

+
9+sxF0(A):

DiQerentiating the equation P+
9 P

−
9 = 0 we obtain

9
9s (P

+
9+sxP

−
9 − P+

9 P
+
9+sx) = 0;

hence

SA;9x =
9
9s

∣∣∣∣
0

P+
9+sxF0(A) if ([A]; 9)∈M:

A point ([A]; t)∈M is called regular if TA; t is surjective. The tangent space of M at an irreducible
regular point ([A]; t) can be identi8ed with the kernel of the operator

4̃A; t = 4A; t ⊕ SA; t :L
p;/
1 (71 ⊗ g′E)⊕ Rb → Lp;/(g′E)⊕ Lp;/(7+

t ⊗ g′E);

where 4A; t denotes the operator 4A in the metric g(t). What we are seeking, therefore, is an orientation
of the determinant line bundle det(4̃) over B × Rb associated to the family of Fredholm operators
4̃A; t . But as explained in Section A.3 there is a canonical isomorphism

� : det(4) → det(4̃)⊗ (det(Rb))∗: (3)

Given an orientation of det(4), this orients det(4̃), hence M∗.

4.2. Local structure near reducibles

We now assume, for simplicity, that each Yj is a rational homology sphere, and that b1(X ) = 0.
More importantly, we take b= b+, where b+ = b+2 (W ).

Let D = ([A]; t)∈M be a reducible point, so A respects some splitting of E into complex line
bundles, E = L1 ⊕ L2. Then g′E = R ⊕ K , where K = L1 ⊗ PL2 and R = W × R. Here the constant
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section 1 of R acts as 2i on K . Note that changing the order of L1; L2 changes the orientation of K ,
hence many signs in what follows.

Let B denote the connection that A induces in K . Noting that F0(A) takes values in R, we can
identify F0(A) = −2iF(B), which is an anti-self-dual, closed L2 2-form representing 4<c1(K).
Let H+

t be the space of self-dual, closed, L2 2-forms on (W; g(t)). By [1, Proposition 4.9] we
can identify H+

t with a subspace of H 2(W ).
The operator

P+
t dA :L

p;/
1 (71 ⊗ g′E) → Lp;/(7+

t ⊗ g′E)

is the sum of two operators: one with values in R, which is the usual P+
t d operator, and another

with values in K , which we call P+
t dB. Note that the dual of the cokernel of P+

t d is H+
t , and the

map Rb+ → coker(4A; t) de8ned by SA; t takes values in (H+
t )

∗. Let RD :Rb+ → (H+
t )

∗ denote this
operator.

Observation 1. D is a regular point of M if and only if the following two conditions hold:

(i) P+
t dB :L

p;/
1 (71 ⊗ K) → Lp;/(7+

t ⊗ K) is surjective.
(ii) RD :Rb+ → (H+

t )
∗ is an isomorphism.

Note that if the bundle K is non-trivial then, in the metric g(t), d+
B is surjective if and only if d∗

B+
d+
B is surjective, in which case the latter operator has non-negative index. So if this index is negative

then D cannot be a regular point of M. On the other hand, if the index is non-negative (which will
be the case in our applications) then as explained in [3] there is a simple local perturbation of the
anti-self-duality equation near D∈B×Rb+ such that D solves the perturbed equation and such that
the perturbed analogue of P+

t dB is surjective. (Ideally, one should look for a generalization of Freed
and Uhlenbeck’s theorem to our situation, but we will not pursue this here.)

We will now give a more concrete description of the map RD. Let �1; : : : ; �b+ ⊂ W be closed
surfaces such that �i · �j = 0 if i �= j and �i · �i ¿ 0 for all i. Then there is a linear ismorphism

H+
t → Rb+ ; ! �→

(∫
�i

!
)
16i6b+

:

We can therefore de8ne a basis {!i; t} ⊂ H+
t by the conditions∫

W
!i; t ∧ !i; t = 1;

∫
�i

!i; t ¿ 0;
∫
�i

!j; t = 0 for i �= j:

For any v∈H 2(W ) consider the map

fv :Rb+ → Rb+ ; t �→
(∫

W
!i; t ∧ v

)
16i6b+

; (4)

where in the integral v is represented by some bounded, closed 2-form. Clearly, fv(t) = 0 if and
only if v can be represented by a g(t) anti-self-dual, closed L2 form.

Proposition 3. With respect to the basis for H+
t de�ned above we have

RD = dfv(t);

where v= 4<c1(K), and dfv(t) is the derivative of the function fv at t.



K.A. Fr.yshov / Topology 43 (2004) 407–432 415

Proof. For every x∈Rb+ we have

RDx · !i; t =
d
ds

∣∣∣∣
0

∫
W

P+
t+sxF0(A) ∧ !i; t

=
d
ds

∣∣∣∣
0

∫
W

P+
t+sxF0(A) ∧ !i; t+sx

=
d
ds

∣∣∣∣
0

∫
W

v ∧ !i; t+sx

= dfv; i(t)x;

where fv; i is the ith component of fv.

We conclude this section with a simple result about orientations. Suppose D is a regular point.
Then ker(4D)=ker(4̃D) is a complex vector space (recall that we assume b1(W )=0), and therefore
has a canonical orientation. Furthermore,

coker(4̃D) = R1; coker(4D) = R1⊕ (H+
t )

∗:

Given the ordering of the surfaces �i we then obtain orientations of det(4D) and det(4̃D), which we
refer to as the “complex orientations”, cf. [4]. We would like to know how these compare under
the isomorphism �D in (3). As explained in Section A.1 the exact sequence

0 → ker(4D) → ker(4̃D) → Rb → coker(4D) → coker(4̃D) → 0

gives rise to a natural isomorphism

�′D : det(4D) → det(4̃D)⊗ (det(Rb))∗:

By Proposition 9 (with A1 = A2 = 1) we have

�D = �′D: (5)

This yields:

Proposition 4. If D is a regular point then the complex orientations of det(4D) and det(4̃D) agree
under the isomorphism �D if and only if RD preserves orientation.

5. The family of metrics

We can now begin the proof of Theorem 2 in earnest. By Proposition 2 we may assume b1(X )=0.
(The assumption h(Y )=0 will not be used until Section 8.) In this section we construct from X the
4-manifold W that will be the base-manifold for our moduli spaces later. We obtain a b+2 (W ) + 1
dimensional family of Riemannian metrics on W by stretching along various hypersurfaces.

To de8ne W , set b+ = b+2 (X ) and let X̂ be the result of adding a half-in8nite tube R+ × Y to X .
Choose disjoint, compact tubular neighbourhoods Ni of the surfaces �i and let Vi ≈ Ni #CP2 be the
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blow-up of Ni at some interior point away from �i. We then de8ne W to be the manifold obtained
from X̂ by replacing each Ni by Vi. Thus,

W ≈ X̂ # b+CP2:

Let Si ⊂ CP2 be a sphere representing a generator of H2(CP2;Z). Choose internal connected sums
�+

i = �i # Si and �−
i = �i # PSi in the interior of Vi.

Let S1 be the boundary of the closed unit disk D2 ⊂ R2 centred at the origin. For each i choose
smooth embeddings

q±i :D2 × �±
i → Vi

such that q±i (0; · ) is the identity on �±
i . Let N±

i denote the image of the embedding

B±i : [0; 1]× S1 × �±
i → Vi

(s; x; z) �→ q±i (
1
2 (s+ 1)x; z):

Set W ′ =W\(∪i int Vi) and C = 9W ′, and let NC be the image of a smooth embedding

BC : [0; 1]× C → W ′

such that BC(0; · ) is the identity on C. Set W− = W ′\BC([0; 1) × C). Choose Riemannian metrics
on C and on S1 × �±

i .
Choose a smooth function 9 :R→ R such that 9′¿ 0, 9(s) = 0 for s6 1

3 , 9(s) = 1 for s¿ 2
3 . For

r¿ 1 let Cr : [0; r] → [0; 1] be the diQeomorphism whose inverse is given by

C−1
r (s) = s+ (r − 1)9(s):

Now choose a smooth family of Riemannian metrics g(T; t) on W , where T¿ 1 and t=(t1; : : : ; tb+)
∈Rb+, such that the following holds:

• If NC and N±
i have the metrics induced by g(T; t), intervals in R have the standard metric, and

S1 ×�±
i and C have the metrics chosen above (which are independent of T; t), then the following

composite maps should be isometries:

[0;±ti]× S1 × �±
i

C±ti×Id→ [0; 1]× S1 × �±
i

B±
i→N±

i if ± ti¿ 1

[0; T ]× C
CT×Id→ [0; 1]× C

BC→NC:

• g(T; t) is independent of T outside NC .
• g(T; t) is independent of ti outside N+

i ∪ N−
i .

• For ti¿ 1, g(T; t) is independent of ti outside N+
i .

• For ti6− 1, g(T; t) is independent of ti outside N−
i .

• g(T; t) is on product form on R+ × Y .

As T → ∞ we obtain from (W; g(T; t)) the following Riemannian manifolds with tubular ends:

W−
∞ =W−⋃

C

(R− × C);

Vi;∞ = Vi

⋃
9Vi

(R+ × 9Vi):
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The metric on W−∞ is independent of t, while the metric on Vi;∞ depends only on ti and is denoted
gi(ti).

6. Reducibles

Let si ∈H 2(W ) be the PoincarSe dual of [Si], and choose a U (2) bundle E → W such that
c1(E)=w+

∑
i si modulo torsion, where w is as in Theorem 2. For any integer k let MT;t(E; k) denote

the moduli space of projectively g(T; t) anti-self-dual connections A in E which are asympotically
trivial over the end R+ × Y and has “relative second Chern class” k, ie

1
8<2

∫
W
tr(F2

A) = k − 1
2
c1(E)2; (6)

where FA is the curvature of A. We wish to determine the reducible connections in
⋃

t MT; t(E; k)
when T is large and k6 0.

For any v∈H 2(W ) let fT;v :Rb+ → Rb+ be the map de8ned in Section 4.2, using the family of
metrics g(T; t), t ∈Rb+. If v ·[�±

i ] �= 0 for all i and both signs, then the zeros of fT;v form a bounded
set. Restricting fT;v to a large sphere, of radius r ¿ 0 say, we then obtain a map

fT;r; v : Sb+−1
r → Rb+\0

and we de8ne

deg(v) = deg(fT;r; v=|fT;r; v|): (7)

By the homotopy invariance of the degree, the right-hand side is independent of T and r � 0, so
deg(v) is well-de8ned.

Lemma 1. For T ¿ 0 su;ciently large the following holds.

(i) If k ¡ 0 then there are no reducibles in MT;t(E; k) for any t.
(ii) Suppose MT;t(E; 0) contains a reducible connection which respects a splitting E=L1⊕L2. Then

modulo torsion the Chern class c1(L1 ⊗ PL2) has the form v = z −∑i Aisi, where z ∈w + 2L,
z2 = w2, Ai =±1. Moreover, for such v we have

deg(v) = A1A2 · · · Ab+ :

Proof. Fix k6 0. If [A]∈MT;t(E; k) respects the splitting E=L1⊕L2 and B is the induced connection

in K = L1 ⊗ PL2 then D=
1
2<i

(FB) is an anti-self-dual, closed L2 form (with respect to g(T; t)) which

represents v= c1(K). Recall from [10, Section 4] that

c1(E)2 = v2 + 4k:

Now suppose [An] is a reducible point in MT (n); t(n)(E; k) for n=1; 2; : : :, where T (n) → ∞ as n → ∞.
Since ‖Dn‖L2 is independent of n, by the above equation, and c1(E) · [�±

i ] = ∓1 for all i, {t(n)}
must be a bounded sequence. After passing to a subsequence we may therefore assume that {t(n)}
converges in Rb+, and that {Dn} converges in C∞ over compact subsets of both W−∞ and Vi;∞, with
limits z′ and z′i , respectively.
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Note that z′; z′i are harmonic L2 forms and therefore decay exponentially over the ends (see [1]).
We identify the cohomology class [z′] with the element z ∈H 2(W ) which maps to (0; [z′]) under
the isomorphism

H 2(W ) → H 2(W+)⊕ ker[H 2(W−) → H 2(C)]; (8)

where W+ =W\intW− ≈ ⋃i Vi. Then z ∈w + 2L, so z26w2 since w is extremal in L. We also
identify [z′i ] with the class zi ∈H 2(W ) which maps to ([z′i ]; 0) in (8). Then zi = .i/i + Eisi, where .i

is an even integer and Ei is an odd integer. Anti-self-duality implies z2i 6 0, so z2i = .2i − E2
i 6− 1.

We therefore get, for large n,

w2 − b+ = c1(E)2 = v2n + 4k6 z2 +
∑

i

z2i + 4k6w2 − b+ + 4k:

This gives k¿ 0, with equality only if z2 = w2 and .i = 0, Ei =±1 for each i.
We will now compute the degree of v = z −∑i Aisi. Let H

+
T; t be the space of self-dual, closed,

L2 2-forms on W with respect to the metric g(T; t), and let !i;T; t , i = 1; : : : ; b+ be the basis for
H+

T; t constructed in Section 4.2, using the surfaces �i. Note that as T → ∞, !i;T; t converges in
C∞ to zero over compact subsets of W−∞ (since the intersection form on ker[H 2(W−) → H 2(C)] is
negative de8nite; see [1, Proposition 4.9]) and also over compact subsets of Vj;∞ for j �= i, and it
converges over compact subsets of Vi;∞ to some gi(ti) self-dual form  i= i(ti) uniquely determined
by the properties∫

�i

 i¿ 1;
∫
Vi;∞

 i ∧  i = 1:

Moreover, the convergence is uniform for |t|6 r, so fT;v|D(r) converges in C0 to fv;1 × · · · × fv;b+

as T → ∞, where

fv; i :R→ R; s �→
∫
Vi;∞

 i(s) ∧ v:

Now, ∫
�i

 i(s)±
∫
Si

 i(s) =
∫
�±

i

 i(s) → 0 as s → ±∞:

Hence
∫
Si
 i(s) is negative for s � 0 and positive for s�0. It follows easily from this that deg(v)=

A1A2 · · · Ab+.

In the next section we will need to understand which instantons over W may restrict to reducible
connections over open subsets. We record here the following basic result.

We say a connection A in an SO(3) bundle P is reducible if A is preserved by a non-trivial
automorphism of P, and we say A is s-reducible if A is preserved by a non-trivial automorphism
of P which lifts to P ×Ad SU(2), cf. [10, Section 2]. We denote by gP the bundle of Lie algebras
associated to P.

Lemma 2 (Donaldson and Kronheimer [7] and Kronheimer and Mrowka [12]). Let Z be a
connected, oriented Riemannian 4-manifold and A an anti-self-dual connection in a principal SO(3)
bundle P → Z . Suppose A is not =at, and that A is reducible over some non-empty open subset of
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Z . Then A respects some splitting gP = F ⊕ L where F is a real line bundle and L a real 2-plane
bundle. Moreover, A is s-reducible if and only if F is trivial.

Proof. Let S be the set of points x∈Z such that A is reducible in some open neighbourhood of
x. Then S is open, and non-empty by assumption. The proof of [7, Lemma 4.3.21] shows that S
is also closed, hence S = Z . Therefore, A locally respects splittings of the form gP = F ⊕ L, where
FA takes values in F. Since (d∗

AdA + dAd∗
A)FA = 0, unique continuation (see [11]) implies that FA

cannot vanish in any non-empty open subset of Z . It follows that A respects a global splitting. The
last assertion of the lemma is left to the reader.

7. Cutting down parametrized moduli spaces

From now on we 8x a large T ¿ 0 such that the conclusions of Lemma 1 hold, and suppress T
from notation.

For any projectively Uat connection B in E|Y set

MB =
⋃

t∈Rb+

(Mt(E; B)× {t});

where Mt(E; B) is the moduli space of projectively g(t) anti-self-dual connections in E with limit B
over the end R+ × Y . We will now explain what we shall mean by “cutting down” M∗

B (or more
generally, a subset of M∗

B) according to a monomial G
∏

i x
ni
i , where G= z1 · · · zJ , zj ∈Hdj(W

−;Z),
06dj6 2, and each ni is a non-negative integer. Each xi may be thought of as the point class
in H0(W ;Z), but the location of the point will depend on ti. The cut down moduli space will be
denoted(

G
∏
i

xnii

)
·M∗

B; (9)

although it depends on various choices not reUected in the notation.
Roughly speaking, to cut down M∗

B according to G we 8rst restrict connections to W− (where
the metric does not vary), and then cut down by the product of the I-classes of the zi just as on
a closed 4-manifold. As for the factor xnii , let M

∗±ti¿r be the part of M∗
B where ±ti¿ r, and let

r � 0. To cut down M∗±ti¿r according to xnii we restrict connections to a tubular neighbourhood of
�±

i where the metric does not vary, and then cut down by the nith power of the I-class of a point.
In the intermediate region |ti|6 r we interpolate by “moving base-points”, as we will explain in a
moment.

We will now make this precise. To cut down by G, choose disjoint, compact, codimension 0
submanifolds Uj ⊂ W− such that zj is the image of a class z′j ∈Hdj(Uj). To ensure that irreducible
instantons over W restrict to irreducible connections over Uj we also require that H1(Uj;Z=2) →
H1(W ;Z=2) be surjective. Let B(Uj) be the orbit space of Lp

1 connections in E|Uj with a 8xed central
part, and B∗ ⊂ B the irreducible part. Choose a generic geometric representative Rj ⊂ B∗(Uj) for
I(z′j)∈H 4−dj(B∗(Uj)), (see [7,12]). Set

ZG = {([A]; t)∈M∗
B | [A|Uj ]∈Rj for j = 1; : : : ; J}:



420 K.A. Fr.yshov / Topology 43 (2004) 407–432

We now turn to the factor xnii . For each i choose disjoint closed subintervals {IiK}16K6ni of [
2
3 ; 1],

each with non-empty interior, and set

B±
iK = B±i (IiK × S1 × �±

i );

where B±i is as in Section 5. Choose disjoint compact, connected codimension 0 submanifolds KiK ⊂
W\⋃j �=i Vj such that

• B±
iK ⊂ KiK,

• the sets KiK are mutually disjoint and also disjoint from the sets Uj,
• H1(KiK;Z=2) → H1(W ;Z=2) is surjective.

When the perturbations of the ASD equations are suRciently small then the restriction map

riK :M∗
B → B∗(KiK)

is well-de8ned, as follows from Lemma 2 and a compactness argument. Also, when r � 0 there is
a well-de8ned restriction map

r±iK : (M
∗
B)±ti¿r → B∗(B±

iK ):

This follows by a compactness and unique continuation argument from the fact that there are no
reducible projectively Uat connections in E|S1×�±

i
(since c1(E) · [�±

i ] =∓1).
Choose a base-point b±iK ∈B±

iK and a smooth path �iK : [0; 1] → KiK such that �iK(±1) = b±iK . Let
EiK → B∗(KiK) and E±iK → B∗(B±

iK ) be the complexi8cations of the natural 3-plane bundles associated
to the base-points b+i and b±i , respectively. By means of holonomy along �iK we can identify EiK
with the corresponding bundle with base-point b−iK .
For each pair i; K choose a generic pair of sections of EiK; pulling these back by riK gives a pair

(s0iK1; s
0
iK2) of sections of the bundle FiK = r∗iK(EiK) over M∗

B. Choose also a generic pair of sections of
E±iK ; this gives a pair (s±iK1; s

±
iK2) of sections of F±iK = (r±iK )∗E±iK . Let E :R → R be a smooth function

such that E(s)=0 for |s|6 r+1 and E(s)=1 for |s|¿ r+2. Because of the canonical identi8cation
FiK = F±iK over (M∗

B)±ti¿r , it makes sense to de8ne sections (siK1; siK2) of FiK by

siKj = E(ti)s±iKj + (1 − E(ti))s0iKj for ± ti¿ 0:

Now let

ZiK ⊂ M∗
B

be the locus where siK1; siK2 are linearly dependent. As explained in [12], ZiK is a disjoint union
of 8nitely many smooth submanifolds, such that the top stratum has codimension 4 and a natural
orientation, and there is no stratum of codimension 5. We now de8ne(

G
∏
i

xnii

)
·M∗

B = ZG ∩
(⋂

iK

ZiK

)
:

8. Main mechanism of proof

We will use the following characterization of the invariant h, see [10] for more details. For an
oriented integral homology 3-sphere V let CF∗(V ) be the Z=8 graded Floer cochain complex of V
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with rational coeRcients. Let 4′ ∈CF1(V ) and the homomorphism 4 : CF4(V ) → Q be de8ned by
counting with sign the points in zero-dimensional moduli spaces WM (.; �) and WM (�; .) over R × V ,
respectively, where . is an irreducible Uat SU(2) connection and � the trivial SU(2) connection. Here
WM =M=R. We denote by 4′0 ∈HF1(V ) and 40 : HF4(V ) → Q the corresponding data in cohomology.
Then

• either 40 = 0 or 4′0 = 0,
• h(V )¿ 0 if and only if 40 �= 0,
• h(V )¡ 0 if and only if 4′0 �= 0.

By Proposition 2 we may assume h(Y ) = 0. Taking V = PY above we can therefore 8nd a cochain
.=

∑
j cj.j ∈CF0( PY ), where the .j’s are generators and the coeRcients are rational, such that

4′ + d.= 0: (10)

For any non-positive integer k set

Mk =
⋃

t∈Rb+

(Mt(E; k)× {t}):

Let v∈H 2(W ;Z)=torsion be any of the classes in Lemma 1 (ii). The zeros of the map

fv :Rb+ → Rb+

de8ned in (4) are precisely the parameter values of t for which the L2 g(t)-harmonic form repre-
senting v is anti-self-dual. By making a small, t-independent perturbation to the family of metrics
g(t) in some ball in W where g(t) is independent of t we can arrange that 0 is a regular value
of fv for each v. Then M0 will contain only 8nitely many reducible points. After making a local
perturbation to the ASD equations near each reducible point we can then arrange that all reducibles
points in M0 are regular (see Section 4.2).
Let M′

0 ⊂ M0 be the result of removing from M0 a small neighbourhood about each reducible
point, such that 9M′

0 is a disjoint union of complex projective spaces. For k ¡ 0 set M′
k=Mk . (Recall

that there are no reducibles in Mk when k ¡ 0.) Let m be as in Theorem 2 and set n=(|w2|−m)=2−1.
Since

dimMt(E; k) = 8k − 2c1(E)2 − 3(b+ + 1)

and c1(E)2 = w2 − b+, we have

dimMk = 8k + 4n+ 2m+ 1:

Consider the formal linear combination of moduli spaces

M̃k =M′
k +

∑
j

cjMBj ;

where Bj is a projectively Uat connection in E|Y representing .j such that dimMBj = dimMk .
Suppose the conclusion of Theorem 2 does not hold, ie that

�g=2� + b+ − 1¡ (|w2| − m)=4: (11)
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Set q = �g=2� + b+ − 1. Then (11) is equivalent to 2q6 n. Let a∈H2(X ;Z) be as in the theorem
and write

(x21 − 4)	g=2

∏
i¿2

(x2i − 4) =
∑
d

Pd;

where Pd is a homogeneous polynomial in x1; : : : ; xb+ of degree 2d. Cutting down as in the previous
section we de8ne

M̂=
q∑

d=0

(amxn−2qPd) · M̃d−q;

which we regard as a formal linear combination of smooth, oriented 1-manifolds with boundary.
In the last two sections we will show that the number of boundary points of M̂, counted

with multiplicity, is non-zero, while the number of ends is zero. This contradiction will prove
Theorem 2.

9. Boundary points of M̂

Let T ⊂ H 2(W ;Z) be the torsion subgroup (which we may identify with the torsion subgroup
of H 2(X ;Z)).

Proposition 5.

# 9M̂=±2b+−1−2n−m |T|  (L; w; a; m);

which is non-zero by the hypotheses of Theorem 2.

Proof. The boundary points of M̂ all lie in M′
0, so

# 9M̂= # (amxn−2qPq · 9M′
0) = # (amxn · 9M′

0):

Now let Q be the component of 9M′
0 corresponding to some reducible point D= ([A]; t). Fix the

ordering of the corresponding splitting E = L1 ⊕ L2 and set v = c1(L1) − c1(L2). If we cut down Q
according to the monomial amxn and count points with signs using the complex orientation of Q
then the result is

# (amxn · Q) = A2−2n−m(v · a)m;
where A = ±1 depends only on m; n, see [10, Section 4]. If c = c1(E) then the complex orientation
of Q compare with the boundary orientation inherited from M′

0 by

A′Av; t(−1)((v+c)=2)2 ;

where A′ = ±1 is independent of D and the ordering of L1; L2, and Av; t = ±1 is the sign of the
determinant of dfv(t), see Proposition 4. The last factor is taken from [4, Proposition 3.25] and
accounts for whether the complex orientation of det(4D) agrees with the orientation of the whole
determinant line det(4).
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As explained in [10, Section 4], there are precisely |T| reducible points in M0 for every pair
({v;−v}; t) where v∈H 2(W ;R) is one of the classes in Lemma 1 and fv(t) = 0. Summing up we
8nd that

# 9(amxn ·M′
0) =± 1

2 |T|
∑
v

∑
t∈f−1

v (0)

Av; t(−1)((v+c)=2)22−2n−m(v · a)m

=±|T|2−2n−m−1
∑
v

deg(v)(−1)((v+c)=2)2(v · a)m:

If v= z −∑i Aisi as in Lemma 1 then deg(v) = A1 · · · Ab+, and a simple computation shows that

(−1)((z+w)=2)2 = (−1)((v+c)=2)2A1 · · · Ab+ :
From this the proposition follows immediately.

The reader may wish to check that Av; t(−1)((v+c)=2)2(v · a)m does indeed remain unchanged when v
is replaced by −v.

10. Ends of M̂

There are two kinds of ends in M̂. The 8rst kind arises from factorizations through Uat connections
over R+ × Y . Because of our choice of “limiting cycle” over the end R+ × Y (i.e. condition (10)),
the number of ends of this kind (counted with multiplicity) is zero. Indeed, by gluing theory (see
[6]) there is a 8nite collection of projectively Uat connections zi in E|Y and for each i a 8nite subset
Ki ⊂ Mzi equipped with a function Ki → Z indicating multiplicities, such that the ends of M̂ can
be identi8ed with∑

i

Ki ×
(

WM (zi; �) +
∑
j

cj WM (zi; Bj)

)
:

Therefore,

# {ends of M̂}=
∑

i

(#Ki) 〈[zi]; 4′ + 9.〉= 0;

where .; 4′ ∈CF4(Y ) = CF1( PY ).
The second type of ends in M̂ arises from neck-stretching. More precisely, these ends correspond

to sequences {(t(K); [A(K)])}K=1;2; ::: in M̂ where |t(K)| → ∞ as K → ∞. The goal of the remainder
of this section is to prove that the number of ends of this kind, counted with multiplicities, is zero.
We will make use of a recent result by Muñoz [14] which we 8rst explain.

Let � be a closed surface of genus g and F → � the non-trivial SO(3) bundle. Consider the
aRnely Z=8 graded Floer cohomology group HF∗g of the SO(3) bundle F = S1 × F → S1 × �.
Choosing an extension F′ → D2 × � of F we can 8x a Z=8-grading of HF∗g by decreeing that the
element 1∈HF∗g de8ned by counting points in zero-dimensional moduli spaces in F′ has degree 0.
(This grading is compatible with the canonical Z=2 grading de8ned in [10, Section 2.2].)
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The pair-of-pants cobordism gives rise to a product

HFp
g ⊗ HFq

g → HFp+q
g

which makes HF∗g a commutative ring with unit. Let 9 be the degree 4 involution of HF∗g de8ned by
the class [S1]∈H 1(S1×�;Z=2). This involution respects the product in the sense that x·9(y)=9(x·y)
for x; y∈HF∗g . Therefore the ring structure descends to the Z=4-graded quotient H̃F∗g =HF∗g=9.
Let

Mg : Sym(Heven(�))⊗ 7(H1(�)) → HF∗g

be the invariant de8ned by the bundle F′, as explained in [10]. Let x∈H0(�;Z) be the point class
and �1; : : : ; �2g ∈H1(�;Z) a symplectic basis with �j · �j+g = 1. Set .= 2Mg([�]), E=−4Mg(x), and
�=−2

∑g
j=1 Mg(�j�j+g), and let .̃; Ẽ; �̃ denote the images of these classes in H̃F∗g .

The mapping class group of � acts on HF∗g and H̃F∗g in a natural way. Muñoz shows that the

invariant part of H̃F∗g is generated as a ring by .̃; Ẽ; �̃, and he gives a recursive description of the
ideal of relations. The result we will use here is the following.

Proposition 6 (Muñoz [14]):

(i)
∏g

j=1 (Ẽ + (−1)j8)∈ �̃H̃F2
g.

(ii) (E2 − 64)	g=2
 ∈ �HF2
g.

Part (ii) follows from part (i), which is stated explicitly in the proof of [14, Proposition 20].
We will now show that the number of ends of M̂ coming from neck-stretching is zero.
Let (tK; [AK]); K=1; 2; : : : be a sequence of points in Mr with |tK| → ∞ as K → ∞. The transversality

assumptions imply that, after passing to a subsequence, ti; K will stay bounded for all but one value
of i.

Now 8x i and ±ti=9 � 0, so that W contains a large cylinder isometric to [0;±ti]×S1×�±
i , while

the other tj’s vary freely. Then the corresponding part M̂±ti=9 of M̂ is a 8nite number of points
(with multiplicities) which by gluing theory (see [6]) can be identi8ed with a product of instantons
over R2 × �±

i and over W\�±
i (with tubular end metrics). In particular, if we set E±

i = E|S1×�±
i
,

which is the pull-back of the U (2) bundle over �±
i with c1 =−1, then

# M̂±ti=9 = D±
i ·  ±

i

for certain D±
i ∈CF∗(E±

i ) (measuring instantons over R2 × �±
i ) and  ±

i ∈CF∗(E±
i ).

If i¿ 2 then �±
i has genus 1. Thus CF∗(E±

i ) has only two generators, in degrees diQering by 4
(see Appendix B), and

D±
i = E2 − 64 = 0; i¿ 2

on chain level. This is essential, because it implies not only that # M̂±ti=9 = 0, but also that  ±
1

is closed. The point here is that to prove d ±
1 = 0 one must consider (suitably cut down) moduli

spaces over W\�±
1 of dimension 1, and these moduli spaces may have ends where tj → ±∞ for

some j¿ 2.
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Now let O±; M± be the Floer (co)homology classes of D±
1 ;  ±

1 , respectively. By Muñoz’ result
we can write

O± = (E2 − 64)	g=2
 = �e

for some e∈HF∗g , so

# M̂±t1=9 = �e · M± = e · �M±:

But �M± is a linear combination of Floer homology classes each of which can be de8ned by
counting points in moduli spaces over W\�±

1 cut down according to a monomial of the kind
(
∏J

j=1 zj)(
∏b+

i=2 xnii ) where zj ∈Hdj(W
−;Z) and d1 = 1. Since H1(W−;Q) = 0 and we are using

rational coeRcients for the Floer homology groups, this implies that �M±=0, as we will explain in
the next section.

Given this, we conclude that if 9 � 0 then # M̂±ti=9 = 0 for all i, and Theorem 2 follows.

11. �-classes of loops

In this section we will give a simple proof of the vanishing result used at the end of the previous
section (i.e. �M± = 0). This is essentially part of the general assertion that the Donaldson–Floer
invariants of 4-manifolds with boundary discussed in [10, Section 2.3] are well-de8ned, in particular
independent of the choice of geometric representatives for I-classes (see [12]). One approach to this
is to adapt the proof for closed 4-manifolds given in [5,12], but we prefer a more direct argument
which also yields more precise information.

Because of the complexity of the proof of Theorem 2 we will consider the following simpli8ed
situation. Let X be an oriented Riemannian 4-manifold with one tubular end R+×Y , and let E → X
be a principal SO(3) bundle such that E|Y is admissible in the sense of [2]. To make sure moduli
spaces are orientable we assume E lifts to a U (2) bundle, i.e. that w2(E) has an integral lift.
If Y is a homology sphere we will assume there are no reducibles in the instanton moduli spaces

in E considered below.
Set X0 = X \(R+ × Y ) and let B be the orbit space of Lp

1 connections in E0 = E|X0 modulo even
gauge transformations of class Lp

2 . Here p should be an even integer greater than 4, and ‘even’
means that the gauge transformation should lift to E ×Ad SU(2). If x0 ∈X0 is a base-point then over
the irreducible part B∗ ⊂ B we have a natural principal SO(3) bundle P → B∗, the base-point
8bration at x0. To this principal bundle and the adjoint representations of SO(3) on itself, its Lie
algebra, and its double cover Spin(3) we associate three 8bre bundles over B∗, which we denote
G, E, and G̃, respectively. Note that G is the bundle of 8brewise automorphisms of P.

Now consider a smooth loop F : S1 → X0 based at x0. Holonomy along F de8nes a smooth section
h of G. For any Uat connection . in E|Y set

Z. = {[A]∈M (E; .) | h(A) = 1}; (12)

where M (E; .) is the instanton moduli space in E with Uat limit .. After perturbing h by a homotopy
we may assume each Z. is transversely cut out, and we obtain a Floer cocycle

D= D(F) =
∑
.

(# Z.).;
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where the sum is taken over all equivalence classes of irreducible Uat connections . for which
dimM (E; .) = 3. For rational coeRcients the result we wish to prove is that the cohomology class
[D] is a linear function of the homology class [F]. However, we will actually prove a more precise
statement, which involves Spin(3) holonomy:

Up to isomorphism there are two spin structures on the pull-back bundle F∗E → S1. Such a spin
structure consists of a principal Spin(3) bundle < :Q → S1 together with a bundle homomorphism
Q → F∗E, see [13]. If A is any connection in E then there is a unique connection B in Q such that
<(B) = F∗(A), and we can look at the holonomy of B. Because we are restricting to even gauge
transformations, this gives a section h̃ of G̃ which maps to h under the covering G̃→ G and which
depends on the choice of Q only up to an overall sign. Now, G̃ is a bundle of Lie groups isomorphic
to Spin(3), which we can think of as the group of unit quaternions, and the imaginary part h0 of
h̃ is a section of the vector bundle E. Replacing the condition h(A) = 1 in (12) by h̃(A) = ±1 and
h0(A) = 0, respectively, we get Floer cocycles  ±;  0, and these satisfy the relations

D=  + +  −;  0 =  + −  −:

Let O;M±; M0 ∈HF∗(Y ;Z) be the cohomology classes of D;  ±;  0, respectively. Note that M0 is
independent of F, and since E is has odd rank we have 2M0 = 0. Therefore,

M+ =M−; O= 2M± modulo 2-torsion:

Proposition 7.

(i) The subset {M+(F); M−(F)} ⊂ HF∗(Y ;Z) depends only on the class of F in H1(X ;Z).
(ii) F �→ M±(F) de�nes a homomorphism

H1(X ;Z) → HF∗(Y ;Z)=2-torsion:

The proposition is easily deduced from the following two lemmas:

Lemma 3. If F1; F2 : S1 → X0 are loops based at x0 then for any compatible spin structures on F∗1E,
F∗2E, and (F1 ◦ F2)∗E, one has

M−(F1 ◦ F2) =M−(F1) +M−(F2):

Proof of Lemma. Set G = Spin(3) and let SH0 denote the unit sphere in the space H0 of pure
quaternions. (We identify H0 with the Lie algebra of G.) De8ne a subset V ⊂ G × G by

V = {(exp(sx); exp(tx)) | x∈ SH0; s; t ∈ [0; <]; s+ t¿ <}:
If we ignore the singular points (1;−1); (−1; 1); (−1;−1), then V is a smooth, orientable 4-manifold
with boundary, and

9V = ({−1} × G) ∪ (G × {−1}) ∪ D;

where D = {(g1; g2)∈G × G | g1g2 =−1}.
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If M is any closed, oriented 3-manifold and f1; f2 :M → G smooth maps such that (f1; f2) :M →
G × G misses the three singular points of V and is transverse to both V and 9V then

0 = # 9(f1 × f2)−1(V ) = A1 deg(f1) + A2 deg(f2)− A3 deg(f1 · f2)

for some constants A1; A2; A3 =±1. Taking M =G, f1 =Id, f2 ≡ 1 gives A3 = A1, and similarly A3 = A2.
Let G̃ ⊗ G̃ denote the 8brewise product of G̃ with itself. Since V is AdG-invariant it de8nes a

subset W ⊂ G̃⊗ G̃ which is a 8bre bundle over B∗ with 8bre V . Now let h̃j be the section of G̃
obtained from Fj, and set

Z ′
. = {[A]∈M (E; .) | (h̃1(A); h̃2(A))∈W}:

Then the Floer cochain

b=
∑

dimM (E;.)=2

(# Z ′
.).

satis8es

db= A1 −(F1) + A2 −(F2)− A3 −(F1 ◦ F2)

with the same constants Aj as above.

Lemma 4. If F : S1 → X0 represents the zero class in H1(X ;Z) then there is a spin structure on
F∗E for which M−(F) = 0.

Proof. There is a smooth, compact, oriented, connected 2-manifold � with one boundary component
(which we identify with S1), together with a smooth map f :� → X0 such that f|9� = F. Choose a
spin structure on f∗E. It is easy to see that if I : S1 → � is any loop based at z ∈ 9� then M−(f◦I)
depends only on the class of I in the fundamental group <1(�; z). Since the identity map S1 → 9�
is a product of commutators in <1(�; z), it follows from Lemma 3 that M−(F) = 0.

Appendix A. Determinant line bundles

This appendix gives an account of the construction of determinant line bundles for families of
Fredholm operators, taking care of some signs that many authors have overlooked.

Determinant line bundles for families of elliptic operators arise naturally in gauge theory and sym-
plectic geometry in connection with orientations of moduli spaces, see [7,9]. In general, if {T (x)}x∈C

is a continuous family of Fredholm operators between two Banach spaces then the determinant line
bundle det(T ), as a set, is the disjoint union of all the determinants det(T (x)) as x varies through C,
see below. There is a natural collection of local trivializations of det(T ) which one can attempt to
use to make det(T ) a topological line bundle over C. What many authors seem to have overlooked is
that the overlap transformations are not in general continuous. We resolve this problem by dividing
the set of local trivializations into two parts, thereby obtaining an “even” and an “odd” topology
on det(T ). The two topologies are interchanged by the involution of det(T ) which is multiplication
with (−1)dim(ker(T (x))) on the 8bre det(T (x)).

For the sake of simplicity, we will in the main text only consider the odd topology (this prevents
a sign in Eq. (5)).
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A.1. Determinant lines

We 8rst study the determinant line of a single Fredholm operator.
For a 8nite dimensional vector space A we denote by det(A) the highest exterior power of A. If

0 → A0
.0→A1

.1→A2 → 0

is an exact sequence of linear maps between 8nite dimensional vector spaces then there is a natural
isomorphism

det(A0)⊗ det(A2)
≈→det(A1); x0 ⊗ x2 �→ .0(x0) ∧ s(x2); (A.1)

where s :A2 → A1 is any right inverse of .1. More generally, if

0 → A0
.0→A1

.1→· · · .r−1→Ar → 0

is an exact sequence of linear maps one gets a natural isomorphism

⊗
i even

det(Ai)
≈→ ⊗

i odd
det(Ai):

Now let V;W be Banach spaces over F = R or C, and S :V → W a Fredholm operator. The
determinant line of S is by de8nition

det(S) = det(ker(S))⊗ (det(coker(S)))∗:

If f : Fn → W is a linear map set

Sf :V ⊕ Fn → W ⊕ Fn; (v; z) �→ (Sv+ fz; 0)

and let S ⊕ f :V ⊕ Fn → W be the W -component of Sf. Then there is a natural exact sequence

0 → ker(S) → ker(Sf) → Fn
Pf→coker(S) → coker(Sf) → Fn → 0;

where Pf is the map f followed by the projection onto coker(S). This sequence gives rise to a
natural isomorphism

det(S) ≈→det(Sf): (A.2)

Next we consider a pair of linear maps fj : Fnj → W , j = 1; 2. Set

f1 ⊕ f2 : Fn1+n2 = Fn1 ⊕ Fn2 → W; (z1; z2) �→ f1z1 + f2z2:

Then we have a diagramme of isomorphisms

(A.3)

where all maps except the bottom horizontal one are instances of (A.2). Consider the three maps

Fn1 → coker(S); Fn2 → coker(S ⊕ f1); Fn1+n2 → coker(S) (A.4)

obtained from f1; f2; f1 ⊕ f2 in the obvious way. Let K1; K2; K12 be the kernels of the maps in
(A.4), and let L1; L2; L12 be the images of the same maps.
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Lemma 5. F3 = (−1)dim(L1)dim(K2)F2F1.

We remark that the sign in the Lemma does not depend on the sign-convention in (A.1) (i.e. the
order of .0(x0); s(x2)).

Proof. The proof is an exercise in understanding the de8nitions involved. We will merely indicate
where the sign comes from. Note that there is a commutative diagramme

(A.5)

where all rows and columns are exact. This de8nes two isomorphisms

det(K1)⊗ det(L1)⊗ det(K2)⊗ det(L2)
≈→det(Fn1+n2);

which diQer by the factor (−1)dim(L1)dim(K2). One isomorphism uses the top and bottom horizontal
exact sequences and then the middle vertical sequence. The other isomorphism uses the remaining
three exact sequences in the diagramme.

The point is that when computing F2F1 one uses the 8rst isomorphism, while F3 involves the other
one. The remaining details are left to the reader.

A.2. Determinant line bundles

Let B(V;W ) the Banach space of bounded operators from V to W , and Fred(V;W ) ⊂ B(V;W )
the open subset consisting of all Fredholm operators. If C is a space and T :C → Fred(V;W ) a
continuous map we de8ne det(T ) as a set by

det(T ) =
⋃
x∈C

{x} × det(T (x)):

Note that if T (x) is surjective for every x then ker(T ) ⊂ C×V , the union of all sets {x}×ker(T (x)),
is a topological vector bundle over C, so in this case det(T ) has a natural topology. For a general T ,
we will topologize det(T ) by essentially specifying a set of local trivializations. Since the surjective
operators are open in B(V;W ), every point in C has an open neighbourhood U for which there
exists a linear map f : Fn → W such that T (x) ⊕ f :V ⊕ Fn → W is surjective for every x∈U . By
de8nition,

det(Tf(x)) = det(T (x)⊕ f)⊗ det(Fn)∗;
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hence det(Tf)|U has a natural topology. Moreover, 8brewise application of (A.2) gives a bijection

FU;f;n : det(T )|U → det(Tf)|U :

Proposition 8. (i) If A∈Z=2 then det(T ) has a unique topology such that the projection det(T ) → C
is continuous and all maps FU;f;n with n ≡ Amod 2 are homeomorphisms. The corresponding space
detA(T ) is a topological line bundle over C.
(ii) The �bre preserving map

det0(T ) → det1(T )

which is multiplication by (−1)dim(ker(T (x))) on the �bre det(T (x)), is a homeomorphism.

In the main text we will, as already mentioned, take A= 1.

Proof. The only remaining issue is continuity of overlap transformations. Suppose fj : Fnj → W ,
j = 1; 2 are linear maps such that T (x) ⊕ fj is surjective for all x. Then we have a diagramme of
bijective maps

where all maps marked with an arrow are instances of (A.2). The middle square obviously commutes.
In the 8bres over x∈C the square to the left commutes up to multiplication with (−1)n2dim(coker(T (x))),
by Lemma 5, and similarly the square to the right commutes up to multiplication with
(−1)n1dim(coker(T (x))). It follows that

F2F−1
1 = (−1)(n1+n2)dim(coker(T (x)))E−1

2 E1:

Since E−1
2 E1 is continuous, and

index(T (x)) = dim(ker(T (x))) − dim(coker(T (x)))

is locally constant, the proposition follows.

A.3. Isomorphisms between determinant line bundles

Suppose g :C → B(Fp;W ) is continuous and A1; A2 ∈Z=2. We will de8ne a canonical isomorphism
of line bundles

� : detA1(T ) → detA2(Tg):

If nj ≡ Aj (2), and fj : Fnj → W are linear maps such that T ⊕f1 and T ⊕g⊕f2 are both surjective
in some open set U ⊂ C, then det(Tf1) and det(Tg⊕f2) can both be identi8ed with det(Tg⊕f1⊕f2)
over U . This gives an isomorphism det(T )|U → det(Tg)|U , which is easily seen to be independent
of f1; f2, hence patch together to give the desired isomorphism �.
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In explicit computations in may be useful to have � expressed in terms of the bijective map

�′ : detA1(T ) → detA2(Tg)

de8ned in (A.2). Set

d1 = dim(coker(T )); d2 = dim(coker(T ⊕ g));

regarded as functions on C. Then Lemma 5 and a simple computation gives:

Proposition 9. �= (−1)d1A1+d2A2+d1p+d1d2+d2�′.

Finally, we remark that the isomorphism � is functorial in the sense that if gj :C → B
(Fpj ; W ) is a continuous map for j = 1; 2 and if A1; A2; A3 ∈Z=2 then the composition of the iso-
morphisms

detA1(T ) → detA2(Tg1) → detA3(Tg1⊕g2)

agrees with the isomorphism detA1(T ) → detA3(Tg1⊕g2).

Appendix B. On projectively 5at U (2) connections over 3-manifolds

In this appendix we will prove a simple result which describes (modulo SU(2) gauge equiva-
lence) projectively Uat U (2) connections over a closed, oriented 3-manifold in terms of Uat SU(2)
connections over the complement of a suitable link. The existence of such a correspondence was
pointed out in [2, p. 198]. We will then apply this result to compute the Floer chain complex of a
non-trivial SO(3) bundle over the 3-torus.

Let Y be a closed, oriented 3-manifold, E → Y a rank 2 Hermitian vector bundle, and L= 72E
the determinant line bundle of E. Let s be a regular, smooth section of L. The zero-set of s is then
a disjoint union �=

∐
j �j of embedded circles. Let N ≈ D2 × � be a closed tubular neighbourhood

of �, and let V ⊂ Y denote the complement of ( 12 intD
2)× �. By modifying s if necessary we may

arrange that |s|= 1 in V . Let Â be a unitary connection in L such that ∇Âs= 0 in V . Since L|N is
trivial there is a unitary isomorphism L|N ≈ L0 ⊗ L0 where L0 = N × C. Let Â0 be the connection
in L0 induced by Â. Of course, F(Â) = 2F(Â0) in N .

For each j choose a point zj ∈ �j and de8ne mj = S1 × {zj}. Then

Holmj(Â0) = exp

(
−
∫
D2×zj

F(Â0)

)
=−1;

where the second equality is a basic fact from Chern–Weil theory.
Let M1 denote the moduli space of projectively Uat unitary connections in E which induces Â in

L, modulo automorphisms of E of determinant 1. If P is the SO(3) bundle associated to E then M1

can be identi8ed with the moduli space RS(P) of Uat connections in P modulo even automorphisms
of P, i.e. those that lift to P ×Ad(SO(3)) SU(2). If [A]∈M1 then A and Â0 ⊕ Â0 restrict to gauge
equivalent connections over D2 × zj, hence Holmj(A) =−1.
Let M2 denote the moduli space of Uat unitary connections in E|V satisfying ∇As=0 and Holmj(A)=

−1 for all j, modulo automorphisms of E|V of determinant 1.
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Proposition 10. The restriction map r :M1 → M2 is a bijection.

Proof. Given [B]∈M2 it is easy to 8nd a Uat SU (2) connection A0 over N such that if A=A0⊗ Â0

then A and B restrict to gauge equivalent U (2) connections over N ∩V . Gluing these together along
N ∩ V produces an element .∈M1 such that r(.) = [B]. Hence r is surjective. It is easy to see that
r is also injective.

Proposition 11. If P → T 3 is any non-trivial SO(3) bundle then RS(P) has exactly two elements.
These are both non-degenerate and di@er in index by 4.

Proof. Recall that SO(3) bundles over a compact 3-manifold (or over any 8nite CW-complex of
dimension6 3) are determined up to isomorphism by their second Stiefel–Whitney class. Choose
an indivisible class c∈H 2(T 3;Z) which is a lift of w2(P). Then there exists a diQeomorphism of
T 3 (de8ned by some element of SL(3;Z)) such that f∗c is the PoincarSe dual of [S1] × 1 × 1. We
may therefore assume that P = S1 × P0, where P0 → T 2 is the non-trivial SO(3) bundle. Applying
Proposition 10 with � = S1 × pt we 8nd that RS(P) has exactly two elements .±, given by the
representations of <1(S1 × (T 2\pt)) into SU(2) = Sp(1) which take the three standard generators to
±1; i; j, respectively, where 1; i; j; k is the usual basis for the quaternion algebra.

It is not hard to see that the corresponding Uat connection in P is non-degenerate, by observing
that it pulls back to the trivial connection under the 4-fold covering T 3 → T 3, (r; s; t) �→ (r; s2; t2).
We know apriori that there is a degree 4 involution of RS(P) (see [10]), so the index diQerence of
.± must be 4mod 8.
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