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Abstract

A definition of factorial effects relying on the treatment structure defined by the hierarchies
is proposed. It applies to a non-uniform situation, where the number of levels of a nested factor
within the classes defined by each set of levels of its nesting factors may vary. A reparamet-
risation whose parameters belongs to these factorial effects is obtained. The development is
based on the notion of reference treatment design, a conceptual design that can be used as a
basis of comparison to assess the properties of any factorial design. © 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Consider a study to determine the influence on a resppofsvo crossed factors
A, B. We denote byl'y andTj their respective sets of levels. The 3edf feasible
treatments is the cartesian proddt= T4 x Tg. The expectation of the response
when treatmenta, b) € T is experimented is denoted bya, b) and is called the
effect of treatmenta, b). Marginal means of these treatment effects are usually in-
troduced. These means may be weighted and are denoted with the usual dot notation.
They are:
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the general mean: T(e,0) =2, > Wia,b)t(a,b),
the means by level of:  7(a,.) =), Wp(b)t(a, b),
the means by level aB: 7(.,b) =), Wa(a)t(a, b),

where the weight$ (a, b), Wa(a), Wp(b) satisfy
D Wa@=1, Y Wgb)=1 Wl b)=Wa@Wsb). (1)
a b

The use of a system of weighiiz (») independent o& to define the means by level
of A guarantees that the difference@:, .) — 7(a’, -) can be attributed to the factor
A and not to the factoB.

The general mean, main effects and interaction of factoesmid B are defined
from these means as indicated in Table 1.

In most cases, the weight®, (a) are chosen equal tg/[IT'4 |, the weightsW g (b)
equal to ¥|Tg| and the weightdV (a, b) are then all equal to/1T|. But it can be
natural in some circumstances to use unequal weights. Scheffe [15] gives such an
example. FactoA is the variety of cottonB is the location in California. If a single
variety is to be selected for all of California, it may be reasonable to weight the
different locations with weight$/z (b) proportional to the total acreages of cotton
in the corresponding regions.

In non-uniform cases, when the number of levels of a nested factor within the
classes defined by each set of levels of its nesting factors may vary, the weights
cannot generally be chosen equal.

Consider the following very simple example. There are three treatments, a control
and two other variants of a new treatment to be compared to the control. A possible
way to deal with that situation is to introduce a facfowhose levels are O for the
control, 1 for the new treatments, then a fadBanested withinA, with levels O for
the control, 1 and 2 for the two other treatments. We denotE4gndTp the set of
levels of the two factors, byap : Ts — T4 the mapping defined by 5(0) = 0,
da(1) = 1,¢045(2) = 1 which gives for each level @ the corresponding level of
A

The treatments can be represented by the fairs) € T4 x Tp which satisfy
¢ap(b) = a. We denote as previously Aythe set of these treatments anddgy, b)
the effect of treatmenit:, b) € T. Table 2 gives the corresponding means and factorial
effects. The weight$V (a, b), W4 (a), Wg(b) must satisfy in that hierarchical case
the following constraints:

Y Wal@y =1 Y Web)=1 Wa,b)=Ws@Ws®). (2)
¢ beg (@)

If a = ¢ap(b), we say thab is nested within aor more simply iswithin a. It
is natural to choose the weight®g (b) equal within each leved of A. This leads
to Wp(0) =1, Wp(l) = Wp(2) = 1/2. The weightsW, (a) may then be chosen
equal to ¥3 fora = 0 and 23 for a = 1, which makes théV(a, b) all equal to
1/3. Alternatively they may be chosen equal #2 1which givesw (0, 0) = 1/2 and
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Table 1
Definition of factorial effects in the two-way layout
General mean w="T(e,0)
Main effect ofa ag =7t(a,e¢) — i
Main effect ofb Bp=71(e,0) —
Interaction effect ofa, b) Yab = T(a,b) — (u+ ag + Bp)
Table 2
Definition of factorial effects in the two-way nested layout
General mean T(e,0) = Z(a,b)eT W(a, b)t(a, b)
Means by level oA (a,s) = Zbe@};m) Wpg(b)t(a, b)
General mean I ="1(e,e)
Main effect ofa ag =7t(a,e¢) —
Main effect ofb within a = ¢4 (b) Bap = t(a,b) — t(a, )

W(l,1) = W(, 2) = 1/4. In that latter case, the control is given twice the weight
of the two other treatments in the general mean. Of course any other intermediate
choice is possible.

Itis in general not very difficult to define similarly the factorial effects of interest
in a given more complex situation involving both nesting and crossing. However
general softwares must be able to deal with any system of weights and any kind of
treatment structure. There is thus a need to have a clear and general process to define
the factorial effects from this structure even when it is not uniform.

1.1. Reference design

Such a general process has been clearly described for orthogonal designs [24].
Whatever nature, orthogonal or not, has the actual design under consideration, this
process can be used to define the factorial effects provided tHeddetll feasible
treatments, with suitable weight functigviand mode¥, itself defines an orthogonal
design. The latter is called thieference desigrit is a conceptual one, used to define
factorial effects, study the aliasing or assess, by comparison with it, the quality of
any actual design under investigation.

In the first example with two crossed factors, the orthogonality of the reference
designT = T4 x Tp follows from condition (1) imposed to the weights. More gen-
erally, assume there arecrossed factors with sets of levdls, ..., 7,, and that the
weight functionWis a product of marginal weights:

W(tL. ... ty) = Wit) -+ Wa(ta) with Y~ W;(5) = 1foralli. (3)

tieT;
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Let/ ={1,...,n} and for each subsétof I, denote byp; the canonical projection
(t))ier — (t)iey Of indexJ. Let then& be the family of subsets df containing,
besides the empty set associated with the constant factor and thé}sets, {n}
associated with the main effects, all the subsets associated with non-zero interactions.
The family &, possibly completed in a suitable way, can be assumed to be closed for
the intersection. Then the triplel,(W, &) defines a reference orthogonal design and
thus induces a decomposition into meaningful factorial effects.

Note that this kind of reference design can also be used when there are nested
factors, provided each factor can be identified with a canonical projegjiolm that
case, ifJis a subset i’ andi € J, any factolj nesting the factormust also belong
to J. Therefore ifi is nested within some other factprthe singletor{i} does not
pertain toé.

That kind of reference design was used to study aliased effects and derive prin-
cipal factor efficiencies in several contexts [8,10,12]. The corresponding block struc-
ture, formed by the partitions induced drby the factors, has been studied under
the nameposet block structurgt,6]. If the weights are equal, the associated factorial
effects are those which are generally taken into account by variance analysis software
in the uniform case. The associated linear functions of the parameters are known,
when they are estimable, as the estimable functions of type 111 [16,18].

However, the structure associated with this kind of reference design is necessarily
uniform. Section 4 shows how an orthogonal reference design can be deduced from
the knowledge of nesting relations in a very general, possibly non-uniform, con-
text. Section 5 gives then a process leading to a reparametrisation whose parameters
belongs to the factorial effects induced by this orthogonal reference design.

The reference design can also be used in variance analysis to provide a rigorous
and easy definition of adjusted means, hence of most interesting non-standard linear
functions of the parameters (Section 6).

To motivate this rather technical development on non-uniform designs, we first
introduce in Section 2 some considerations on the different strategies nowadays used
in ANOVA.

In Section 3, we then recall the main notions needed to define and check design
orthogonality. The notations take the weight function into account.

2. Factorial effects, tests of hypothese in ANOVA

The definition of factorial effects and associated sum of squares in unbalanced
design is the matter of a long controversy, which clearly appears in the article with
discussion [14] and is well summed up in [17]. It is still alive today [3,9,19].

As written in [17], the linear modelers can be divided into two camps, the R-
notationers and the *Rhotationers. To test a factorial effect, main effect or inter-
action, the R-notationers use the reduction R of the residual sum of square due to
the introduction of this factorial effect in the model. They do not reparameterise the
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model nor introduce constraints on the parameters. Hence to test a factorial effect,
they have to exclude other effects imbedding it from the model. For instandg, let

B, C be three factors such th@tis nested irA, andB is crossed withA andC. If the

model isA + B+ AB + AC + ABC, R-notationers usually compute td sum

of square in the model witho#BC, the A sum of squares in the model withodiB,

AC, ABCthat is in the additive moded + B.

On the contrary, Rnotationers define and test all factorial effects in the same
unique whole model, using marginal means as in Table 1 to define factorial effects
imbedded in other effects of the model. To do so, they have to introduce a system
of weights satisfying relations like those in (1) and (2), or the equivalent system of
constraints on the parameters.

In uniform situations, a natural uniquely defined system is the uniform weighting
which is generally the only one adopted by ANOVA softwares. We show in Sec-
tion 2.2 that this uniform weighting can be completely inadequate to analyse some
very useful designs even in a case including only crossed factors.

In non-uniform situations with nested factors, the example in the introduction
shows that things are far more complicated. Section 2.3 considers two other simple
examples with non-uniform data. Analyses of variance performed on these examples
give results which vary from one software to the other in an incomprehensible man-
ner. The fact had already been noticed by Searle [19] who concluded that it is better
not to use the Rapproach (i.e. type Ill sum of squares) until things are clarified.

This article clarifies the situation by showing how to define a suitable system of
weights in every situation. To study the properties of the associated reparametrisation
in the more general case, we need some notions of algebra which may appear quite
sophisticated for the problem considered. But the results are in fact very simple
and allow to propose a clear and coherent way to perform ANOVA in non-uniform
situations.

However, to prompt R-practitioners to read what follows, we first show in Sec-
tion 2.1 all the difficulties raised by the R-approach even in the simple case of an
unbalanced two-way layout.

2.1. Difficulties with the R-approach

At first sight, the R-approach may appear simpler than therie because it does
not require the somewhat subjective choice of a system of weights to select which
sums of squares and associated contrasts are inspected. However, in the R-approach,
the expectation within the whole model of the contrasts or sum of square associated
with a non-maximal factorial effect is design dependent. This generally makes these
contrasts or sum of square uneasy to interpret, and forbids comparison between
homologous effects coming from designs with different numbers of replications.

To illustrate this point, let us consider again a study with one resppasd two
crossed factorg, B. We assume thak andB have two levels coded 1 and 1 and
that the number of replications of the treatments is as given in Table 3. There is only
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Table 3
An unbalanced design with two
two-levels factors

B
-1 1
A -1 1 m
1 m m

one observation for treatmeft1, —1) andm for each of the other treatments. As
mincreases, the design is increasingly non-orthogonal and unbalanced. Of course no
one would use such a design whens 1, but this simple situation makes it possible
to understand what can occur in a much more less trivial way when the number of
factors exceeds 2.

We denote byy,,; the jth response for treatmeii, b), where(a, b) is one of
the four treatments—1, —1), (-1, 1), (1, —1), (1, 1), and lett(a, b) = E(yap;))-
The factorial effects are defined as in Table 1, with constant welgjlies b) = 1/4.
Since there are only two levels for each factor, it is easy to checkothat a«,
By = bB, vap = aby where

e= @A D+1A -1 -1(-L D —1(-1,-1D) = 3(r(L,+) — 7(-1,4),
B=3c@LD -1l -D+1(-1D-1(-1-1) =3, D -1, ~1), (4
y=320@LD -1 - —1(-1 1D +1(-1 -1).

The equalityy,, = t(a, b) — (u + oy + Bp) inthe last row of Table 1 can be written
as

t(a,b) = u + aa + b + aby. (5)
It leads to the linear model
E(y) = X0 = X101 + Xoy,

wherey is the vector of 3: + 1 responses) = (u, «, B, ), 01 = (1, o, )’ andX

is the matrix in Table 4 which is decomposed for further use into the submakices
including the three columns associated withe, 8 and the one column matriX,
associated withy.

In the R-strategyg is estimated by = (X’X)~1X’y (we use a tilde to denote
an R estimate). It is equivalent to estimating eadla, ») by the meary,;, of the
responses to treatmeft, ») and then to get the estimatesafj, y by replacing
eachr (a, b) in (4) by its estimate,,,. Thus

a = zll(yl,l,. +YL-1e = Y-11e — Y-1,-1.),
y = %1()’1,1,- —V1-1.—Y-11.+Y-1.-1),
Users of the R-strategy estimate= (i, o, )’ only in the model withy = 0,

thatis byd; = (X} X1)~1X,y. The matrix(X} X1) ! is given in Table 4. Using it, it
is easy to check that the estimatenoih this context is

(6)
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Table 4
MatricesX, X1, X'X, (X’le)_1 for the example of Table 3
X
3mn+1 m—-1 m-1 -m+1
X X
L 2 m—1 3n+1 —-m+1 m—-1
X'X =
m—1 —-m+1 3m+1 m-1
wo oo B 4
-1 1 -m+1 m—-1 m-1 3m+1
1 -1 1 -1
Imrows m+1 __m-1 __m=1
2m(m+3) Am(m+3) Am(m+3)
1 1 -1 1
1 -1 +1 -1
I"”OWS XXD "= | ~Zuixd  ntd Inontd
1 1 1 -1 __m-1 m—1 m+1
Imrows Am(m+3)  dm(m+3) 2m(m+3)
. 1 m+1
¢=——|—7—011.—y-11.) +r-1.—y-1,-1.) |- 7
w3l 2 y y y (7)

The estimate of is similar. The variances @f anda can be deduced from those
of the means. Under the usual assumption¥ae o2l, we have since_1 1., =
y-1,-1
o2
var(y-1,-1.) =0 varly11.) =Vary-11.) = Va1, = —,

hence

. m+1 2 5 o2 3
var(&) Ty 3)0 . vana) 6 ( + m) (8)
If y =0, botha and@ are unbiased estimates @fand (8) then shows that is a

better estimate af thana. Note however that the ratio

var@)  1(m+3)?

var@) 8 m+1
increases withm, but remains smaller than 24f < 10 so that the superiority of the
R-estimate over the *Rone becomes decisive for= 0 only for very large values
of m.

But in such an experiment, one can never assyme0. Even if the test of the
interaction failed to reject this hypothesis, this does not meamthat), but only
thaty is too small to detect if it is greater or smaller than 0. To take this into account,
there are two possible attitudes. R

(1) Choose the R-approach, but carefully look at the expectatiénaafd 8 for
the interpretation. In the example, the expectatiof:of
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B 1 m+1
@ = [ >
gives, wherm is large, nearly all the weight to th&-effect forb = 1. Note that if

the number of replications in celld, 1) and (—1, —1) were interchanged, tha-

effect would on the contrary give all the weight to lebe: —1. Thus ify # 0, the
definition of theA-effect strongly depends on the experiment. Provided one is aware
of that and does not try to compare estimaiezoming from different experiments,

it may seem sensible to adapt in this way the definition of&tedfect to the data.

But continuation of this logic, which selects the contrasts examined according to
the data to make the better use of the available information, should also lead to the
examination of theA-effect in the model excluding as well asy. In this model,
t(a,b) = u + aa, « is estimated by

a1 (yl,l,. +yL-1.  my-i1.+ y—1,—1,.>

2 2 m+1
with a variance

o171 1 )

var@) = 7 <2m + m+1)0 ’

which is even lower than vé&i). The expectation of thig@ under the whole model
becomes even more difficult to interpret as it is a function of the three parameters of
model (5) which can be non-zero even whgeis the only non-zero parameter.

Such an approach using nested models to explore the data has thus the advantage
of adapting itself to the data to make the contrasts examined more precise. But it leads
to contrasts that are data dependent, difficult to interpret, the more so as the model
becomes more complex, involving more factors, more interactions and possibly a
mixture of qualitative and quantitative factors. This approach should therefore be
avoided unless a strong non-orthogonality induces a drastic increase of variance on
some parameters. An extreme case is when the coldfasd X, associated with
two parameters andn are equalXs = X,. Let thenXo be the submatrix made
up with the other columns of andép the corresponding vector of parameters. The
model is

E(y) = Xobo + X586 + Xyn = Xotho + Xs(8 + 1).

In the whole model§ and, cannot be estimated. But ¥, is suppressed from
the model andX; is not in the space generated By, § + n can be estimated as
the parameter associated wikfy. If § andn pertain to single factorial effects, the
sum cannot generally be given any simple interpretation. But if its estimate has an
important absolute value, it indicates that eithef  or both have important values.
This can prompt the experimenter to go on with the experimentation to get separate
estimates of them. In some cases, consideration making use of past knowledge or of
the other estimates iy makes it possible to decide which&br 6 accounts for the
importance of the sum without further information.

(D —r(-L D)+ (rL -1 — z(-1, —1))} ,
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It may therefore be appropriate when examining a factorial effect to drop the
terms that are highly non-orthogonal with it in the model. But they should be the only
terms dropped, because dropping terms makes the contrasts examined depend on the
hazard of the data and therefore complicates the interpretation. In particular, there is
generally no reason while examining some effects to drop all the terms imbedding it.

A final argument against the systematic use of R-approach is the impossibility to
compare with it data coming from different designs. This approach is therefore of
no use for the design of experiment and never appears in the literature on factorial
designs.

(2) The second attitude is to adopt the R-approach as a way to get good biased
estimates of the parameters in model (5). Whega 0, the R-approach leads to a
better estimate of than the R-approach. So it can be hoped that wheis not
significantly different from 0, the R-estimadehas a better MSE (mean square error)
than the R estimatex. Unfortunately, we show below that this is wrong in many
contexts.

The estimate is by construction unbiased and it therefore follows from (8) that

- - o2 3
MSE(a) = var(a) = — <1+ E) .

16
The bias foid; is (X/lxl)—lx/lxzy. Thea coordinate of this vector is:
. m—1

Bias(a) = ——y.

(@) mr3’

So
. m+1 (m—1)% /y\2
MSE(&) = o2 r
@ =0 [2m(m+3)+(m+3)2 (a)

The ratio of these two MSEs is
MSE (&) _ 8m+1)  16m(m — 1) (y)z
MSE (@) (m + 3)? (m+3)3

o
Y\ 2
=vb ()
where
8(m +1) 16m(m — 1)2
T 32 T T m+3)3
The R-estimate is better than the &e ifv + b(y /o)? < 1, that is,

1— 3
MSE(&) < MSE@) <= (y/o)i< —— = %

Thus wherny /o is greater than

S =+ (m+3)/16m, (9)
the R-estimatex is better than the R-estimade Table 5 gives the threshoRifor

eachm < 10. A question which naturally arises is then: what is the probability to
reject the hypothesig = 0 of no interaction whew /o is equal toS?
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The estimate of in the interactive model is given by (6). Its variance is

var(y) = %62 = ko?,
where
m—+3
k= ——. 10
1om (10)
The testF of the hypothesig = 0 is thus
~2 k
o

wheres2 denotes the residual variance, computed vlith= 3(m — 1) degrees of
freedom. Under the usual normality assumptions, we have

y y
Yo (),
Vko (x/%a )

5% i
o2 M
and thus
~2,, 2 2
y</ko 4
F="——-+~F —, 11
G2/c2 LM (kaz) (11)

where F1 p (1) denotes the non-centrdl-distribution with 1 andM degrees of
freedom and non-centrality parameker

If y/o is equal to the threshol8 given by (9), it follows from (10) that the
non-centrality parameter on the right-hand side of (11) is 1. The probalilitp
reject the hypothesig = 0 at level 5% with this non-centrality parameter is given in
Table 5. We also give in this table the probability to reject the hypothesis = 0
at the 5% level ify /o is 10 times the threshol (the non-centrality parameter is
then equal to 10). As this table shows, there are a wide range of valyées afhere
the estimater of the A-effect in the model with interaction has a better MSE than

the estimaté in the additive model although there is very little chance to detect the

interaction.
Indeed, even if the interaction is found significantly different from 0, looking at
the meam-effecta defined in (4) still makes sense. If thiseffect is found much

Table 5
Comparison of R and Restimates

m

2 3 4 5 6 7 8 9 10
S 0.4 0.35 0.33 0.32 0.31 0.3 0.29 0.29 0.29
Py 0.11 0.14 0.15 0.15 0.16 0.16 0.16 0.16 0.16

P1o 0.57 0.75 0.8 0.83 0.84 0.85 0.85 0.86 0.86
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larger than the interaction, then it can be sensible from a practical point of view to
neglect the interaction even if it is statistically significant. On the contrary, if this
A-effect is of the same order or even smaller than the interaction, then this indicates
that the two factors cannot be considered separately and that the four means have to
be examined and compared as if they were the levels of the same four-level factor.

2.2. An example with crossed factors and unequal weights

As already mentioned, though in most uniform circumstances it is natural to use
equal weights to define marginal means, unequal weights may sometimes be more
appropriate or even essential. Kobilinsky [11] gives an example where choosing the
classical uniform weights makes the results very difficult to use.

The example comes from a study on the influence of cheese making conditions
on the texture and quality of the Arzda-Ulloa cheese, a traditional Galician cheese
[1]. In this study, six 2-level and one 3-level process factors are taken into account
in a design with 32 units. The units are structured in eight blocks of size 4 (factor
corresponding to the sets of four cheeses made the same day with the same milk. The
3-level factor, denoted b&, is the salting conditions: the salt can be added either in
the milk, or in the curd, or in the brine which receives the fresh cheese.

To find a suitable design, it can be first done as if the salting conditions — factor
— had four levels defined by two pseudofactdrs Ao. It is easy to find the two
possible sets of defining relations ensuring resolution IV and then, by backtrack
search, to find for each of these two sets three 2-level block pseudofagtges
J3 defining a system of eight blocks orthogonal to main effects. Table 6 gives the
definitions and properties of the two corresponding regular fraction.

Table 6
The two regular 4x 26/8 fractions of resolution 4

Definition First fraction Second fraction

E=A{BCD, F=A2BC, G=A2BD E=A1BC, F =A1BD, G=A1CD
Blocks j1=A2B, jo=AC, jg=ApD j1=A1B, jo=A1C, jz=A1D
Whole set of A1BEFG,A1BCDE,A1A2DEF, A1BCE,A1BDF,A1CDG,

defining contrasts

A1A2CEG, AyBDG, ApBCF,CDFG

A1EFG,BCFG,BDEG,CDEF

Aliased
factorial effects

([j2l; A2C; BF),
([j3l; A2D; BG),
([j1j2j3l; A1A2E; DF; CG),
([j1j2]; A2F; BC),

([j1]: CF; DG; A2B),
(A1A42C; EG), (A1A2D; EF),
(CE; A1A2G), (DE; A1A2F)

([j2/j3l; CD; FG),

([j1j3); A2G; BD),

([jal, CG, A1 D, BF),
([j1j3), EG, A1F, BD),
([j1], CE, DF, A1B),
([j2j3), EF, A1G,CD),
([j2], A1C, DG, BE),
(Lj1j2l, FG, A1E, BC),
([j1j2j3l, CF, DE, BG)

Unaliased
factorial effects

A1, Ap, A1A2, B,C, D, E, F, G,
A1B,A1C, A1D, A1E, AL F,
A1G, A2E, A1A»B, BE

Aq1,Ap, A1A2, B,C,D,E, F,G,
Ao2B, AoC, AaD, AoE, AoF, AsG,
A1A2B, A1A2C, A1ALD,
A1A2E, A1AoF, A1A2G

Residual degrees
of freedom

2

3
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To give three instead of four levels to factdr the levels(—1, 1) and (1, —1)
defined byAj, A2 are collapsed, in the way defined by Addelman [2], to one unique
level which therefore appears twice as often as the two other levels, that is 16 times
instead of 8. It is easy to derive the properties of the resulting design from those
of the initial regular fraction and to show that the collapsing of levels preserves the
resolution 1V, provided one gives to the level resulting from the collapse twice the
weight of the other two levels when defining the main effects and interactions.

It was the second fraction which was in this case selected because it leads after
the collapse to a fraction which can estimate, besides main effects, all two-factor
interactions involvingA in the model including all two-factor interactions and the
block effects. It turns out that the corresponding design is of resolution IV even
if the levels ofA are uniformly weighted. But this is not true of the first fraction.

For this fraction, given explicitly in Table 7, Table 8 gives the linear estimable
combination of parameters for two reparametrisations. The weighted one uses the
adequate unequal weights preserving the resolution 1V, while the classical one based
on uniform weights loses it. In this second parametrisation, some main effects are
confounded with two factor interactions which makes the results extremely difficult
to interpret.

2.3. Analysis of variance of non-uniform data: the puzzle

Known softwares offering anRapproach only propose equal weights. They are
thus unable to give a proper analysis for resolution IV designs as the one mentioned
in the previous section. But they can correctly analyse most cases where factors are
either crossed or nested, provided nesting relationshipraferm Following Speed
and Bailey [21], we say that a factBrnested inA is uniformly nested if the number
of levels ofB is the same within each of the classes defined by the levéls of

Whenever there are non-uniform nestings, most softwares still produce a result,
but the results may differ from one software to another.

Consider again the situation with three factors used to illustratdkthetation
in the beginning of Section 2. Assume thhaandB have two levels and th& has
three levels forA = 1, but only two forA = 2. FactorB is completely crossed with
C andA. The design is given on the leftside of Table 9 together with a simulated
observed variatg. Some treatments have been repeated twice in order to get residual
degrees of freedom. Table 10 gives the sum of squares obtained with the model
A+ B+ AB + AC + ABC by different softwares. For three of these softwares, the
corresponding programs are given in Table 11.

Most results are identical, except for the main effe@®diVith the software Splus,
there are some differences between the UNIX version 3.2 and the Windows version
4.5 that were used. In the UNIX version, the function dropl.aov was used to drop
terms from the model in the hope of getting sontetype sums of squares. But this
version of Splus [22] does not cope with non-uniformity and considersxisabuld
have a third level within level 2 dA. It therefore adds two supplementary columnsin
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the X matrix of the linear model and produces the diagnostic that 2 out of 12 effects
are not estimable. It consequently produces a lot of zeros in the analysis of variance
“with dropl.aov”. The Windows version allows us to obtain the same type Ill sums

of squares as in SAS with the statement “summary(result, ssType = 3)” applied to the
result of “aov”. The SPSS windows version [23] also provides the type Il sums of
squares of SAS in a standard way. However Drton [9] found with the unique sum of
squares of SPSS release 6.1 and the same data a different result which we reported
on the rightside of Table 10. SPSS warns the user that “UNIQUE sum of squares
are obtained assuming the redundant effects (possibly caused by missing cells) are
actually null” and that “The hypothesis tested may not be the hypothesis of interest”.

Table 7
The first fraction defined in Table 6
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Table 8
Aliased effects with two different parametrisations
Weighted parametrisation Classical parametrisation
A A
A? A?
B B
c C+EGJ3
D D+ E.F/3
E E+(C.G+D.F+jH3
F F+ D.E/3
G G+C.E/3
A.B A.B
A2.B A2.B
AC A.C
A2C+EG A2.C+2J2EG/3
A.D A.D
A2.D+E.F A2.D+2J2E.F/3
A.E A.E
A2E+C.G+D.F+j’ A2 E+2J2(C.G+D.F+;7)/3
AF AF
A2F+D.E A2 F+2J2D.E/3
A.G A.G
A2.G+C.E A2.G +2J2C.E/3
B.C+ j* B.C+j*
B.D + j° B.D + j°
B.E B.E
B.F + j2 B.F + j?
B.G+j3 B.G+ 3
C.D+F.G+j® C.D+F.G+ 0
CF+DG+j CF+DG+j

Residual degrees of freedom: 4

Itis also possible using the “difference contrasts” in SPSS to get the sums of squares
corresponding to the weight®1 [9].

Since there is a terrABCin the model, marginal means can be computed from
the cell means which are given on the rightside of Table 9. The marginal meds for
are given at the bottom of the table. There are two natural ways to compute them and
hence the main effect fd. In the first way, equal weights are given to the five levels
of factorC (weightW>). This gives the unequal weightg5 2/5 to the levels 1, 2 of
A, respectively. In the second way, equal weight® are given to the two levels of
A and consequently unequal weightg§11/6, 1/6, 1/4, 1/4) to the five levels o€
(weightW1). The third weightW,, introduced is the one leading to the SAS type IlI
mean squares in that case.

It is easy to deduce the mean squareBdrom these marginal meamsg1, m g2
and from the number of replicationg,. in the cells:
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(mp1 — mp2)?
2 (L L 1)’
Za,c Wac (ralc + raZc)

For instance ifWw = W1, the denominator is:

MS(B) =

0.267361111% (1/6)%(1 + 1) + (1/6)%(0.5+ 0.5) + (1/6)%(0.5+ 0.5)
+ (1/4%(0.5+ 0.5) + (1/4)%(0.5+ 1)

and thus

MS(B) = (235 — 62/3)2/0.267361111% 30.02597403

The SAS type Ill sums of squares are defined [17] by an orthogonalisation process
in the dual of the parameter space, where the veéctdiparameters is defined in the
usual way:

0'=(u, a1, a2, B1, B2, af11, aB12, af21, af22, ay11, AY12, AY13, XY21, AY22,
afyi11, aByii12, aByiis, afyi21, afyize, afyi2s afy211, afy212,
afy221, afy222).

It has dimension 24 and orthogonality is with respect to the usual scalar product of
R?*. In the non-uniform case, it seems difficult to give a sense to this scalar product,

Table 9
Example withC nested inA andB crossed withA andC
Design
A C B vy
1 1 1 54
1 1 2 14 Cell means an@-marginal means
1 2 1 21 B
1 2 1 17 1 2
1 2 2 36 Wy Wp Wy A C | mean nborep mean nb.rep
1 2 2 28 1/6 1/5 p/3 1 1|54 1) 14 (€]
1 3 1 24 1/6 1/5 p/3 - 2|19 2 32 (@)
1 3 1 25 1/6  1/5 p/3 - 3245 (2 165 (2
1 3 2 18 1/4 15 @A-p)/2 2 1| 145 (2 23 2
1 3 2 15 1/4 1/5 @A-p)J/2 - 2| 145 (2 18 1)
2 1 1 17 Marginal means foivq 235 62/3
2 1 1 12 Marginal means foiV, 253 207
2 1 2 2 Marginal means fo#V,,, 24,029 20676
2 1 2 25 p = 0.529411764%
2 2 1 15
2 2 1 14
2 2 2 18

8SAS type Ill mean square foB can be computed from th8-means obtained with the weight,,
wherep = 0.5294117647
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Table 10

Mean squares for example of Table 9
Factorial d.f2 Mean squares
effect WeightsW1 WeightsW,  SAStype lll  Splus UNIX MINITAB SPSS 6.1
A 1 314.29 314.29 314.29 0 314.29 223.21
B 1 30.03 81.39 42.75 0 30.03 34.30
A.B 1 291.84 291.84 291.84 0 291.84 118.30
A.C 3 84.53 84.53 84.53 84.53 84.53 84.53
A.B.C 3 317.67 317.67 317.67 317.67 317.67 317.67

ad.f.: degrees of freedom.

hence to the mean squares thus defined. In the example however, it can easily be
seen that th& type-11l sum of squares is associated with Bieffect computed with
the weightW,, given in Table 9. Note that the means computed with the LSMEANS
statement are different: they are in fact Bxneans associated with the weight.
So there is no coherence between sum of squares and adjusted means in that case.
In Splus under Windows, we unsuccessfully tried to get the adjusted means by
asking for them in the menu: StatistissAnalysis of variance- fixed effects. This
produced the following diagnostic: “Error in model.meansxdmeétimable.functions
=F): computataions failed because of tefo in %) : b”.
The adjusted mean squares in MINITAB [13] are those obtained with the weights
W1 giving the same weight to the two levelsAf
The computation of sums of squares in this example relies on the definition of
the weightsW,, Wg, W¢ associated with the three factors. It seems natural in this
context to give the same weight to the two leveldBoand similarly to give equal
weights to all the levels of within some level ofA, that is to take
Ws(l) = Wy (2) = 1/2,
We(l,1) = We(l,2) = We(,3) =1/3,
We(2,1) = We(2,2) =1/2,
whereW¢ (a, ¢) is the weight associated to the lewadf C within the levela of the
nesting factoA.
For the factorA, we have introduced two natural choices:
Wa(l) = Wa(2) = 1/2,
Wa(l) =3/5 Wa(2) =2/5.
Let 7 be a term in the model. The weights on which the corresponding factorial
effect depends are easy to find (see Proposition 5.4). They are the weights associated
to factors which appear in a term includigg but not in.7” itself.
In the example, the factorial effecés AB, AC, ABCdo not depend ofiV4 since
A appears in their definition. Bl is dependent o4 sinceA appears in the term
ABwhich includesB.
Another small example with four factofs B, C, D and the hierarchies

A>2B, C=2D
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Table 11
Programs used to compute the MS in Table 10

255

SAS

data d;
infile ‘nonunifl.don’;
input A C B V;

run;
proc glm data=d;
class A C B;

model V=A C(A) A*B B C*B(A)/ ss3 e3;
lsmeans A C(A) A*B B C*B(A);
run;

Splus

d<-read.table("nonunifl.don", header=T)
d$a<-factor (dsa)

dsb<-factor (dsSb)

dsc<-factor (dsc)
result<-aov(v~a/c*b,d)
dropl.aov(result, scope=resultScall)

summary (result, ssType=3) (Windows version only)
SPSS (release 6.1)
MANOVA

y BY a(l 2) c(1 3) b(1 2)

/NOPRINT PARAM(ESTIM)

/METHOD=UNIQUE

/ERROR WITHIN

/DESIGN = a, b, ¢ WITHIN a, a BY b, b BY ¢ WITHIN a .

is detailed in Table 12. As in Table 10, each column of mean squares corresponds
either to a given system of weight, or to the output of a particular software. We have

introduced four systems of weight given besides the data. The fourtfiVaneas
selected because it corresponds to some of the SAS type Ill sum of squares.
Note that the systems of weights only differ by the weights associatedveittd

C. For the nested factoBandD, the standard natural weights have been selected in

each case, that is
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Table 12
Example with four factors satisfying > B, C > D
Design
A B C D \4
1 1 1 1 33
1 1 2 2 66
1 1 2 2 75
; ; i i 122 System of weights
> 2 1 1 89 Wad) Wa@ We@) Wc(@
5 2 2 2 114 Wy 1/2 1/2 1/2 1/2
5 2 2 3 179 Wo 1/3 2/3 1/2 1/2
5 9 o2 3 155 W3 1/3 2/3 1/3 2/3
5 3 1 1 119 Wy 0.45 055 045 055
2 3 1 1 119
2 3 2 2 149
2 3 2 2 145
2 3 2 3 19
2 3 2 3 204
Factorial | ddl |Mean Squares
effect Wy Wo W3 Wy | SAStIII | MINITAB
A 1 79.18 79.18 8893 83.80 83.80 79.18
Cc 1 9529 | 12115 | 12115 | 10416 10416 95.29
A.C 1 0.62 0.62 0.62 0.62 0.62 0.62
A.B 1 36.96 36.96 36.11 37.59 36.96 36.96
C.D 1 67.89 77.01 77.01 72.03 67.89 67.89
A.C.D 1 0.64 0.64 0.64 0.64 0.64 0.64
A.B.C 1 0.52 0.52 0.52 0.52 0.52 0.52

Wp(1,1) =1, Wpg(2,2)=Wp(2,3) =1/2,
Wp(1,1) =1 Wp(2,2) =Wp(2,3)=1/2

The model is
&={A,C,AC,AB,CD, ACD, ABC}.

It does not include the interactidkBCD betweerB andD.

The rule previously mentioned shows ti#aE, ABCandACD are independent of
the weightsWy4, W¢ while A, AB are depending oV andC, CD on W4. This
explains the difference between the columns of mean squares. In that example, the
SAS type Il sums of squares féy, C correspond to the system of weight, and
those forAB, CD to the system of weighi?/1. As in the preceding example, the sums
of squares for MINITAB correspond to the first systéva of weights.
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3. Orthogonal design

Let T be a set of treatments. A factéron T can be identified with a mapping
¢4 : T — T4 giving for each treatment its corresponding level. The rahgef ¢ 4
is the set of levels of the factdx.

If AandB are factors o, we adopt the conventionthat> B if A nestsB, that
is if for everyt,sin T

(1) = ¢p(s) = da(t) = Pals),

or equivalently if there exists a mappiggd p : Tp — T4 such thatps = ¢pap o Pp.
If a = ¢p4p (D) is then the level oA corresponding to a given levblof B, a is said
tonesthb

The factorsA andB are said to be equivalent, and we write~ B, if A < B and
B < A. This occurs iff they induce the same partitionlofThe partition induced by
a factorA is formed by the reciprocal imagagl(a) of its levelsain Tj,.

With each factoA and corresponding mappig, from T into T, is associated
the contravariantlinear mappingg? : x4 — x4 o ¢4 from R™ into RT and its
imagesSs = ¢, ([RiTA), subspace of functions frominto R which are constant on

each clasa>;1(a). The correspondence — S4 is such thaiA nestsB (A > B) iff

Sa C Sp, andA andB are equivalent iffS4, = Sp. Moreover, any two factora and

B have a supremum v B which is the smaller factor nesting both of them and
Save =S4 N Sp.

A model is a family& of factors.

Assume the experimenter wishes to studgrimary factors, numbered 1, ..n,
For eachi inthe setl = {1, ..., n} of these factors, we denote lyits set of levels
and byg, the corresponding mapping frofvinto 7;. The model generally includes
the constant factor, the primary factors and pineduct factorsassociated with the
non-zero interactions.

If J C I isthe subset of primary factors defining such an interaction, the associ-
ated product factor, denoted by, is defined by

Gs() = (9i(1))icy- (12)

It coincides with the product mapping = [[,;.; ¢:; and is for this reason called the
product of the family of factorse;);cs. Its set of levelsT’; is a subset of [, T;.
We shall generally refer to it athe factor J though it will sometimes be more
convenient to denote i to distinguish it from the subset. For instance we shall
write sometime®; < ¢k ratherthar/ < K.

WhenJis reduced to a single eleméntve assume that; = 7; and identifyg,
with ¢;.

In what follows, adesignis a triplet (T, W, &) whereT is a set of treatment¥y a
weight function oril andé a model. The weight functiow is a function fromT into
the setR™ of strictly positive real numbers satisfying,., W () = 1. It induces
the following scalar product oR” :
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(r,2) =D Wnx@)z(). (13)
teT
Orthogonality being defined with respect to this scalar product, two fastarsl
B are said to bgeometrically orthogonaf the orthogonal supplementary subspaces
of S4 N Sp in S4 andSp respectively are orthogonal:

SaN(SaNSp)t L SgN(SanSp)t. (14)

Definition 3.1 (Orthogonal desigh The designT, W, &) is orthogonal if:
(i) the factors ing’ are surjective, non-equivalent and geometrically orthogonal,
(i) & is closed under the formation of maxima.

Let (T, W,&) be an orthogonal design. Férin &, defineS, as the subspace of
vectors inS4 orthogonal to each subspagg for B > A. Then it is clear from their
definition that the subspacés, A € &, are orthogonal and that for ea&hS is the
direct sum of the subspac§g for B > A.

In fact the models is used for two things. First to define the subspgoé R’ to
which the vector of treatment effects must belong: itis the sum of$hdor A € &.
Then to provide a decomposition efinto meaningful components by projection
onto the orthogonal subspaces:

r:ZQA T, (15)

Aeé

where( 4 is the operator of orthogonal projection orftg.

Assumeé includes the constant factor. #fe R” is the vector of treatment ef-
fects, the set of linear formg — (x, 7) |x € Sa} is, whenA is different from the
constant factor, the space of contrasts traditionally associated with thé\tefihe
model. Note that the weight function must be taken into account in the definition of
contrasts. The linear forrx, ) is a contrast ik is orthogonal to the constant vector
1, thatis, if

Z W(t)x(t) = 0.
teT

The weightW (S) of a subsetS of T is defined as the sum of the weights of its
elements

W(S) =) W), (16)
seS
and the weight functiomV4 induced byA on T4 by
Wa@ =W (¢3'@). (7

Assume thap 4 is a surjection ont@,. If x4, z4 are two vectorsim’4, let (x4, z4) 4
= (x4 0 ¢4, z4 o $p4) be the scalar productinduced by the scalar product (18 of
Then
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(xa,24)a = Y Wa@)xa(@)za(a) (18)

aeTy

andg¢} is an isomorphism oR”4 equipped with the scalar product (18) orftg
equipped with the scalar product (13).

We denote byP, the operator of orthogonal projection froRf onto S,. Since
the canonical basi&,)qcr, Of R”4 is orthogonal for the scalar product (18), so is
its image(e, o pa)act, DY ¢ for the scalar product (13). Hence

_ (x, eq004)
PN 2 Gcpues g
2Lpainy=a WOX(@)

_ Loda. 19
G eq 0 pa (19)

Thus the projectiorP, x is obtained by replacing for every e T, all the co-
ordinates of indexin ¢;1(a) by their weighted mean

Zl€¢;l(a) W (t)x (1)

aeTy

Xq = W@ . (20)
If x4 = (Xa)aer, is the vector of these means, then

Py x = ¢y (xa). (21)
Let P4 be the mapping sendingontox 4:

Pyx =Xa. (22)
Equality (21) gives the equality

Py =@} o Pa, (23)

which shows tha®, is the mapping corresponding  when S, is identified to
R4 through the isomorphisgy .

Equality (21) can be expressed in a more familiar way. WeDleiD4 be the
diagonal matrices with the weigh® (), W4 (a) on the diagonal an& 4 be the
matrix of ¢’ with respect to the canonical basisf* andR”. Then

Dy =Xy DXa, Ta=D;"XDx, Pax=XaD*X,Dx. (24)

Let (T, W, &) be an orthogonal design arida given factor off. Each factoB
nestingA induces a factor off4, that is, the mappingg4 from T4 into Tg which
satisfiespp = ¢ppa o p4. The family of factors thus induced by the fact@s> A in
& is denoted by 4 and called the family induced by on T4. The designT4, Wa,
& 4) is called the design induced @h by the designT, W, &).

With each factorpa in & 4 is associated theontravariantinear mappingy, , :
xp > xp o ppa from R’% into R4 and the subspaceSs = ¢} (R7?) of R4,
It is clear thatpy, = ¢ o ¢} ,. ConsequentlySp = ¢% (4Sp). The subspaceSg,
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B > A, of RT are thus the images by’ of the corresponding subspacgS of

R4, Since¢} is an isomorphism fronfiR”4 with the scalar product (13) onto the
subspace 4 with the scalar product (18), it respects the orthogonality and hence the
following proposition.

Proposition 3.1. Let (T, W, &) be an orthogonal design and A a factordh Then
the design(T4, Wy, & 4) induced b7, W, &) on T, is orthogonal. The decompos-
ition into sums of orthogonal subspaces

RTA = @ AEB, Sa = @EB
B>A B>A

induced by these two designs correspond to each other by the linear injective map-
ping ¢%.

Let O be the operator of orthogonal projection otp. When S is identified
to R75 throughe3;, O is identified to the mapping@ z such that

Qg =¢}50 0s. (25)
If B> A, ¢} = ¢} o ¢y, and therefore
Qg =} 0dp, 0 Os, (26)

which shows thapy, , o Q p is the mapping corresponding @z whensS, and R’
are identified througk’; . From the decomposition ¢fs given by Proposition 3.1,

it follows that Py = Y5, Op, hencePy =35, ¢4, o Op and

Qa=Pr— ) ¢hao0s. (27)

B>A

This equality can be used to compute recurregtly.
The following proposition, weighted equivalent of Proposition 1 of Tjur [24],
gives a practical condition of geometrical orthogonality.

Proposition 3.2. Let A B be two factors defined on T atfil= A v B. Then A and
B are geometrically orthogonal if and only if for every coufileb) € T4 x Tp such
that a and b are both nested into the same level Hipf

Waxp(a, D)Wy (h) = Wa(a)Wp(b).

The factorA x B is the mapping +— (¢4 (7), ¢p(t) fromTinto T4 x Tg. Con-
sequentlyWa« g (a, b) is the sum of the weights of the elements having respectively
a andb as levels ofA andB. Note that the product x B is equivalenttaA A B. If
A = ¢ andB = ¢k, itis moreover equivalent to k.
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4. Reference design in the non-uniform case

We now show how to define a suitable reference orthogonal design in the general
case. Welef = {1, ..., n} be the set of primary factors studied by the experimenter.
Any treatment can be defined by the family= (¢;);c; of corresponding levels of
these factors. However, any such vector[ifp_, 7; does not necessarily define a
feasible treatment. If factdris compelled by the nature of things to nest another
factorj, then the levelg andt; must be compatible, thatis must satigfy= ¢;; (¢;).

We shall assume here that these are the only constraints to be satisfied.

More precisely, it is assumed thais partially ordered by the nesting relation and
that for each couplg j in | suchthat > j, there is a mapping;; : 7; — T; giving
for each level; of j the nesting level; = ¢;;(¢;) of i. These mappings must clearly
satisfy the following two conditions:
1.ifi > Jj = k, then¢>l-k = ¢ij Od’jk and
2. for each, ¢;; is the identity of7;.

The feasible treatments are assumed to be all the famiteg;);c; of [[,o; T
satisfying#; = ¢;;(t;) wheni > j. Thus, the seT of treatments of the reference
designis

T ={(tier | ti = ¢;;(¢j) fori,jinlandi > j}. (28)
This set is known as tharojective limitof the family (7;);<; [7]. The projective limit
T; of any subfamily(T;);<; is defined similarly:

T; ={(ti)icy | ti = ¢ij(tj) fori,jinJandi > j}. (29)

If J = ¢, we adopt the convention tha} is a set with one element.

Thefactor i on T is then the projectio; of indexi, which sends a treatment
t = (t})ier In T on the corresponding levelin 7;. For each subsétof |, the factor
Jis the mappin@; = [[;., ¢; defined by (12). It coincides ohiwith the canonical
projection of indexJ:

bJ ((h‘)iel) = (ti)ieJ- (30)

Itis clear thatp, sendsT into the projective limit7;.
If J C K, the factord nests the factdf. More precisely, lep, x be the projection
of indexJ from Tk into Ty defined by

dIK ((li)iel() = (t})ieJ- (31)
Then
7 =¢sK o Pk. (32)

However, even ifl is strictly included irK, the mapping®; and¢x may be equiva-
lent. Assume indeed that for eakle K, thereis aj € J such thatj < k. Then the
coordinates oK of an element € T are completely determinated by its coordinates
onJ. Consequentlyx ~ ¢,. As a particular case, we get the following proposition.
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Proposition 4.1. Let J be a subset of | and K the ancestral subset generated by J
that is the set of elements greater or equal than an element of J. $hemd ¢
are equivalent factors.

A subset] of | is said to beancestralif
jedJ and k> = kel (33)

In view of Proposition 4.1, we consider from now on only factgysassociated to
ancestral subsefsof I.

Fori € I, we denote byli the set of factors ih strictly greater tham and by[i
the set of those which are greater or equal to

li={jellj>i}, li={jellj=>i} (34)
We let p; be the mapping fronT; into the projective limitly; of the family (7;);~;
defined by
i () = @it . 35
piti) = (¢5:) (35)
If 1i is empty,Ty; is reduced to one element apdis the constant mapping. Note
that

i = pi o Pi. (36)

The following assumption is needed to avoid constraints other than those induced by
nesting relations and to guarantee that no primary factor reduces to the product of
the factors nesting it.

Assumption 4.1. Each mapping; is surjective but not injective.

The projective limitTj; of the family (7;);~; will be called theprecursor seof
T;. We shall say of an elementsuch thatp; (t;) = v that it hasv as precursor. The
assumption tells that for eachthe setsol.‘l(v) for vin 7y; are not empty and that at
least one of them has two or more elements.

For eachi in |, let W; be a weight function fronf; into the setR™ of strictly
positive real numbers satisfying

> W) =1 foreveryv € T. (37)

tiep; H(v)
Define then the weighW (¢) of an element = (;);c; in T as the product of the
weights of its coordinaters:

W) =[] wi@. (38)

iel

We will see that the sef and the weight functioW provide two basic ingredi-
ents of the searched reference orthogonal design. The third ingredient is the model
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whose factors are here the projectignsassociated to the elements of a fandlypf
ancestral subsefsof I.

The geometrical orthogonality of these projections will follow from the following
proposition.

Proposition 4.2. Let J be an ancestral subset of I. Then for eack= (;);c; in the
projective limit7;,

Wyt =[] wiw.

ieJ
The weight functionW; induced by factod is defined as in (17) bW, (t;) =
w(e7hw)).

Proof. The resultis proved by descending recurrence on the nupibef elements
in J. Itis clearly true forJ = I by the definition olW. Assume it is true foftJ| > m
and consider a subsétsuch thatJ| = m and a fixedt; = (#;,);cs In T;. Select a
maximal elemengin 7\J and letk = J U {}. It follows from (32) that

o5t =9t (s7kn) = L] exten,

kP (L)

where| | indicates a disjoint union. Thus

Wian =w (g )= Y W(etto) = 3 W),

kP (L) kP (L)

The setbj‘,% (ty) contains all the elementg = (#;);cx Which have the same coordin-
ates ag; fori € J and a coordinatg satisfyinge;;(t;) = t; for eachi > j in J (the
casej > i € J has not to be considered sindés ancestral). This condition an

is equivalent top; (t;) = v wherev = ¢); st = (ti)ic];. The use of the recurrence
hypothesis and of (37) then gives

wien= > J[ww=[]waw > Wi
txep ) (€K il tjep; W)
=[[wiaw. O
ieJ
The following corrollary follows immediately from the strict positivity of the
weightsW; (;).

Corollary 4.1. The mappingp; associated to an ancestral subset J of | sends T
onto the projective limif’;.
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ThusTy is the set of levels of the product facipy = [];., ¢i. This corollary also
implies in conjunction with the next easily proved proposition that the mapgings
associated with the primary factdrs | are surjective.

Proposition 4.3. The canonical projectiog, [; from Tj; into 7; is an isomorphism
whose inverse is the mapping— (¢;; (t:)) je[i-

This proposition allows to identifyf}; with 7; and for any; > i the mapping
¢rj,1i With ¢;;. The space®’i andR” can consequently be identified, but it must
be noted that the scalar product induced on the latter space by the scalar product of
R is associated withi;;, = W; and not withW;.

Proposition 4.4. The mapping sending an ancestral subset J on the partition in-
duced byg; is a lattice isomorphism. That,isf J and K are both ancestralthe
equivalence; ~ ¢k occursifandonlyif/ = K. If J C K, theng; > ¢x and

dink ~ G NV Pk, QUK ~ Ps NPk

Proof. Assume/\K is not empty and select a minimal elemgint it. Note that is
also minimal inJ U K, otherwise there is an eleméain K such thak < j and the
ancestrality oK implies j € K which is in contradiction with the choice pf

Since p; is not injective, there exists a precursor= (#;);¢); in 7j; such that
pfl(v) contains at least to distinct elementsand:’. Letu = (;);[; be the element
oﬁtained by adding the coordinateto v. Thenu clearly belongs to the projective
limit 77; of the family (7;);~;. Hence by Corollary 4.1 there is an element
(t;)ic; having the same coordinatesw@aor eachi > j. In its projection(t;);cjuk
by ¢, uk, substituter; by t}. The resulting element clearly belongs®px, hence
is the projection by ;ux of an element € T. Thent ands have the same image by
¢k but not byg; which proves that these two factors are not equivalent.

If J C K, (32)impliesp; > ¢k.

LetK andJ be arbitrary ancestral subsets &fid= J N K. The mappingy nests
both¢,; and¢k, hencepy > ¢; v ¢x. To prove the opposite inequality, consider
two elementss, t such thatpy (s) = ¢y (¢), thatis, such that; =¢; fori € H. Let
u; = s; fori € J andu; =t; fori € K\J. The family(u;);cjux clearly belongs to
the projective limitT;ux. By Corollary 4.1, it is the projection by x of an ele-
mentu of T. Theng;(s) = ¢s(u) andgg (1) = ¢x (¢) SO thats andt are equivalent
for ¢y v ¢k . This provesp; vV ¢k > ¢p.

The proof of the other equality;ux ~ ¢; A ¢k isimmediate. [

We can now prove the geometrical orthogonality of any pair of product factors
¢; andgg. Assume the levels; in T; andrg in Tx are both nested into the same
level of ¢ vV ok ~ ¢k - Then their coordinates isi N K are equal and there are
elements; fori € J U K suchthat; = (t;)ics, txk = (t})ick -
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Let then h = (t;)icsnxk be the common nesting level op; v ¢x and
g = (t)iejuk- Then the treatments wittry, tx) as level ofp; x ¢x are the same
as those with levay of ¢ sk, hence by Proposition 4.2

Wo,ox (1, tk)Wink (h) =W,uk (8) X Wynk (h)

=[] wer [ wa

ieJUK ieJNK
=[Twe [Twe) = WranWk k).
iel ieK

By Proposition 3.2, we therefore have the following proposition.
Proposition 4.5. The projectionp, for J C I are geometrically orthogonal.

We now assume thdt is a family of ancestral subsetsloivhich is closed for the
intersection. The corresponding family of projectigns J € &, is then closed under
the formation of maxima and thus defines, together Witand W, an orthogonal
design and orthogonal subspadgs

The next section gives a useful process to get basis of these subspaces.

5. Full rank meaningful reparametrisation for the orthogonal reference design

Let Q; denote the operator of orthogonal projection afijo The replacement of
Q4 by Qyin (15) gives
T = Z oysr. (39)
Je&

To handle this decomposition in practice, it is convenient to have for &adbasis
Z j of Sy, sothatQ; t is a linear combination of the vectaxsn 2 ;:

er:Zaxx. (40)
XeXy

The parameters, in (40), uniquely determined as linear forms@j t, span the
space of contrasts associated witiNote that when the basi§; is orthogonal, they
take the following simple form:

ay = (x, )/ (x,x). 41
Together, (39) and (40) lead to the model
T = Z Z Ay X, (42)
Jes&xedy

which provides the expectatiatit) of the response in function of the parameters
for every feasible treatment
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)=y Y e x(®). (43)

Je&xeXy

At least for the reference designthis leads to a full rank model whose paramet-
ers belong to the factorial effects of interest and which is therefore very convenient
to perform an analysis of variance [11]. We now describe a simple way to get such a
basisZ'; from which model (43) can be derived.

For our aim, the modef is first completed so that fandK are ancestral subsets
of I,

JefandK CcJ = KE¢cé. (44)

This can be done by adding every ancestral suliseicluded in a subset of the
initial family &. Note that this completion does not change the Sofi the space
Sy, thatis, the subspace containingand simply leads to a finer decomposition into
orthogonal subspaces .

If J =@, T; is a set with one element anfl; = S; is the one-dimensional
subspace generated by the constant velctrR” .

Consider now an arbitrary ancestral subget . The process described here-
after leads to a basi#; of ;S; which can be immediately transformed in a basis of
S, by the isomorphisng.

Denote bym(J) a set of minimal elements thandM (J) = J\m(J) (laterm(J)
will be theset ofall minimal elements of). Note thatM (/) is also ancestral.

Let 77 = ¢p(sys be the canonical projection frofi; onto Ty (yy. ThenT; is
the disjoint union of therj‘l(v) for v in Ty (). Consequently, i, (v) denotes the

subspace of vectors R’ with zero coordinates outsidej‘l(v), then

R = € Fi). (45)

UETM(J)

Itis clear that the subspacé$ (v), v € Ty (), are orthogonal to each other:

xeFj(v), zeF;() and v#v = (x,z); =0. (46)
For each € m(J), lets; be the canonical projection from (J) onto]i,
8i = i m)- 47)

Consider then a fixed elementn Ty (). The subspacé, (v) can be identified
with R/ by simply dropping the 0 outside; *(v). Then each elemeny in
nj‘l(v) has the same coordinatesiean M (J) and, for each € m(J), its coordinate
; of indexi can be any element io;1(8;v). Thusz;*(v) can be identified with the
Cartesian produdt];,, ,oi_l((S,-v) and this identification induces an isomorphism

-1 -1
betweerR™ "), henceF, (v), and®); ,,,, R”

Fj(v) ~ an_l(v) -~ ® Rpi_l(&‘v)' (48)
iem(J)
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For each € m(J), letz; be a vector of®?% ) When identified to an element of
F;(v) c RY, thatis to a function fronT} into R, the tensor produd®); ;) zi is
defined by

[] i) fore, =@ en; ),
Q) zi | @) =1 iemw (49)
iem(J) 0 forey & n;t(v).
The images of this tensor product$y, or by ¢}, whereK is an ancestral subset
containingl, are defined quite similarly. For instancetif = (;);cx belongs to the
projective limit Tk,

¢ik | @ zi|wo=| & = | @ik

iem(J) iem(J)
H zi(t;) it v=omuk(tk)
iem(J) (50)
0 if v#£ dmnk(tk).

To simplify notations, it is therefore possible to omit the mappijg or ¢7 .,
and to consider the tensor prod@,,,,, z: as defined directly of or Tk .

Letz = @icm(s) 2 @aNAX = @), ¢,y Xi E two such tensor products iy (v).
Then (18), withJ instead ofA, gives

.2y = > Wianxnz) = Y Wit)x)z(ty).
tyjeTy
It follows from Proposition 4.2 that

Witr) = Wun@) [] Wit) fore, = @) e n; ).
iem(J)

tyen; )

Hence
(x,2)s= > Waon@) [T Wite)xit)zi(n)

()€l Tiemey i (Giv) iem(J)

=Wy (v) H Z Wi (t)xi (t;)zi (2:)

iem(J) \ 4 prl(ﬁ;v)

Let (x,z); denote the scalar product de’i %) associated with the weight
functionW;, that is

(x,2) = Y Wilt)x @)z (1), (51)
1

wherey; varies overpl.‘l((S,- v). Then the previous equality gives the following pro-
position.
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Proposition 5.1. If z = &),y 2 aNdx = @); ¢, () Xi re two tensor products in
F(v) defined as in{49), then(x, z); = Wy ) () [Tiepm(s) xis 2i)i-

Foreach € m(J), let Z;(8;v) be a basis oR? ¢ Then it is well known that
71wy = Q) ZiGiv), (52)
iem(J)

which is by definition the set of all tensor produ@, ., zi between elements

zi € Zi(8;iv), is abasis of the tensor product given in (48), henciab). It follows
from (45) that the unio’; overv € Ty, of these bases:

f’fj = U ffj(v) (53)
UETM(])

is a basis ofR”/. The following proposition sums up this result and the preceding
definitions.

Proposition 5.2. Let J be an ancestral subset ¢of#t (J) a set of minimal element of
JandM (J) = J\m(J). For eachv € Ty ;) andi € m(J), defines;v as the canon-
ical projection ofv ontoTy;. Let % (8;v) be a basis oRPi (4iv) andZ ;(v) be the set
of tensor products = ), () zi defined by49). Then the unio’; = J, 2, (v)

is a basis ofR”7.

It is now assumed thai (J) is the set of all minimal elements df Each basis
Zi(8;v) is selected so that its first element is the vedtbaving all its coordinates
equal to 1 and its other elements are orthogondl for the scalar product, );
associated withV;:

xeZiGv)., xi#l = (al= Y Wix@ =0 (54)
tiep; H(6;v)

Denote byZ’; (§;v) the set of these other elements, thattis(s;v) = Z; (5;v)\1.

Let Z'; (v) be the tensor product between these sets:

Ziw) = Q) ZiGiv) (55)
iem(J)
and finallyZ ; the union ovew of these tensor product:
2= |J 250. (56)

UETM(J)

Proposition 5.3. Z'; is a basis of;S;. It is orthogonal if each basig; (8;v) is
orthogonal.
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As indicated after (50), the tensor productsiip can be considered as defined
directly onT andZ’; can thus be identified with its image iy which provides the
basis ofS; requested for decomposition (40).

Proof. 2 is made up of all tensor produd®); ., zi in Z; whose components
z; are distinct fromil, hence orthogonal té. From (46) and Proposition 5.1, these
tensor products are orthogonal to the other element¥ pf that is to the tensor
products having at least one compongnéqual tol. It remains to show that these
last tensor products generate the sum of the spaggsssociated to ancestral sets
L strictly included inJ.

If Lis such a set, there is at least one minimal elemény not belonging td..
ThusL C J\{;j}and consequentlyS; C ;Sj\(;- Itistherefore enough to consider
setsL of the formL = J\{,} for somej € m(J).

Assume therefore thdt = J\{j}. Sincem(J)\{/} is a set of minimal elements of
L, Proposition 5.2 can be used. It shows that = U, c7,,,, Z1 () generate®R ..
Here, Z 1 (v) is the set of tensor produc@iemm\{j}zi such thatz; € Z;(S;iv).
Such a tensor product is defined as in (49) by

® zi | (tL) = ]_[ zi (1)

iem(I\{j} iem(\{j}

if 17 € nL‘l(v), whererr; = ¢y, and by 0 otherwise.
Theimage by ; of 2, thus generatesS, . If 1, = (t;) andz = @); s\ () Zi
then

¢r, @) =zt =[] =z
iem(NH\{j}
Ifwe letz; = 1, the last product is also equalﬂ)iemu) z; (¢;) and therefore
o1, = Q) z.
iem(J)

Thus the tensor produ@®;,,, z: With z; = 1 generateg S, and the whole set of
tensor products having a component equdl ¢enerates the sum of the spagés.

If the Z;(8;v) are orthogonal, the orthogonality &f; follows from (46) and
Proposition 5.1. O

Consider now a modef satisfying (44). Let/ be the set of indices which are not
in J but belong to some sé&tin & includingJ:

J= U K \J, (57)

K/Ke&. JCK
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Proposition5.4. The space of contrast§(x, 7),x € Sy} associated with the
factorial effect J only depends on the weidght such thatj € J.

Corollary 5.1. If there is no K strictly including J ing, the space of contrasts
associated with J is independent of the chosen weights.

The proof closely follows that given by Kobilinsky [11] in the simpler case of
uniform reference designs.

Proof. We denote by{7"} the subspace generated by a familyof vectors.
Proposition 5.3 shows thatS; is the sum of the spacég’;(v)}, henceS; the
sum of the spaces; ({2’ (v)}) for v € Ty (). Itis therefore sufficient to show the
result whenx € ¢5 ({27 (v)}).

From (55), we have

)= Q) (i),
iem(J)

and{Z;(8;v)} is the subspace 4¢fZ; (5;v)} orthogonal tal, that is, the subspace of
vectorsy; in R% such that
1. x;(#;) is zero wherp; (t;) # &;v (i.e. wheny; is not compatible with).
2. x; is orthogonaltdl : (x;, 1); = Zt[ W;(t)x(t;) = 0.

Thus the tensor produo@iemu) x; with x; € {Z;(8;v)} span{Z ;(v)} and their
images by spang’; ({Z';(v)}). Letx be one of these images:

x = ¢ ( ® xi) . xi €{Zi@iv)}

iem(J)

Then (50) applied wittkk = I gives fort = (¢;)
{ H xi(t;) it v=yuu)),
x(t) =

iem(J) _
0 if v # dp@) .
Hence
(x,7) =Y WOx@OT ()
teT
= > (]‘[ Wl-(m) ( I1 xl-(ti)) (1)
t€¢;1]('])(v) iel iem(J)

> ( [1 Wim)) ( [1 Wl-<ri>xi(ri)) (H Wi(ri)) T(1).
,64,;4}])(,,) ieM(J) iem(J) ig]

Using Proposition 4.2 we get
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ory= >0 W@ | [T @@ [ [TTwie | o,
te¢>;,,%1>(v) iem(J) igJ
wherez; is the coordinatewise product &f; andz; defined by
zi(t;) = Wi(ti)xi(%).
The conditions 1 and 2 ar} are equivalent to similar conditions an
1. zi(t;) = Oif p;(#;) # div,
2. (z;,1) = Z,I. z(t;) =0.

In the second condition, the scalar product is the standard ori@’iorit does
not depend ori;. Hence the space of contragts, 7) for x in ¢5 ({2, (v)}) is
independant of the weighig; such thai € m(J). Since this space is also generated
by the ratios(x, ) / Wy () (v), it is moreover independant of the; fori € M(J).
It remains to show that it is also independant®f if | does not belong to ani¢
strictly includingJ.

Sincer belongs to the surBof the spaceSk for K € &, we haver =) . 8k
where for eaclK, §x € Skg. We can therefore considér, §x ) instead of(x, 7).

If K does not includé), this contrast is 0 becausg is orthogonal toS; by
Proposition 4.5. It is therefore not dependant on 8fy

Consider then & includingJ. SinceS; C S; C Sk, x belongs toSx as well as
Sk . There are therefore elementg andtx in R’¥ such that

x = ¢x(xg), Sk = Px(1k).
In view of the remark following (18), we have

(x,7) = (xx, &) = Y Wi (1k)xk (16) Tk (1K)

3¢
It then follows from Proposition 4.2 tha¥k (tx) only depends of th& fork € K.
So(x, dx) only depends ofV; if / C K andj € K. Hence(x, t) only depends

ontheW; suchthayi € Uk, ;¢ K- Theresultfollows since we know from the first
part of the proof thatx, ) is independant of the weigh; for j € J. O

Example 5.1. There are four primary factor8, B, C, D, with non-trivial order
relations

D<A, C<A, C<B.
The model is
&=1{0,A,B,A.B,A.D,A.B.C, A.B.D}

A term like A.B.D denotes the subsé¢#, B, D}. Thus this model includes all
ancestral subsets except the wholelset {A, B, C, D}.
The number of levels are:

A:2, B:2, D(A=1):3, DA=2):2
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C(A=1,B=1):3, C(A=1,B=2):2,
C(A=2B=1):2, C(A=2B=2):3.

By C(A = a, B = b) we denote the subset of levels ©fsuch that the nesting
factorsA, Bin ]C have levels, b, respectively, that is, the subs@l(v) associated
with the precursop = (a, b) of C.

The weights are given in Table 13. The levels in this table are numbered se-

quentially, and for a nested factoy independantly within each subs;afl(v)
determined by the levels of the nesting factors. In fact, the numbers on the lines
beginning byC or D are pseudolevel¢hat cannot be considered independantly of
the levels of the nesting factors. The true levels are therefore the combinations of
pseudolevels of the factors nesting or equal to the given factor. For instance, the
true levels ofD are the five pairs of values 61, D), that is,(1, 1), (1, 2), (1, 3),
(2,1), (2,2). The mappingpp is then the projectionA, D) — A on the first
coordinate. Similarly, the true levels & are the 10 tripleg1,1,1) to (2, 2, 3)
of values of(A, B, C) andpc is the projection(A, B, C) — (A, B) onto the first
two coordinates.

Table 13 also gives for eadhin {A, B, C, D} and each precursaf; in 73; an
orthonormal basig’; (v;), for the scalar product (51), of the orthogonallofvithin
RO ), Again, the notatiom = a, B = b following Z ¢ refers to the element =
(a, b) in the precursor sefjc of C, thatis,2c(A =a, B=0) = Zc(a, b).

The vectors oft; (v;) appear as row vectors and are denoted sequentijally; ),
x;i2(v;), ...0or more simply;1, x;2, ...when the precursas involved is made clear
by the context. Thusfar= C, A = 2, B = 2, thatis,v; = (2, 2), the basis is made
up of xc1 = [v/3/2, —+/3/2,0] andxc2 = [1/+/2, 1/+/2, —2/V/2].

The weightW on T appears in Table 14 where the marginal weidliisare also
reported. Within the table, there is one cell per element in the projectiveTimit

Table 13
Weight functions W; and basis Z; (v)

A 1 2
A1 2 B 11 2 D 1 2 3 1 2
Wall/2 172 Wg|1/2 1/2 Wpl| 173 1/3 1/3 |12 1/2
ZA Zp Ap(A=1) Zp(A=2)
xar| (1 —1] xpi| (1 1] xp1|[W372 =372 0] (1 —1]
xpa|[1/V2 1/4/2 —2//2)
A 1 1 2
B 1 2 1
C 1 2 3 1 2 |1 2 1 2 3
Wel| 173 173 173 |12 12 |12 12 173 173 13
Zc(A=1,B=1) Zc(A=2,B=1) Zc(A=1.B=2) Zc(A=2,B=2)
xc1|[V372 =372 01 [ -1 |0 -1 (V372 =372 0]
xea|[LUV2Z U2 —242) (N2 N2 —232)
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Table 14
The weightW induced on the projective limit by the W;
B 1 2
Wp 1/2 1/2
A Wa D Wp
c 1 2 3 c 1 2
We 1/3 1/3 1/3 We 1/2 1/2
1 1/3 1/36 1/36 1/36 1/24 1/24
1 1/2 2 1/3 1/36 1/36 1/36 1/24 1/24
3 1/3 1/36 1/36 1/36 1/24 1/24
o 1 2 Cc 1 2 3
We 1/2 1/2 We 1/3 1/3 1/3
2 1/2 1 1/2 1/16 1/16 1/24 1/24 1/24
2 1/2 1/16 1/16 1/24 1/24 1/24

Sinced satisfies condition (44), Proposition 5.3 can be used to get the vectors
appearing in (42). These vectors are divided by their norm, given by Proposition 5.1,
to get an orthonormal basis. They are numbered sequentiglly, ...and given
explicitly in Table 17. To simplify, the bases; (§;v) used to definet ;(v) in (55)
have always been selected to be those of Table 13, though it would have been possible
to select them differently for each e & andv € Ty ().

We give in what follows some more indications on how to get the veatood
'y foreachdin &.

e J = (). The only associated vectorig = 1.

e J = {A}. Thereisjustone vecta = x41 defined orf’y by x41(1) = 1,x41(2) =
—1 and therefore o by x41(1, b, ¢,d) = 1,x41(2, b, c,d) = —1.

e J = {B}. AsforJ = {A}, there is only one vector, = xp1.

e J ={A, B}. The set of minimal elementsis(J) = {A, B} and thusM (J) = @.

The only vector in%; is x3=x41®xp1 Which is defined onT by

(xa1 ® xp1) (a, b, c,d) = xa1(a)xp1(b) (it is the coordinatewise product af;

andxy).

e J={A,D}. Thenm(J) = {D} andM(J) = {A}. The orthogonal basig’; in-
cludes two vectorspi, xp2 for A =1, onexpy for A = 2. SinceWy () (v) =
1/2 forv = 1, 2, their norms given by Proposition 5.1 ara/2 and we can take
x4 = 2xp1, x5 = v/2xp2 for A =1, xg = /2xp1 for A = 2 as orthonormal
basis. The values of these vectors, which depend onlfx andD, are given in
Table 15.

e J={A,B,C}. Thenm(J) = {C}andM(J) = {A, B}. The norm given by Pro-
position 5.1 is,/Wy(s)(v) = 1/2 for each of the four couples = (a, b). The
orthonormal basist’; includes six vectors, two foA =1, B = 1 (x7 = 2x¢1,
xg = 2xc2), one forA =1, B =2 (xg = 2xc1), one forA =2, B=1 (x10=
2xc1) and finally two forA = 2, B = 2 (x11 = 2x¢1, x12 = 2x¢2).
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e J={A,B,D}. Thenm(J) ={B, D} and M(J) = {A}. There are two tensor
productsy/2xz1 ® xp1, v2xp1 ® xp2 to consider forA = 1 and onev/2xp1 ®
xp1 for A = 2. Their values which depend only on the level$\oB, D are given
on the rightside of Table 16.

e If J ={A, B, C, D} had also be i’, we would have also introduced four vectors
forA=1,B =1(x16 = 2xc1® xp1,x17 = 2xc2 ® Xp1, X18 = 2xXC1 ® Xp2, X19
=2xc2®xp2), two forA =1, B =2 (x20 = 2xc1 ® xp1, x21 = 2xc1 ® Xp2),
one forA =2, B=1 (xp2 = 2x¢1 ® xp1) and finally two forA =2, B =2
(x23 = 2x¢c1 ® xp1, X24 = 2xc2 ® X p1).

To link this with the previous notation, consider an elemest (a, b) in Ty ().

Since]C = {A, B} and |D = {A}, the projectionsS¢ and §p are defined by

S¢c(a,b) = (a,b), p(a,b) =a and thusZj(a,b) = Xc(a,b) ® Xp(a). Let

nc(a, b) be the number of levels & for A = a, B = b, thatis withinpgl(a, b)

and similarlynp(a) the number of levels oD within pBl(a). The vectors in

Z'j(a,b) are the(nc(a, b) — 1)(np(a) — 1) productscc;(a, b) @ xpi(a).

The 25 vectorsc, . .., x24 make up an orthogonal basis Bf for the scalar
product associated with the weightgiven in Table 14. The 16 vectoss, ..., x15
associated with the modél are explicited in Table 17, which also gives on its left
the weightW and the levels of the four factors. The arrows on the left point to a
fraction considered in Section 7.

6. Adjusted means

Let K be an ancestral subsetlofThe mean respongex (rx) at leveltx of K is
defined as the weighted mean

uk(tx)= Y WOT@)/ Wk (). (58)
1.9k (t)=tg

The replacement of (¢) by its expression (43) in function of the parametefs
gives

Table 15
The orthonormal basis of 4 p
A=1 A=2
A D V2xp1 V2xp2 V2xp1
1 1 V3 1 0
1 2 —/3 1 0
1 3 -2 0
2 1 0 0 V2
2 2 0 0 -2

X4 X5 X6
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uk(tg) = Z Z Ax(tg)aty, (59)
Jesxely
where
k)= Y WOx()/ Wk (tx). (60)
1,9k ()=tk

The mean responses (1x ) have been seen in (20) to be the coordinates of the
orthogonal projectiorPx T of T on Sx. More precisely, lePx be the mapping such
that Py = ¢} Pk, that is, the mapping replacinBx when Sk is identified toR”x
by ¢%. Then

nk(tg) = (f’KT) (tx)

and similarly
Ae(tg) = (PKX) (k).

If xeZyandJ ¢ K, thenPxx = 0 and consequently, (tx) = 0. If x € 2’y and
J C K, then since?Z’; C S; C Sk, x has the same coordinates for albuch that
¢k (t) = tg and consequently, (tx) = x(¢) for any sucht. Moreover ifx € Z j(v)
butv # ¢myk (tx), thenx(s) = 0 for all t such thaipx (1) = rx andi, (k) = 0.
Hence the following proposition.

Proposition 6.1. Let x be a vector i?'y. If J ¢ K, theni,(tx) =0. If J C K,
theni, (tx) = x(¢) for any t such thatpx (r) = tx. In particular, 1, (rx) = 0if x €
Z 1 (v) butv # ¢y sk (k).

Table 16
The orthonormal basis of 4 g p
A=1 A=2 A=1 A=2
A B D xp1 xp1 Xp2 xp1 | V2xp1®xp1 V2xp1®xpp V2xp1®xp1
1 1 1 1 V3 1 0 V3 1 0
1 1 2 1 -3 1 0 -3 1 0
1 1 3 1 0 - 0 0 -2 0
1 2 1 -1 3 1 0 -3 -1 0
1 2 2 -1 -3 1 0 V3 1 0
1 2 3 -1 0 -2 0 0 2 0
2 1 1 1 0 0 V2 0 0 V2
2 1. 2 1 0 0 —/2 0 0 -2
2 2 1 -1 0 0 V2 0 0 -2
2 2 2 - 0 0 V2 0 0 V2
X13 X14 X15




Table 17
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Matrix X of the linear model after reparametrisation

Dq Dy Dq C1 Cy Cy C1 Cy Cy BD; BD; BDq

AB
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1
1
1
-1
-1
1
1
1
-1
-1
-2
-2
-2
2
2
0
0
0
0
0
0
0
0
0
0

0
0
0

2
-2
0
0
0

2
-2
0
0
0

2
-2
0

0

0

0

0

0

0

0

0

0

V2
NZ
—2J2

0

0
NZ
V2
—2J2

0

0
V2
V2
—2J2

0

0

0

0

0

0

0

0

0

0

0

0

NG
NG
0
0
0
J6
V6
0
0
0
V6
V6
0
0
0
0
0
0
0
0
0
0
0
0
0

V3
V3
V3
V3
V3
-3
-3
-3
V3
V3
0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2

1/36
1/36
1/36
1/24
1/24
1/36
1/36
1/36
1/24
1/24
1/36
1/36
1/36
1/24
1/24
1/16
1/16
1/24
1/24
1/24
1/16
1/16
1/24
1/24
1/24

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

X11 X12 X13 X14 X15

Xy X2 x3 x4 X5 X6 x7 xg X9 X10

X0
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Thus
pk(tk) =Y Y x(tay, (61)

J xeZy

wheret is any element such thatx (1) = tx andJ varies only among the subsets of
Kin&.1f x € 2 andv = ¢y (¢), thenx(r) = O for all x outsideZ'; (v). Thus the
sum forx € Z'; can be restricted to the s#t; = 2’ (v) = 2y (dm)k (k).

WhenK is the whole set of primary factor&(= I), (61) coincides with model
(43). In the other cases, the form is similar Bwaries only over subsets &

If a, is estimable for eackh € U#";, whereJ € & andJ C K, the mean re-
sponsesuk (tx ) associated with the levelg € Tk are estimable and their estima-
tions, known as thadjusted meanfor factorK are obtained by adding hats an
anda in (61).

If the factorial effect oK is significant, it is usual to carry on by the examination
of these adjusted means or of some linear combinations of them. Of particular in-
terest are the estimates of the coordinate@ pf, or equivalently the coordinates of
Ok, which can be determined recurrently by formula (27). These coordinates are
called the factorial effects of factét. The factorial effect of indexx is denoted by
ak (k).

Example 6.1. Consider again Example 5.1. The treatmeritéme identified with the
feasible quadruple&, b, ¢, d) of levels of the four factors. We use the dot notation to
denote a weighted mean likex (1x ): the dots replace the indices of factors which are
notinK. For instance (a, ., -, +) is the weighted mean 4 (a) of all treatment effects
suchthatp, () = a andz(a, ., ., +) the corresponding adjusted mean.

Using (27) and (22), we find the factorial effects of Table 18.

The corresponding estimates are obtained by adding hatswnodt . The factorial
effects are given in function of the mean responses which are themselves expressed
in function of the parameters, in Table 19. In that last table, theare indexed as

Table 18
Factorial effects in Example 6.1
7] = T(e,0,0,0)
aa(a) = T(d,e,0,0) —T(o,0,0,0)
ap(b) = T(e,b,0,0) —T(o,0,0,0)
aapla,b) = T(a, b, e, 0) —ay(a) —ap(b) —ay
= T(a,b,e,0) —T(d,0,0,0) —T(e,D,0,0) + T(o,0,0,0)
appla,d) = T(a,e,0,d) —ap(a) — ag
= ‘[(Ll,c, o, d) —‘L'(a,o, o, o)
appcla,b,c) = t(a,b,c,e) —app(a,b) —ap(a) —ap(b) —ay
= T(a,b,c,e) —1(a,b,e,e)
asppla.b,d) = t(a,b,e,d) —appla,d) —app(a,b) —ap(a) —ap(b) —ay
= t(a,b,e,d) —t(a, e, e,d) —T(a,b,e,0) +T(d,e,e0,0)
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Table 19
Mean responses in Example 6.1
T(s,0,0,0) = Uy =
T(a,e,0,0) = pala) = op+agxi(a)
T(e,b,0,0) = ppla) = o+ agx2(b)
T(a,b,e,0) = pap(a,b) = ap+ayxi(a) +apx(b) + agxz(a, b)
w(a,e,0,d) = papla,d) = ag+arxq(a) + agxgla, d) + asxs(a, d) + agxgla, d)
t(a,b,c,¢) = puapcla,b,c) = ao+oz1x1(a)+a2x2(h)+a3x3(u,b)+zil£7a,~xi(a,h, c)
t(a,b,e,d) = pappla,b,d) = ag+aixi(a)+azxa(b) + azxz(a, b)
6 . 5
+ Zl’:4a1xl (a,d) + Zi:13a1x1 (a,b,d)
Table 20
Factor efficiencies for the arrow defined design of Table 17
Factorial effeck A B AB AD ABC ABD
800000
8
4 050000 4
=00 9 =00
5 11 11 11 (3)40 002000 (3)110
k 5 6 3 3 000200 3
002 000 0% 0 002
4
000004
6 6 6 331 933113 331
Factor efficiencies & & & [Z 3 2] [B 3311 E} [71 3 ﬂ

at the bottom of Table 17, then, is replaced by; and finally,x; (¢) is replaced by
x;i(ty) whenever; € 2’y andgy (1) = t;.

7. Factor efficiencies

Factor efficiencies are obtained by comparing the variances of estimation in the
design under consideration to those that would be obtained with the reference design
[12]. To take into account the difference between the number of units in these two
designs, the variances are first transformguktiounit variances by multiplying them
by the corresponding numbers of units.

The comparison is made for each factorial effect separately. If a factorial effect
includes several parameters, the comparison is between the associated per unit co-
variance matrices. Their simultaneous diagonalisation leads tpriheipal factor
efficiencies.
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The computation of efficiencies is straightforward if the parametrisation is defined
by (42), where the vectopsare an orthonormal basis such as the one provided by
Proposition 5.3. Theer unit information matrix of the reference design is then the
identity matrix and the per unit associated covariance matti®lisIf o2 is the cor-
responding per unit covariance matrix in the design under consideration, the factor
efficiencies are immediately deduced from the blocks associated to the factorial ef-
fects on the diagonal of. If 2 is the block associated with ti¢h factorial effect,
the corresponding factor efficiencies are just the inverses of the eigenvaltigs of

Example 7.1. We consider the saturated design with the 16 treatments indicated by
arrows on the leftside of Table 17, which was obtained witraptimal exchange
algorithm. The corresponding matrix contains the 16 corresponding lines of the
table. The per unitinformation matrixig = X’ X/16 and> = M~1. Table 20 gives

the blocksX; associated with the six factorial effects, which happen to be diagonal
in that example, and the corresponding efficiencies.
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