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We describe a new technique for obtaining new codes from old ones using geometric
methods. Several applications are described. � 2001 Academic Press

1. INTRODUCTION

We want to provide some background from coding theory and geometry.
Let C be a binary linear code of length N, dimension k, and minimum
distance at least 4. Let G be a generator matrix for C of size k_N. Then
C= has length N and dimension N&k. Put N&k=n+1. A basis for C =

gives a matrix M of size (n+1)_N. Since C has minimum distance at least
4 it follows that the columns of M form a set S of N points in 7=PG(n, 2)
with no 3 collinear. Such a set S with no three of its points collinear is
called a cap.

Let us say that C is extendable if C can be embedded as a subspace of
codimension 1 in a binary linear code D of dimension k+1, length N+1
and minimum distance at least 4. Otherwise C is said to be inextendable or
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non-lengthening. One can show that C is non-lengthening (inextendable) if
and only if the covering radius of C is 2.

The geometric result is that C is non-lengthening if and only if S is not
properly contained in a larger cap in the same space 7=PG(n, 2), i.e., if
and only if the cap S is complete.

Again, start with C. As above we get a set S in 7=PG(n, 2) from C=.
Using the ideas above, if C is extendable then S is properly contained in
a cap S1 of 7 with |S1 |=|S|+1. Since the size of the largest cap in 7 is
2n=2N&k&1 we see that after a finite number of steps, the process of
lengthening must stop. In this way every binary linear code C of minimum
distance at least 4 is embedded in a non-lengthening binary linear code D
of minimum distance at least 4. This brings out the crucial role of such
non-lengthening codes or equivalently of complete caps in 7=PG(n, 2).

A much-studied construction, the Plotkin doubling construction preserves
completeness. This process has the effect of doubling the length of C and
increasing its dimension (by a factor greater than 2). In this note we provide
a new construction (black�white lifting) for getting new codes from old. Like
the Plotkin construction black�white lifting increases the dimension by a factor
greater than 2 but the length increases by a factor less than 2. Several new
results are shown using this black�white construction.

2. A NEW CONSTRUCTION

We begin with some basic definitions.
A cap is a set of points in 7=PG(n, 2) having no three of its points

collinear. We say that a cap is complete or maximal if it is not a proper
subset of any other cap in 7.

Given a subset A of 7=PG(n, 2), a vertex for A is a point v such that
v+A=A. A subset A of 7 is said to be periodic if it has at least one vertex.

Given a complete cap S in 7=PG(n, 2) one may easily construct from
S a complete cap ,(S) in 7� =PG(n+1, 2) by the Plotkin or doubling
construction as follows. We choose a point v # 7� "7 and define

,(S)=S ? [v+s | s # S].

Clearly |,(S)|=2 |S| and ,(S) is periodic with v as a vertex.
In [DT], Davydov and Tombak showed that if S is a complete cap in

7=PG(n, 2) with |S|�2n&1+2 then S=,(S1) where S1=S & 71 is a
complete cap in some hyperplane 71 $PG(n&1, 2) of 7. Thus if S is a
complete cap in 7=PG(n, 2) with |S|=2tr�2n&1+2 where r is odd then
S=,t(S$) where S$ is a complete cap in some subspace 7$$PG(n&t, 2)
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of 7. Furthermore |S$|=t=2n&t&1+1 and |S|=2n&1+2t. We call a cap
S of 7=PG(n, 2) large if |S|�2n&1+1, and small if |S|�2n&1.

Definition 2.1. Let S be a cap in 7=PG(n, 2). Given a point x of 7
not lying in S we partition the set S into two subsets as follows. The Black
points of S with respect to x are the points

B(x, S) :=[s # S | x+s # S].

The White points of S with respect to x are the points

W(x, S) :=[s # S | x+s � S].

In geometric language B(x, S) and W(x, S) are the secant and tangent
cones of x respectively.

Next we define our construction of new caps from old ones. Let S be a
complete cap in 7=PG(n, 2) with w any point of 7"S. Embed 7 in a
projective space 7� of one dimension more. Fix v # 7� "7. We will construct
a new cap �w(S) in 7� =PG(n+1, 2). We define

�w(S) :=S ? [x+v | x # W(w, S)] ? [v+w].

We call �w(S) the black�white lift of S and we call v the apex. Note that
�w(S) & 7=S.

Theorem 2.2. Let S be a cap in 7=PG(n, 2), w a point of 7"S and
7� =PG(n+1, 2) the projective space generated by an apex v together with
the space 7. Then �w(S) is a cap in 7� with |�w(S)|=|S|+|W(w, S)|+1=
2 |S|&|B(w, S)|+1.

Proof. Write w$=w+v. Since �w(S)"[w$] is contained in the Plotkin
double of S we see that any line in �w(S) would have to pass through w$.
Assume, by way of contradiction, that �w(S) does contain a line [w$, u$, z]
where without loss of generality u$ � 7 and z # S. Since w � S, this line
cannot contain v. Thus we may project the line from v into 7 to obtain a
line [w, u=u$+v, z]. Since u$ # �w(S)"w$, we have u # S. Therefore, u, z #
B(w, S). But then, by the definition of �w(S), this means that u$ � �w(S).
This contradiction shows that �w(S) is a cap. The formulae for |�w(S)| are
clear. K

For further developments we need some more definitions.

Definition 2.3. Let S be a cap in 7=PG(n, 2). A point, w, of 7"S is
dependable or a dependable point for S if there does not exist any other
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point x # 7"S with W(w, S)�W(x, S), i.e., if every point x # 7"S different
from w satisfies B(w, S)$3 B(x, S).

In particular, if a point w # 7"S lies on exactly one secant line to S, then
w is dependable. We emphasize this important special case as follows.

Definition 2.4. Let S be a cap in 7=PG(n, 2). A point, x, of 7 is a
faithful point or a faithful point for S if x lies on a unique secant to S, i.e.,
if |B(x, S)|=2.

Proposition 2.5. Let S be a complete cap in 7=PG(n, 2) obtained by
a sequence of Plotkin doublings beginning with a cap S$ in PG(n&t, 2), i.e.,
S=,t(S$). Let x be a point of 7 which is not in S and is not a vertex of S.
Then the number of secants to S through x is divisible by 2t.

Proof. The proof is by induction on t. The result is trivial for t=0. Sup-
pose we have proved the result for t&1 and let S be a cap with S=,t(S$)
in 7=PG(n, 2) where S1 :=,t&1(S$)/71 $PG(n&1, 2) and v is a vertex
of S which is not contained in 71 . This means that we may consider S as
having been obtained from S1 by Plotkin doubling using the vertex v. Note
that we may also view S as having been obtained by doubling from v the
cap v+S1 contained in the hyperplane v+71 . Let x be any point of 7"S
with x not a vertex of S. Replacing 71 by v+71 if necessary we may
assume that x # 71 . If x is a vertex of S1 , then x+S1=S1 and therefore
x+S=x+(S1 ? (v+S1))=(x+S1) _ (v+x+S1)=S1 _ (v+S1)=S, con-
tradicting our assumption that x is not a vertex of S.

Therefore x cannot be a vertex of S1 and thus by the induction hypo-
thesis, the number of secants to S1 through x is r(2t) for some integer r.

Consider one of these secants to S1 , [x, y, z] where y, z # S1 /S. The
points y$ :=y+v and z$=z+v lie in S. Then x lies on the two secants
to S, [x, y, z] and [x, y$, z$]. Thus each secant of S1 through x gives rise
to two secants to S through x.

Conversely if u$, w$, x is some secant line to S not entirely contained in
71 then we see that u$+v, w$+v, x is a secant line to S1 which is contained
in 71 . Thus every secant line to S through x arises in the above manner
from a secant line to S1 through x. K

Corollary 2.6. If S=,(S1) is a complete periodic cap in 7=PG(n, 2)
with n�2 then there are no faithful points for S.

Proof. The corollary follows easily from the preceding theorem and the
fact that for n�2 every complete cap has at least 4 points. K
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For emphasis we mention a special case of the above corollary. Let S be
a large complete cap in PG(n, 2). Then by the result of [DT] described
above, S=,t(S$) for some t�0 and some cap S$ in PG(n&t, 2) with
|S$|=2n&t&1+1. Therefore if S/PG(n, 2) is a large complete cap having
a faithful point then |S|=2n&1+1.

The following partial converse to the preceeding is proved in [BW,
Theorem 13.8].

Proposition 2.7. If S is a complete cap in 7=PG(n, 2) with |S|=2n&1+1
then there exists a faithful point w for S.

We next consider how the black�white lift behaves when applied to
complete caps.

Theorem 2.8. Let S be a complete cap in 7=PG(n, 2) where n�2 with
w a dependable point for S. Then the set �w(S) is a complete cap in
7� =PG(n+1, 2).

Proof. We show that �w(S) is complete. Let x$ be a point of 7� not
contained in �w(S). If x$ # 7 then x$ lies on a secant to S so we may
suppose that x$ � 7. The point v lies on the secant line [v, y, y+v] for
every y # W(w, S). Since w is dependable we must have W(w, S){< and
thus x${v.

Consider the point x=v+x$ # 7. If x # S then x # B(w, S) since x$ � �w(S).
But then x$ lies on the secant line to �w(S) given by [w$, w+x, x$]. Thus we
may suppose that x � S. Now since w is dependable for S there exists
y # W(w, S)"W(x, S). Since y # W(w, S), we have y$= y+v # �w(S).
Since y � W(x, S), we have y, x+ y # S. Therefore x$ lies on the secant line
[( y+x), y$, x$] to �w(S). K

Now we are able to give an interesting application of our new construc-
tion. It is clear that if A and B are two distinct complete caps then |A & B|
�|A|&1. Here we show that this bound is actually attained, even when A
and B contain a large number of points. To see this take any maximal cap
S having a faithful point w and consider the two complete caps ,(S) and
�w(S). We have that |,(S) & �w(S)|=|�w(S)|&1=|,(S)|&2.

3. PROPERTIES OF THE BLACK�WHITE LIFT

In Proposition 2.7 we pointed out the existence of faithful points for certain
important caps (the so-called critical caps��see [BW, DT]). Our construc-
tion provides many examples of complete caps having many faithful points.
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Proposition 3.1. Let S/7=PG(n, 2) be a complete cap with w a
dependable point for S. Let x # B(w, S) and write x$=v+x and w$=v+w.
Then B(x$, �w(S))=[w$, w+x]. In other words, each point of v+B(w, S)
is a faithful point of �w(S).

Proof. Since x # B(w, S), x$ � �w(S). Since �w(S) is a complete cap there
exist two points y, x$+ y # B(x$, �w(S)) with y # 7. Now [x, x+ y, y] is a line
in 7 with x, y # S. Thus, x+ y � S even though (x+ y)+v=x$+ y # �w(S).
Therefore, x+ y=w and x$+ y=w$ and thus y=w$+x$=w+x. In other
words, every secant to �w(S) through x$ contains w+x, showing that there
is only one secant, i.e., that x$ is a faithful point for �w(S). K

Proposition 3.2. Let S/7=PG(n, 2) be a cap and take x # 7"S. Then

(1) W(x, �w(S)) & 7=W(x, S),

(2) B(x, �w(S)) & 7=B(x, S) and
(3) B(w, �w(S))=B(w, S).

Proof. (1) and (2) are left to the reader. For (3), assume by way of
contradiction that we have y$, z$= y$+w # B(w, �w(S))"7. Then both
y= y$+v and z=z$+v must lie in W(w, S). But this cannot be because
y+z=w. K

Theorem 3.3. Let S/PG(n, 2) be a cap with a dependable point w.
Form the black�white lift of S, �w(S)/PG(n+1, 2) using the apex v. Then
w is a dependable point for �w(S).

Proof. We proceed by contradiction. Thus we assume that there exists
a point x$ � �w(S) such that W(w, �w(S))�W(x$, �w(S)). If x$ # 7 then
applying Proposition 3.2(1) we have W(w, S)�W(x$, S) violating the
dependability of w for S. Thus we must have x$ � 7.

Now we show that x${v as follows. Since w is dependable, there exists
y # W(w, S). Then y and y$= y+v both lie in �w(S) and thus y � W(v, �w(S)).
Therefore x$ cannot be v since y # W(w, �w(S))"W(v, �w(S).

Suppose that x := x$ + v # S. Since w$ := w + v # W ( w, �w(S) ) �
W(x$, �w(S)), w$+x$ � �w(S). Thus w+x � S which means that x # W(w, S).
Therefore x$ # �w(S) by the definition of �w(S). This contradiction shows
that x � S.

Finally we consider the case x � S. Since w is dependable for S, there
exists a point y # W(w, S)"W(x, S). Thus y # S and y+x # S but y+w � S.
Therefore y$= y+v # �w(S) and y$+w=( y+v)+w � �w(S). This means
that y$ # W(w, �w(S))�W(x$, �w(S)). Therefore y+x= y$+x$ � �w(S).
But we have already shown that y+x # S. This contradiction completes the
proof. K
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4. SMALL COMPLETE CAPS

The structure of all large complete caps is now known (see [BW, DT]).
However, this is not so for small complete caps. Indeed not even the car-
dinalities which occur are known. Here we sketch an example which illustrates
how black�white lifting can be exploited to construct small complete caps. In
[FHW, p. 294] a cap C3 /PG(5, 2) of cardinality 12 is exhibited. As is easily
verified, C3 can be extended to only one complete cap, H/PG(5, 2) and this
cap has cardinality 13. The cap, H, contains many faithful points. Let w
denote one of these. We define new small complete caps via H5 :=H and
Hi+1 :=�w(Hi)=� i&4

w (H) for i�5. Thus Hn /PG(n, 2) with |Hn |=
3(2n&3)+1 and |PG(n, 2)|=2n+1&1 for n�5. By Theorem 2.8 these new
caps Hn are all complete.

Note that in the above construction we could have instead chosen a
different faithful or dependable point for each lift.

Furthermore there exist dependable points w0 for H with |B(w, H)|=6.
In light of Theorem 3.3, using such a point w0 in the role of w in the above
construction we obtain complete caps �n

w0
(H)/PG(n, 2) with |�n

w0
(H)|

=2n&2+5.
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