NOTE

New Codes from Old; A New Geometric Construction ${ }^{1}$

Aiden A. Bruen
Department of Mathematics, University of Western Ontario, London, Ontario N68 3K7, Canada
E-mail: bruen@uwo.ca
and
David L. Wehlau
Department of Mathematics and Computer Science, Royal Military College, Kingston, Ontario K7K 7B4, Canada
E-mail: wehlau@mast.queensu.ca
Communicated by the Managing Editors
Received July 14, 1999

Abstract

We describe a new technique for obtaining new codes from old ones using geometric methods. Several applications are described. © 2001 Academic Press

1. INTRODUCTION

We want to provide some background from coding theory and geometry. Let C be a binary linear code of length N, dimension k, and minimum distance at least 4. Let G be a generator matrix for C of size $k \times N$. Then C^{\perp} has length N and dimension $N-k$. Put $N-k=n+1$. A basis for C^{\perp} gives a matrix M of size $(n+1) \times N$. Since C has minimum distance at least 4 it follows that the columns of M form a set S of N points in $\Sigma=\mathbb{P} G(n, 2)$ with no 3 collinear. Such a set S with no three of its points collinear is called a cap.

Let us say that C is extendable if C can be embedded as a subspace of codimension 1 in a binary linear code D of dimension $k+1$, length $N+1$ and minimum distance at least 4 . Otherwise C is said to be inextendable or

[^0]non-lengthening. One can show that C is non-lengthening (inextendable) if and only if the covering radius of C is 2 .

The geometric result is that C is non-lengthening if and only if S is not properly contained in a larger cap in the same space $\Sigma=\mathbb{P G}(n, 2)$, i.e., if and only if the cap S is complete.

Again, start with C. As above we get a set S in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ from C^{\perp}. Using the ideas above, if C is extendable then S is properly contained in a cap S_{1} of Σ with $\left|S_{1}\right|=|S|+1$. Since the size of the largest cap in Σ is $2^{n}=2^{N-k-1}$ we see that after a finite number of steps, the process of lengthening must stop. In this way every binary linear code C of minimum distance at least 4 is embedded in a non-lengthening binary linear code D of minimum distance at least 4 . This brings out the crucial role of such non-lengthening codes or equivalently of complete caps in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$.

A much-studied construction, the Plotkin doubling construction preserves completeness. This process has the effect of doubling the length of C and increasing its dimension (by a factor greater than 2). In this note we provide a new construction (black/white lifting) for getting new codes from old. Like the Plotkin construction black/white lifting increases the dimension by a factor greater than 2 but the length increases by a factor less than 2 . Several new results are shown using this black/white construction.

2. A NEW CONSTRUCTION

We begin with some basic definitions.
A cap is a set of points in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ having no three of its points collinear. We say that a cap is complete or maximal if it is not a proper subset of any other cap in Σ.

Given a subset A of $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$, a vertex for A is a point v such that $v+A=A$. A subset A of Σ is said to be periodic if it has at least one vertex.

Given a complete cap S in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ one may easily construct from S a complete cap $\phi(S)$ in $\tilde{\Sigma}=\mathbb{P} \mathbb{G}(n+1,2)$ by the Plotkin or doubling construction as follows. We choose a point $v \in \tilde{\Sigma} \backslash \Sigma$ and define

$$
\phi(S)=S \sqcup\{v+s \mid s \in S\} .
$$

Clearly $|\phi(S)|=2|S|$ and $\phi(S)$ is periodic with v as a vertex.
In [DT], Davydov and Tombak showed that if S is a complete cap in $\Sigma=\mathbb{P G}(n, 2)$ with $|S| \geqslant 2^{n-1}+2$ then $S=\phi\left(S_{1}\right)$ where $S_{1}=S \cap \Sigma_{1}$ is a complete cap in some hyperplane $\Sigma_{1} \cong \mathbb{P} \mathbb{G}(n-1,2)$ of Σ. Thus if S is a complete cap in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ with $|S|=2^{t} r \geqslant 2^{n-1}+2$ where r is odd then $S=\phi^{t}\left(S^{\prime}\right)$ where S^{\prime} is a complete cap in some subspace $\Sigma^{\prime} \cong \mathbb{P} \mathbb{G}(n-t, 2)$
of Σ. Furthermore $\left|S^{\prime}\right|=t=2^{n-t-1}+1$ and $|S|=2^{n-1}+2^{t}$. We call a cap S of $\Sigma=\mathbb{P G}(n, 2)$ large if $|S| \geqslant 2^{n-1}+1$, and small if $|S| \leqslant 2^{n-1}$.

Definition 2.1. Let S be a cap in $\Sigma=\mathbb{P} G(n, 2)$. Given a point x of Σ not lying in S we partition the set S into two subsets as follows. The Black points of S with respect to x are the points

$$
\mathscr{B}(x, S):=\{s \in S \mid x+s \in S\} .
$$

The White points of S with respect to x are the points

$$
\mathscr{W}(x, S):=\{s \in S \mid x+s \notin S\} .
$$

In geometric language $\mathscr{B}(x, S)$ and $\mathscr{W}(x, S)$ are the secant and tangent cones of x respectively.

Next we define our construction of new caps from old ones. Let S be a complete cap in $\Sigma=\mathbb{P} G(n, 2)$ with w any point of $\Sigma \backslash S$. Embed Σ in a projective space $\tilde{\Sigma}$ of one dimension more. Fix $v \in \widetilde{\Sigma} \backslash \Sigma$. We will construct a new cap $\psi_{w}(S)$ in $\tilde{\Sigma}=\mathbb{P} G(n+1,2)$. We define

$$
\psi_{w}(S):=S \sqcup\{x+v \mid x \in \mathscr{W}(w, S)\} \sqcup\{v+w\} .
$$

We call $\psi_{w}(S)$ the black/white lift of S and we call v the apex. Note that $\psi_{w}(S) \cap \Sigma=S$.

Theorem 2.2. Let S be a cap in $\Sigma=\mathbb{P G}(n, 2)$, w a point of $\Sigma \backslash S$ and $\tilde{\Sigma}=\mathbb{P} G(n+1,2)$ the projective space generated by an apex v together with the space Σ. Then $\psi_{w}(S)$ is a cap in $\tilde{\Sigma}$ with $\left|\psi_{w}(S)\right|=|S|+|\mathscr{W}(w, S)|+1=$ $2|S|-|\mathscr{B}(w, S)|+1$.

Proof. Write $w^{\prime}=w+v$. Since $\psi_{w}(S) \backslash\left\{w^{\prime}\right\}$ is contained in the Plotkin double of S we see that any line in $\psi_{w}(S)$ would have to pass through w^{\prime}. Assume, by way of contradiction, that $\psi_{w}(S)$ does contain a line $\left\{w^{\prime}, u^{\prime}, z\right\}$ where without loss of generality $u^{\prime} \notin \Sigma$ and $z \in S$. Since $w \notin S$, this line cannot contain v. Thus we may project the line from v into Σ to obtain a line $\left\{w, u=u^{\prime}+v, z\right\}$. Since $u^{\prime} \in \psi_{w}(S) \backslash w^{\prime}$, we have $u \in S$. Therefore, $u, z \in$ $\mathscr{B}(w, S)$. But then, by the definition of $\psi_{w}(S)$, this means that $u^{\prime} \notin \psi_{w}(S)$. This contradiction shows that $\psi_{w}(S)$ is a cap. The formulae for $\left|\psi_{w}(S)\right|$ are clear.

For further developments we need some more definitions.
Definition 2.3. Let S be a cap in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$. A point, w, of $\Sigma \backslash S$ is dependable or a dependable point for S if there does not exist any other
point $x \in \Sigma \backslash S$ with $\mathscr{W}(w, S) \subseteq \mathscr{W}(x, S)$, i.e., if every point $x \in \Sigma \backslash S$ different from w satisfies $\mathscr{B}(w, S) \nexists \mathscr{B}(x, S)$.

In particular, if a point $w \in \Sigma \backslash S$ lies on exactly one secant line to S, then w is dependable. We emphasize this important special case as follows.

Definition 2.4. Let S be a cap in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$. A point, x, of Σ is a faithful point or a faithful point for S if x lies on a unique secant to S, i.e., if $|\mathscr{B}(x, S)|=2$.

Proposition 2.5. Let S be a complete cap in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ obtained by a sequence of Plotkin doublings beginning with a cap S^{\prime} in $\mathbb{P G}(n-t, 2)$, i.e., $S=\phi^{t}\left(S^{\prime}\right)$. Let x be a point of Σ which is not in S and is not a vertex of S. Then the number of secants to S through x is divisible by 2^{t}.

Proof. The proof is by induction on t. The result is trivial for $t=0$. Suppose we have proved the result for $t-1$ and let S be a cap with $S=\phi^{t}\left(S^{\prime}\right)$ in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ where $S_{1}:=\phi^{t-1}\left(S^{\prime}\right) \subset \Sigma_{1} \cong \mathbb{P} \mathbb{G}(n-1,2)$ and v is a vertex of S which is not contained in Σ_{1}. This means that we may consider S as having been obtained from S_{1} by Plotkin doubling using the vertex v. Note that we may also view S as having been obtained by doubling from v the cap $v+S_{1}$ contained in the hyperplane $v+\Sigma_{1}$. Let x be any point of $\Sigma \backslash S$ with x not a vertex of S. Replacing Σ_{1} by $v+\Sigma_{1}$ if necessary we may assume that $x \in \Sigma_{1}$. If x is a vertex of S_{1}, then $x+S_{1}=S_{1}$ and therefore $x+S=x+\left(S_{1} \sqcup\left(v+S_{1}\right)\right)=\left(x+S_{1}\right) \cup\left(v+x+S_{1}\right)=S_{1} \cup\left(v+S_{1}\right)=S$, contradicting our assumption that x is not a vertex of S.

Therefore x cannot be a vertex of S_{1} and thus by the induction hypothesis, the number of secants to S_{1} through x is $r\left(2^{t}\right)$ for some integer r.

Consider one of these secants to $S_{1},\{x, y, z\}$ where $y, z \in S_{1} \subset S$. The points $y^{\prime}:=y+v$ and $z^{\prime}=z+v$ lie in S. Then x lies on the two secants to $S,\{x, y, z\}$ and $\left\{x, y^{\prime}, z^{\prime}\right\}$. Thus each secant of S_{1} through x gives rise to two secants to S through x.

Conversely if $u^{\prime}, w^{\prime}, x$ is some secant line to S not entirely contained in Σ_{1} then we see that $u^{\prime}+v, w^{\prime}+v, x$ is a secant line to S_{1} which is contained in Σ_{1}. Thus every secant line to S through x arises in the above manner from a secant line to S_{1} through x.

Corollary 2.6. If $S=\phi\left(S_{1}\right)$ is a complete periodic cap in $\Sigma=\mathbb{P G}(n, 2)$ with $n \geqslant 2$ then there are no faithful points for S.

Proof. The corollary follows easily from the preceding theorem and the fact that for $n \geqslant 2$ every complete cap has at least 4 points.

For emphasis we mention a special case of the above corollary. Let S be a large complete cap in $\mathbb{P G}(n, 2)$. Then by the result of [DT] described above, $S=\phi^{t}\left(S^{\prime}\right)$ for some $t \geqslant 0$ and some cap S^{\prime} in $\mathbb{P} \mathbb{G}(n-t, 2)$ with $\left|S^{\prime}\right|=2^{n-t-1}+1$. Therefore if $S \subset \mathbb{P} \mathbb{G}(n, 2)$ is a large complete cap having a faithful point then $|S|=2^{n-1}+1$.

The following partial converse to the preceeding is proved in [BW, Theorem 13.8].

Proposition 2.7. If S is a complete cap in $\Sigma=\mathbb{P G}(n, 2)$ with $|S|=2^{n-1}+1$ then there exists a faithful point w for S.

We next consider how the black/white lift behaves when applied to complete caps.

Theorem 2.8. Let S be a complete cap in $\Sigma=\mathbb{P} \mathbb{G}(n, 2)$ where $n \geqslant 2$ with w a dependable point for S. Then the set $\psi_{w}(S)$ is a complete cap in $\widetilde{\Sigma}=\mathbb{P} \mathbb{G}(n+1,2)$.

Proof. We show that $\psi_{w}(S)$ is complete. Let x^{\prime} be a point of $\tilde{\Sigma}$ not contained in $\psi_{w}(S)$. If $x^{\prime} \in \Sigma$ then x^{\prime} lies on a secant to S so we may suppose that $x^{\prime} \notin \Sigma$. The point v lies on the secant line $\{v, y, y+v\}$ for every $y \in \mathscr{W}(w, S)$. Since w is dependable we must have $\mathscr{W}(w, S) \neq \varnothing$ and thus $x^{\prime} \neq v$.

Consider the point $x=v+x^{\prime} \in \Sigma$. If $x \in S$ then $x \in \mathscr{B}(w, S)$ since $x^{\prime} \notin \psi_{w}(S)$. But then x^{\prime} lies on the secant line to $\psi_{w}(S)$ given by $\left\{w^{\prime}, w+x, x^{\prime}\right\}$. Thus we may suppose that $x \notin S$. Now since w is dependable for S there exists $y \in \mathscr{W}(w, S) \backslash \mathscr{W}(x, S)$. Since $y \in \mathscr{W}(w, S)$, we have $y^{\prime}=y+v \in \psi_{w}(S)$. Since $y \notin \mathscr{W}(x, S)$, we have $y, x+y \in S$. Therefore x^{\prime} lies on the secant line $\left\{(y+x), y^{\prime}, x^{\prime}\right\}$ to $\psi_{w}(S)$.

Now we are able to give an interesting application of our new construction. It is clear that if A and B are two distinct complete caps then $|A \cap B|$ $\leqslant|A|-1$. Here we show that this bound is actually attained, even when A and B contain a large number of points. To see this take any maximal cap S having a faithful point w and consider the two complete caps $\phi(S)$ and $\psi_{w}(S)$. We have that $\left|\phi(S) \cap \psi_{w}(S)\right|=\left|\psi_{w}(S)\right|-1=|\phi(S)|-2$.

3. PROPERTIES OF THE BLACK/WHITE LIFT

In Proposition 2.7 we pointed out the existence of faithful points for certain important caps (the so-called critical caps-see [BW, DT]). Our construction provides many examples of complete caps having many faithful points.

Proposition 3.1. Let $S \subset \Sigma=\mathbb{P} \mathbb{G}(n, 2)$ be a complete cap with w a dependable point for S. Let $x \in \mathscr{B}(w, S)$ and write $x^{\prime}=v+x$ and $w^{\prime}=v+w$. Then $\mathscr{B}\left(x^{\prime}, \psi_{w}(S)\right)=\left\{w^{\prime}, w+x\right\}$. In other words, each point of $v+\mathscr{B}(w, S)$ is a faithful point of $\psi_{w}(S)$.

Proof. Since $x \in \mathscr{B}(w, S), x^{\prime} \notin \psi_{w}(S)$. Since $\psi_{w}(S)$ is a complete cap there exist two points $y, x^{\prime}+y \in \mathscr{B}\left(x^{\prime}, \psi_{w}(S)\right)$ with $y \in \Sigma$. Now $\{x, x+y, y\}$ is a line in Σ with $x, y \in S$. Thus, $x+y \notin S$ even though $(x+y)+v=x^{\prime}+y \in \psi_{w}(S)$. Therefore, $x+y=w$ and $x^{\prime}+y=w^{\prime}$ and thus $y=w^{\prime}+x^{\prime}=w+x$. In other words, every secant to $\psi_{w}(S)$ through x^{\prime} contains $w+x$, showing that there is only one secant, i.e., that x^{\prime} is a faithful point for $\psi_{w}(S)$.

Proposition 3.2. Let $S \subset \Sigma=\mathbb{P} G(n, 2)$ be a cap and take $x \in \Sigma \backslash S$. Then

$$
\begin{align*}
& \mathscr{W}\left(x, \psi_{w}(S)\right) \cap \Sigma=\mathscr{W}(x, S), \tag{1}\\
& \mathscr{B}\left(x, \psi_{w}(S)\right) \cap \Sigma=\mathscr{B}(x, S) \text { and } \\
& \mathscr{B}\left(w, \psi_{w}(S)\right)=\mathscr{B}(w, S) .
\end{align*}
$$

Proof. (1) and (2) are left to the reader. For (3), assume by way of contradiction that we have $y^{\prime}, z^{\prime}=y^{\prime}+w \in \mathscr{B}\left(w, \psi_{w}(S)\right) \backslash \Sigma$. Then both $y=y^{\prime}+v$ and $z=z^{\prime}+v$ must lie in $\mathscr{W}(w, S)$. But this cannot be because $y+z=w$.

Theorem 3.3. Let $S \subset \mathbb{P} \mathbb{G}(n, 2)$ be a cap with a dependable point w. Form the black/white lift of $S, \psi_{w}(S) \subset \mathbb{P} \mathbb{G}(n+1,2)$ using the apex v. Then w is a dependable point for $\psi_{w}(S)$.

Proof. We proceed by contradiction. Thus we assume that there exists a point $x^{\prime} \notin \psi_{w}(S)$ such that $\mathscr{W}\left(w, \psi_{w}(S)\right) \subseteq \mathscr{W}\left(x^{\prime}, \psi_{w}(S)\right)$. If $x^{\prime} \in \Sigma$ then applying Proposition $3.2(1)$ we have $\mathscr{W}(w, S) \subseteq \mathscr{W}\left(x^{\prime}, S\right)$ violating the dependability of w for S. Thus we must have $x^{\prime} \notin \Sigma$.

Now we show that $x^{\prime} \neq v$ as follows. Since w is dependable, there exists $y \in \mathscr{W}(w, S)$. Then y and $y^{\prime}=y+v$ both lie in $\psi_{w}(S)$ and thus $y \notin \mathscr{W}\left(v, \psi_{w}(S)\right)$. Therefore x^{\prime} cannot be v since $y \in \mathscr{W}\left(w, \psi_{w}(S)\right) \backslash \mathscr{W}\left(v, \psi_{w}(S)\right.$.

Suppose that $x:=x^{\prime}+v \in S$. Since $w^{\prime}:=w+v \in \mathscr{W}\left(w, \psi_{w}(S)\right) \subseteq$ $\mathscr{W}\left(x^{\prime}, \psi_{w}(S)\right), w^{\prime}+x^{\prime} \notin \psi_{w}(S)$. Thus $w+x \notin S$ which means that $x \in \mathscr{W}(w, S)$. Therefore $x^{\prime} \in \psi_{w}(S)$ by the definition of $\psi_{w}(S)$. This contradiction shows that $x \notin S$.

Finally we consider the case $x \notin S$. Since w is dependable for S, there exists a point $y \in \mathscr{W}(w, S) \backslash \mathscr{W}(x, S)$. Thus $y \in S$ and $y+x \in S$ but $y+w \notin S$. Therefore $y^{\prime}=y+v \in \psi_{w}(S)$ and $y^{\prime}+w=(y+v)+w \notin \psi_{w}(S)$. This means that $y^{\prime} \in \mathscr{W}\left(w, \psi_{w}(S)\right) \subseteq \mathscr{W}\left(x^{\prime}, \psi_{w}(S)\right)$. Therefore $y+x=y^{\prime}+x^{\prime} \notin \psi_{w}(S)$. But we have already shown that $y+x \in S$. This contradiction completes the proof.

4. SMALL COMPLETE CAPS

The structure of all large complete caps is now known (see [BW, DT]). However, this is not so for small complete caps. Indeed not even the cardinalities which occur are known. Here we sketch an example which illustrates how black/white lifting can be exploited to construct small complete caps. In [FHW, p. 294] a cap $C_{3} \subset \mathbb{P G}(5,2)$ of cardinality 12 is exhibited. As is easily verified, C_{3} can be extended to only one complete cap, $\mathscr{H} \subset \mathbb{P} \mathbb{G}(5,2)$ and this cap has cardinality 13 . The cap, \mathscr{H}, contains many faithful points. Let w denote one of these. We define new small complete caps via $\mathscr{H}_{5}:=\mathscr{H}$ and $\mathscr{H}_{i+1}:=\psi_{w}\left(\mathscr{H}_{i}\right)=\psi_{w}^{i-4}(\mathscr{H})$ for $i \geqslant 5$. Thus $\mathscr{H}_{n} \subset \mathbb{P G}(n, 2)$ with $\left|\mathscr{H}_{n}\right|=$ $3\left(2^{n-3}\right)+1$ and $|\mathbb{P G}(n, 2)|=2^{n+1}-1$ for $n \geqslant 5$. By Theorem 2.8 these new caps \mathscr{H}_{n} are all complete.

Note that in the above construction we could have instead chosen a different faithful or dependable point for each lift.

Furthermore there exist dependable points w_{0} for \mathscr{H} with $|\mathscr{B}(w, \mathscr{H})|=6$. In light of Theorem 3.3, using such a point w_{0} in the role of w in the above construction we obtain complete caps $\psi_{w_{0}}^{n}(\mathscr{H}) \subset \mathbb{P} \mathbb{G}(n, 2)$ with $\left|\psi_{w_{0}}^{n}(\mathscr{H})\right|$ $=2^{n-2}+5$.

REFERENCES

[BW] A. A. Bruen and D. L. Wehlau, Long binary linear codes and large caps in projective space, Des. Codes Cryptogr. 17 (1999), 37-60.
[DT] A. A. Davydov and L. M. Tombak, Quasiperfect linear binary codes with distance 4 and complete caps in projective geometry, Problems Inform. Transmission 25, No. 4 (1990), 265-275.
[FHW] J. Fugère, L. Haddad, and D. Wehlau, 5-Chromatic Steiner triple systems, J. Combin. Des. 2, No. 5 (1994), 287-299.

[^0]: ${ }^{1}$ Research partially supported by NSERC and ARP.

