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Abstract

A definition of factorial effects relying on the treatment structure defined by the hierarchies
is proposed. It applies to a non-uniform situation, where the number of levels of a nested factor
within the classes defined by each set of levels of its nesting factors may vary. A reparamet-
risation whose parameters belongs to these factorial effects is obtained. The development is
based on the notion of reference treatment design, a conceptual design that can be used as a
basis of comparison to assess the properties of any factorial design. © 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Consider a study to determine the influence on a responsey of two crossed factors
A, B. We denote byTA andTB their respective sets of levels. The setT of feasible
treatments is the cartesian productT = TA × TB . The expectation of the response
when treatment(a, b) ∈ T is experimented is denoted byτ (a, b) and is called the
effect of treatment(a, b). Marginal means of these treatment effects are usually in-
troduced. These means may be weighted and are denoted with the usual dot notation.
They are:
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the general mean: τ (•, •) =∑
a

∑
b W(a, b)τ (a, b),

the means by level ofA: τ (a, •) =∑
b WB(b)τ (a, b),

the means by level ofB: τ (•, b) =∑
a WA(a)τ (a, b),

where the weightsW(a, b), WA(a), WB(b) satisfy∑
a

WA(a) = 1,
∑
b

WB(b) = 1, W(a, b) = WA(a)WB(b). (1)

The use of a system of weightsWB(b) independent ofa to define the means by level
of A guarantees that the differencesτ (a, •) − τ (a′, •) can be attributed to the factor
A and not to the factorB.

The general mean, main effects and interaction of factorsA andB are defined
from these means as indicated in Table 1.

In most cases, the weightsWA(a) are chosen equal to 1/|TA|, the weightsWB(b)

equal to 1/|TB | and the weightsW(a, b) are then all equal to 1/|T |. But it can be
natural in some circumstances to use unequal weights. Scheffe [15] gives such an
example. FactorA is the variety of cotton,B is the location in California. If a single
variety is to be selected for all of California, it may be reasonable to weight the
different locations with weightsWB(b) proportional to the total acreages of cotton
in the corresponding regions.

In non-uniform cases, when the number of levels of a nested factor within the
classes defined by each set of levels of its nesting factors may vary, the weights
cannot generally be chosen equal.

Consider the following very simple example. There are three treatments, a control
and two other variants of a new treatment to be compared to the control. A possible
way to deal with that situation is to introduce a factorA whose levels are 0 for the
control, 1 for the new treatments, then a factorB nested withinA, with levels 0 for
the control, 1 and 2 for the two other treatments. We denote byTA andTB the set of
levels of the two factors, byφAB : TB → TA the mapping defined byφAB(0) = 0,
φAB(1) = 1, φAB(2) = 1 which gives for each level ofB the corresponding level of
A.

The treatments can be represented by the pairs(a, b) ∈ TA × TB which satisfy
φAB(b) = a. We denote as previously byT the set of these treatments and byτ (a, b)

the effect of treatment(a, b) ∈ T . Table 2 gives the corresponding means and factorial
effects. The weightsW(a, b), WA(a), WB(b) must satisfy in that hierarchical case
the following constraints:∑

a

WA(a) = 1,
∑

b∈φ−1
AB(a)

WB(b) = 1, W(a, b) = WA(a)WB(b). (2)

If a = φAB(b), we say thatb is nested within a, or more simply iswithin a. It
is natural to choose the weightsWB(b) equal within each levela of A. This leads
to WB(0) = 1, WB(1) = WB(2) = 1/2. The weightsWA(a) may then be chosen
equal to 1/3 for a = 0 and 2/3 for a = 1, which makes theW(a, b) all equal to
1/3. Alternatively they may be chosen equal to 1/2, which givesW(0, 0) = 1/2 and
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Table 1
Definition of factorial effects in the two-way layout

General mean µ = τ (•, •)
Main effect ofa αa = τ (a, •) − µ

Main effect ofb βb = τ (•, b) − µ

Interaction effect of(a, b) γab = τ (a, b) − (µ + αa + βb)

Table 2
Definition of factorial effects in the two-way nested layout

General mean τ (•, •) = ∑
(a,b)∈T W(a, b)τ (a, b)

Means by level ofA τ (a, •) = ∑
b∈φ−1

AB
(a)

WB(b)τ (a, b)

General mean µ = τ (•, •)
Main effect ofa αa = τ (a, •) − µ

Main effect ofb within a = φAB(b) βab = τ (a, b) − τ (a, •)

W(1, 1) = W(1, 2) = 1/4. In that latter case, the control is given twice the weight
of the two other treatments in the general mean. Of course any other intermediate
choice is possible.

It is in general not very difficult to define similarly the factorial effects of interest
in a given more complex situation involving both nesting and crossing. However
general softwares must be able to deal with any system of weights and any kind of
treatment structure. There is thus a need to have a clear and general process to define
the factorial effects from this structure even when it is not uniform.

1.1. Reference design

Such a general process has been clearly described for orthogonal designs [24].
Whatever nature, orthogonal or not, has the actual design under consideration, this
process can be used to define the factorial effects provided the setT of all feasible
treatments, with suitable weight functionWand modelE, itself defines an orthogonal
design. The latter is called thereference design. It is a conceptual one, used to define
factorial effects, study the aliasing or assess, by comparison with it, the quality of
any actual design under investigation.

In the first example with two crossed factors, the orthogonality of the reference
designT = TA × TB follows from condition (1) imposed to the weights. More gen-
erally, assume there aren crossed factors with sets of levelsT1, . . . ,Tn, and that the
weight functionW is a product of marginal weights:

W(t1, . . . , tn) = W1(t1) · · ·Wn(tn) with
∑
ti∈Ti

Wi(ti ) = 1 for all i. (3)
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Let I = {1, . . . , n} and for each subsetJ of I, denote byφJ the canonical projection
(ti)i∈I 7→ (ti)i∈J of index J. Let thenE be the family of subsets ofI containing,
besides the empty set associated with the constant factor and the sets{1}, . . . , {n}
associated with the main effects, all the subsets associated with non-zero interactions.
The familyE, possibly completed in a suitable way, can be assumed to be closed for
the intersection. Then the triplet (T, W, E) defines a reference orthogonal design and
thus induces a decomposition into meaningful factorial effects.

Note that this kind of reference design can also be used when there are nested
factors, provided each factor can be identified with a canonical projectionφJ . In that
case, ifJ is a subset inE andi ∈ J , any factorj nesting the factori must also belong
to J. Therefore ifi is nested within some other factorj, the singleton{i} does not
pertain toE.

That kind of reference design was used to study aliased effects and derive prin-
cipal factor efficiencies in several contexts [8,10,12]. The corresponding block struc-
ture, formed by the partitions induced onT by the factors, has been studied under
the nameposet block structure[4,6]. If the weights are equal, the associated factorial
effects are those which are generally taken into account by variance analysis software
in the uniform case. The associated linear functions of the parameters are known,
when they are estimable, as the estimable functions of type III [16,18].

However, the structure associated with this kind of reference design is necessarily
uniform. Section 4 shows how an orthogonal reference design can be deduced from
the knowledge of nesting relations in a very general, possibly non-uniform, con-
text. Section 5 gives then a process leading to a reparametrisation whose parameters
belongs to the factorial effects induced by this orthogonal reference design.

The reference design can also be used in variance analysis to provide a rigorous
and easy definition of adjusted means, hence of most interesting non-standard linear
functions of the parameters (Section 6).

To motivate this rather technical development on non-uniform designs, we first
introduce in Section 2 some considerations on the different strategies nowadays used
in ANOVA.

In Section 3, we then recall the main notions needed to define and check design
orthogonality. The notations take the weight function into account.

2. Factorial effects, tests of hypothese in ANOVA

The definition of factorial effects and associated sum of squares in unbalanced
design is the matter of a long controversy, which clearly appears in the article with
discussion [14] and is well summed up in [17]. It is still alive today [3,9,19].

As written in [17], the linear modelers can be divided into two camps, the R-
notationers and the R.-notationers. To test a factorial effect, main effect or inter-
action, the R-notationers use the reduction R of the residual sum of square due to
the introduction of this factorial effect in the model. They do not reparameterise the
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model nor introduce constraints on the parameters. Hence to test a factorial effect,
they have to exclude other effects imbedding it from the model. For instance, letA,
B, C be three factors such thatC is nested inA, andB is crossed withA andC. If the
model isA + B + AB + AC + ABC, R-notationers usually compute theAB sum
of square in the model withoutABC, theA sum of squares in the model withoutAB,
AC, ABCthat is in the additive modelA + B.

On the contrary, R. notationers define and test all factorial effects in the same
unique whole model, using marginal means as in Table 1 to define factorial effects
imbedded in other effects of the model. To do so, they have to introduce a system
of weights satisfying relations like those in (1) and (2), or the equivalent system of
constraints on the parameters.

In uniform situations, a natural uniquely defined system is the uniform weighting
which is generally the only one adopted by ANOVA softwares. We show in Sec-
tion 2.2 that this uniform weighting can be completely inadequate to analyse some
very useful designs even in a case including only crossed factors.

In non-uniform situations with nested factors, the example in the introduction
shows that things are far more complicated. Section 2.3 considers two other simple
examples with non-uniform data. Analyses of variance performed on these examples
give results which vary from one software to the other in an incomprehensible man-
ner. The fact had already been noticed by Searle [19] who concluded that it is better
not to use the R.-approach (i.e. type III sum of squares) until things are clarified.

This article clarifies the situation by showing how to define a suitable system of
weights in every situation. To study the properties of the associated reparametrisation
in the more general case, we need some notions of algebra which may appear quite
sophisticated for the problem considered. But the results are in fact very simple
and allow to propose a clear and coherent way to perform ANOVA in non-uniform
situations.

However, to prompt R-practitioners to read what follows, we first show in Sec-
tion 2.1 all the difficulties raised by the R-approach even in the simple case of an
unbalanced two-way layout.

2.1. Difficulties with the R-approach

At first sight, the R-approach may appear simpler than the R. one because it does
not require the somewhat subjective choice of a system of weights to select which
sums of squares and associated contrasts are inspected. However, in the R-approach,
the expectation within the whole model of the contrasts or sum of square associated
with a non-maximal factorial effect is design dependent. This generally makes these
contrasts or sum of square uneasy to interpret, and forbids comparison between
homologous effects coming from designs with different numbers of replications.

To illustrate this point, let us consider again a study with one responsey and two
crossed factorsA, B. We assume thatA andB have two levels coded−1 and 1 and
that the number of replications of the treatments is as given in Table 3. There is only
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Table 3
An unbalanced design with two
two-levels factors

B

–1 1

A –1 1 m

1 m m

one observation for treatment(−1,−1) andm for each of the other treatments. As
m increases, the design is increasingly non-orthogonal and unbalanced. Of course no
one would use such a design whenm � 1, but this simple situation makes it possible
to understand what can occur in a much more less trivial way when the number of
factors exceeds 2.

We denote byyabj the jth response for treatment(a, b), where(a, b) is one of
the four treatments(−1,−1), (−1, 1), (1,−1), (1, 1), and letτ (a, b) = E(yabj).
The factorial effects are defined as in Table 1, with constant weightsW(a, b) = 1/4.
Since there are only two levels for each factor, it is easy to check thatαa = aα,
βb = bβ, γab = abγ where

α = 1
4(τ(1, 1) + τ(1, −1) − τ(−1, 1) − τ(−1, −1)) = 1

2(τ(1, •) − τ(−1, •)),

β = 1
4(τ(1, 1) − τ(1, −1) + τ(−1, 1) − τ(−1, −1)) = 1

2(τ(•, 1) − τ(•, −1)),

γ = 1
4(τ(1, 1) − τ(1, −1) − τ(−1, 1) + τ(−1, −1)).

(4)

The equalityγab = τ (a, b) − (µ + αa + βb) in the last row of Table 1 can be written
as

τ (a, b) = µ + aα + bβ + abγ. (5)

It leads to the linear model

E(y) = Xθ = X1θ1 + X2γ,

wherey is the vector of 3m + 1 responses,θ = (µ, α, β, γ )′, θ1 = (µ, α, β)′ andX
is the matrix in Table 4 which is decomposed for further use into the submatricesX1
including the three columns associated withµ, α, β and the one column matrixX2
associated withγ .

In the R.-strategy,θ is estimated bỹθ = (X′X)−1X′y (we use a tilde to denote
an R. estimate). It is equivalent to estimating eachτ (a, b) by the meanyab• of the
responses to treatment(a, b) and then to get the estimates ofα, β, γ by replacing
eachτ (a, b) in (4) by its estimateyab•. Thus

α̃ = 1
4(y1,1,• + y1,−1,• − y−1,1,• − y−1,−1,•),

γ̃ = 1
4(y1,1,• − y1,−1,• − y−1,1,• + y−1,−1),

(6)

Users of the R-strategy estimateθ1 = (µ, α, β)′ only in the model withγ = 0,
that is byθ̂1 = (X′

1X1)
−1X′

1y. The matrix(X′
1X1)

−1 is given in Table 4. Using it, it
is easy to check that the estimate ofα in this context is
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Table 4
MatricesX, X1, X′X, (X′

1X1)−1 for the example of Table 3

X︷ ︸︸ ︷
X1 X2︷ ︸︸ ︷ ︷︸︸︷

µ α β γ

1 −1 −1 1

1 −1 1 −1
. . . . . . . . . . . .

1 1 −1 1
. . . . . . . . . . . .

1 1 1 −1
. . . . . . . . . . . .

xy m rows

xy m rows

xy m rows

X′X =




3m + 1 m − 1 m − 1 −m + 1

m − 1 3m + 1 −m + 1 m − 1

m − 1 −m + 1 3m + 1 m − 1

−m + 1 m − 1 m − 1 3m + 1




(X′
1X1)−1 =




m+1
2m(m+3)

− m−1
4m(m+3)

− m−1
4m(m+3)

− m−1
4m(m+3)

m+1
2m(m+3)

m−1
4m(m+3)

− m−1
4m(m+3)

m−1
4m(m+3)

m+1
2m(m+3)




α̂ = 1

m + 3

[
m + 1

2
(y1,1,• − y−1,1,•) + (y1,−1,• − y−1,−1,•)

]
. (7)

The estimate ofβ is similar. The variances of̃α andα̂ can be deduced from those
of the means. Under the usual assumption Var(y) = σ 2I , we have sincey−1,−1,• =
y−1,−1

var(y−1,−1,•) = σ 2, var(y1,1,•) = var(y−1,1,•) = var(y1,−1,•) = σ 2

m
,

hence

var
(
α̂
) = m + 1

2m(m + 3)
σ 2, var(α̃) = σ 2

16

(
1 + 3

m

)
. (8)

If γ = 0, bothα̂ and α̃ are unbiased estimates ofα and (8) then shows that̂α is a
better estimate ofα thanα̃. Note however that the ratio

var(α̃)

var(α̂)
= 1

8

(m + 3)2

m + 1

increases withm, but remains smaller than 2 ifm 6 10 so that the superiority of the
R-estimate over the R.-one becomes decisive forγ = 0 only for very large values
of m.

But in such an experiment, one can never assumeγ = 0. Even if the test of the
interaction failed to reject this hypothesis, this does not mean thatγ = 0, but only
thatγ is too small to detect if it is greater or smaller than 0. To take this into account,
there are two possible attitudes.

(1) Choose the R-approach, but carefully look at the expectation ofα̂ andβ̂ for
the interpretation. In the example, the expectation ofα̂:



246 A. Kobilinsky / Linear Algebra and its Applications 321 (2000) 239–280

E(α̂) = 1

m + 3

[
m + 1

2

(
τ (1, 1) − τ (−1, 1)

)+ (
τ (1,−1) − τ (−1,−1)

)]
,

gives, whenm is large, nearly all the weight to theA-effect forb = 1. Note that if
the number of replications in cells(1, 1) and (−1,−1) were interchanged, theA-
effect would on the contrary give all the weight to levelb = −1. Thus ifγ /= 0, the
definition of theA-effect strongly depends on the experiment. Provided one is aware
of that and does not try to compare estimatesα̂ coming from different experiments,
it may seem sensible to adapt in this way the definition of theA-effect to the data.

But continuation of this logic, which selects the contrasts examined according to
the data to make the better use of the available information, should also lead to the
examination of theA-effect in the model excludingβ as well asγ . In this model,
τ (a, b) = µ + aα, α is estimated by

α̌ = 1

2

(
y1,1,• + y1,−1,•

2
− my−1,1,• + y−1,−1,•

m + 1

)
with a variance

var(α̌) = 1

4

(
1

2m
+ 1

m + 1

)
σ 2,

which is even lower than var(α̂). The expectation of thišα under the whole model
becomes even more difficult to interpret as it is a function of the three parameters of
model (5) which can be non-zero even whenβ is the only non-zero parameter.

Such an approach using nested models to explore the data has thus the advantage
of adapting itself to the data to make the contrasts examined more precise. But it leads
to contrasts that are data dependent, difficult to interpret, the more so as the model
becomes more complex, involving more factors, more interactions and possibly a
mixture of qualitative and quantitative factors. This approach should therefore be
avoided unless a strong non-orthogonality induces a drastic increase of variance on
some parameters. An extreme case is when the columnsXδ andXη associated with
two parametersδ andη are equal:Xδ = Xη. Let thenX0 be the submatrix made
up with the other columns ofX andθ0 the corresponding vector of parameters. The
model is

E(y) = X0θ0 + Xδδ + Xηη = X0θ0 + Xδ(δ + η).

In the whole model,δ andη cannot be estimated. But ifXη is suppressed from
the model andXδ is not in the space generated byX0, δ + η can be estimated as
the parameter associated withXδ. If δ andη pertain to single factorial effects, the
sum cannot generally be given any simple interpretation. But if its estimate has an
important absolute value, it indicates that eitherδ of η or both have important values.
This can prompt the experimenter to go on with the experimentation to get separate
estimates of them. In some cases, consideration making use of past knowledge or of
the other estimates inθ0 makes it possible to decide which ofδ or θ accounts for the
importance of the sum without further information.
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It may therefore be appropriate when examining a factorial effect to drop the
terms that are highly non-orthogonal with it in the model. But they should be the only
terms dropped, because dropping terms makes the contrasts examined depend on the
hazard of the data and therefore complicates the interpretation. In particular, there is
generally no reason while examining some effects to drop all the terms imbedding it.

A final argument against the systematic use of R-approach is the impossibility to
compare with it data coming from different designs. This approach is therefore of
no use for the design of experiment and never appears in the literature on factorial
designs.

(2) The second attitude is to adopt the R-approach as a way to get good biased
estimates of the parameters in model (5). Whenγ = 0, the R-approach leads to a
better estimate ofα than the R

.

-approach. So it can be hoped that whenγ is not
significantly different from 0, the R-estimateα̂ has a better MSE (mean square error)
than the R. estimateα̃. Unfortunately, we show below that this is wrong in many
contexts.

The estimatẽα is by construction unbiased and it therefore follows from (8) that

MSE(α̃) = var(α̃) = σ 2

16

(
1 + 3

m

)
.

The bias forθ̂1 is (X′
1X1)

−1X′
1X2γ . Theα coordinate of this vector is:

Bias(α̂) = m − 1

m + 3
γ.

So

MSE(α̂) = σ 2
[

m + 1

2m(m + 3)
+ (m − 1)2

(m + 3)2

(γ

σ

)2
]

.

The ratio of these two MSEs is
MSE

(
α̂
)

MSE(α̃)
= 8(m + 1)

(m + 3)2
+ 16m(m − 1)2

(m + 3)3

(γ

σ

)2

= v + b
(γ

σ

)2
,

where

v = 8(m + 1)

(m + 3)2 , b = 16m(m − 1)2

(m + 3)3 .

The R-estimate is better than the R. one ifv + b(γ /σ)2 < 1, that is,

MSE
(
α̂
)

< MSE(α̃) ⇐⇒ (γ /σ)2 <
1 − v

b
= m + 3

16m
.

Thus whenγ /σ is greater than

S = √
(m + 3)/16m, (9)

the R.-estimateα̃ is better than the R-estimatêα. Table 5 gives the thresholdS for
eachm 6 10. A question which naturally arises is then: what is the probability to
reject the hypothesisγ = 0 of no interaction whenγ /σ is equal toS?
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The estimate ofγ in the interactive model is given by (6). Its variance is

var(γ̃ ) = m + 3

16m
σ 2 = kσ 2,

where

k = m + 3

16m
. (10)

The testF of the hypothesisγ = 0 is thus

F = γ̃ 2/k

σ̃ 2
,

whereσ̃ 2 denotes the residual variance, computed withM = 3(m − 1) degrees of
freedom. Under the usual normality assumptions, we have

γ̃√
kσ

∼ N

(
γ√
kσ

, 1

)
,

σ̃ 2

σ 2
∼ χ2

M

M

and thus

F = γ̃ 2/kσ 2

σ̃ 2/σ 2 ∼ F1,M

(
γ 2

kσ 2

)
, (11)

whereF1,M(λ) denotes the non-centralF -distribution with 1 andM degrees of
freedom and non-centrality parameterλ.

If γ /σ is equal to the thresholdS given by (9), it follows from (10) that the
non-centrality parameter on the right-hand side of (11) is 1. The probabilityP1 to
reject the hypothesisγ = 0 at level 5% with this non-centrality parameter is given in
Table 5. We also give in this table the probabilityP10 to reject the hypothesisγ = 0
at the 5% level ifγ /σ is 10 times the thresholdS (the non-centrality parameter is
then equal to 10). As this table shows, there are a wide range of values ofγ /σ where
the estimatẽα of the A-effect in the model with interaction has a better MSE than
the estimatêα in the additive model although there is very little chance to detect the
interaction.

Indeed, even if the interaction is found significantly different from 0, looking at
the meanA-effectα defined in (4) still makes sense. If thisA-effect is found much

Table 5
Comparison of R and R. estimates

m

2 3 4 5 6 7 8 9 10

S 0.4 0.35 0.33 0.32 0.31 0.3 0.29 0.29 0.29
P1 0.11 0.14 0.15 0.15 0.16 0.16 0.16 0.16 0.16
P10 0.57 0.75 0.8 0.83 0.84 0.85 0.85 0.86 0.86
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larger than the interaction, then it can be sensible from a practical point of view to
neglect the interaction even if it is statistically significant. On the contrary, if this
A-effect is of the same order or even smaller than the interaction, then this indicates
that the two factors cannot be considered separately and that the four means have to
be examined and compared as if they were the levels of the same four-level factor.

2.2. An example with crossed factors and unequal weights

As already mentioned, though in most uniform circumstances it is natural to use
equal weights to define marginal means, unequal weights may sometimes be more
appropriate or even essential. Kobilinsky [11] gives an example where choosing the
classical uniform weights makes the results very difficult to use.

The example comes from a study on the influence of cheese making conditions
on the texture and quality of the Arzúa-Ulloa cheese, a traditional Galician cheese
[1]. In this study, six 2-level and one 3-level process factors are taken into account
in a design with 32 units. The units are structured in eight blocks of size 4 (factorj)
corresponding to the sets of four cheeses made the same day with the same milk. The
3-level factor, denoted byA, is the salting conditions: the salt can be added either in
the milk, or in the curd, or in the brine which receives the fresh cheese.

To find a suitable design, it can be first done as if the salting conditions – factorA
– had four levels defined by two pseudofactorsA1, A2. It is easy to find the two
possible sets of defining relations ensuring resolution IV and then, by backtrack
search, to find for each of these two sets three 2-level block pseudofactorsj1, j2,
j3 defining a system of eight blocks orthogonal to main effects. Table 6 gives the
definitions and properties of the two corresponding regular fraction.

Table 6
The two regular 4× 26/8 fractions of resolution 4

Definition First fraction Second fraction
E = A1BCD, F = A2BC, G= A2BD E = A1BC, F = A1BD, G =A1CD

Blocks j1 = A2B, j2 = A2C, j3 = A2D j1 = A1B, j2 = A1C, j3 = A1D

Whole set of
defining contrasts

A1BEFG,A1BCDE,A1A2DEF,

A1A2CEG,A2BDG,A2BCF,CDFG

A1BCE,A1BDF,A1CDG,

A1EFG,BCFG,BDEG,CDEF

Aliased
factorial effects

([j2]; A2C; BF), ([j2j3]; CD;FG),

([j3]; A2D; BG), ([j1j3]; A2G;BD),

([j1j2j3];A1A2E; DF ; CG),

([j1j2]; A2F ; BC),

([j1]; CF ;DG; A2B),

(A1A2C; EG), (A1A2D;EF),

(CE;A1A2G), (DE; A1A2F)

([j3], CG,A1D,BF),

([j1j3], EG,A1F,BD),

([j1], CE,DF,A1B),

([j2j3], EF,A1G,CD),

([j2], A1C,DG,BE),

([j1j2], FG,A1E,BC),

([j1j2j3], CF,DE,BG)

Unaliased
factorial effects

A1, A2, A1A2, B,C, D,E, F,G,

A1B,A1C,A1D,A1E,A1F,

A1G,A2E,A1A2B,BE

A1, A2, A1A2, B,C,D,E, F,G,

A2B,A2C,A2D,A2E,A2F,A2G,

A1A2B,A1A2C,A1A2D,

A1A2E,A1A2F,A1A2G

Residual degrees
of freedom

2 3
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To give three instead of four levels to factorA, the levels(−1, 1) and (1,−1)

defined byA1, A2 are collapsed, in the way defined by Addelman [2], to one unique
level which therefore appears twice as often as the two other levels, that is 16 times
instead of 8. It is easy to derive the properties of the resulting design from those
of the initial regular fraction and to show that the collapsing of levels preserves the
resolution IV, provided one gives to the level resulting from the collapse twice the
weight of the other two levels when defining the main effects and interactions.

It was the second fraction which was in this case selected because it leads after
the collapse to a fraction which can estimate, besides main effects, all two-factor
interactions involvingA in the model including all two-factor interactions and the
block effects. It turns out that the corresponding design is of resolution IV even
if the levels ofA are uniformly weighted. But this is not true of the first fraction.
For this fraction, given explicitly in Table 7, Table 8 gives the linear estimable
combination of parameters for two reparametrisations. The weighted one uses the
adequate unequal weights preserving the resolution IV, while the classical one based
on uniform weights loses it. In this second parametrisation, some main effects are
confounded with two factor interactions which makes the results extremely difficult
to interpret.

2.3. Analysis of variance of non-uniform data: the puzzle

Known softwares offering an R. approach only propose equal weights. They are
thus unable to give a proper analysis for resolution IV designs as the one mentioned
in the previous section. But they can correctly analyse most cases where factors are
either crossed or nested, provided nesting relationship areuniform. Following Speed
and Bailey [21], we say that a factorB nested inA is uniformly nested if the number
of levels ofB is the same within each of the classes defined by the levels ofA.

Whenever there are non-uniform nestings, most softwares still produce a result,
but the results may differ from one software to another.

Consider again the situation with three factors used to illustrate theR-notation
in the beginning of Section 2. Assume thatA andB have two levels and thatC has
three levels forA = 1, but only two forA = 2. FactorB is completely crossed with
C andA. The design is given on the leftside of Table 9 together with a simulated
observed variatey. Some treatments have been repeated twice in order to get residual
degrees of freedom. Table 10 gives the sum of squares obtained with the model
A + B + AB + AC + ABC by different softwares. For three of these softwares, the
corresponding programs are given in Table 11.

Most results are identical, except for the main effect ofB. With the software Splus,
there are some differences between the UNIX version 3.2 and the Windows version
4.5 that were used. In the UNIX version, the function drop1.aov was used to drop
terms from the model in the hope of getting some R. type sums of squares. But this
version of Splus [22] does not cope with non-uniformity and considers thatC should
have a third level within level 2 ofA. It therefore adds two supplementary columns in
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theX matrix of the linear model and produces the diagnostic that 2 out of 12 effects
are not estimable. It consequently produces a lot of zeros in the analysis of variance
“with drop1.aov”. The Windows version allows us to obtain the same type III sums
of squares as in SAS with the statement “summary(result, ssType = 3)” applied to the
result of “aov”. The SPSS windows version [23] also provides the type III sums of
squares of SAS in a standard way. However Drton [9] found with the unique sum of
squares of SPSS release 6.1 and the same data a different result which we reported
on the rightside of Table 10. SPSS warns the user that “UNIQUE sum of squares
are obtained assuming the redundant effects (possibly caused by missing cells) are
actually null” and that “The hypothesis tested may not be the hypothesis of interest”.

Table 7
The first fraction defined in Table 6

A1 A2 j1 j2 j3 A B C D E F G j

0 0 0 0 0 2 1 1 1 1 1 1 7
1 0 0 0 0 1 1 1 1 0 1 1 7
0 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 0 1 1 1 0 0 0 0
0 0 1 0 0 2 0 1 1 0 0 0 3
1 0 1 0 0 1 0 1 1 1 0 0 3
0 1 0 1 1 1 0 1 1 0 1 1 4
1 1 0 1 1 0 0 1 1 1 1 1 4
0 0 0 1 0 2 1 0 1 0 0 1 5
1 0 0 1 0 1 1 0 1 1 0 1 5
0 1 1 0 1 1 1 0 1 0 1 0 2
1 1 1 0 1 0 1 0 1 1 1 0 2
0 0 1 1 0 2 0 0 1 1 1 0 1
1 0 1 1 0 1 0 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 1 6
1 1 0 0 1 0 0 0 1 0 0 1 6
0 0 0 0 1 2 1 1 0 0 1 0 6
1 0 0 0 1 1 1 1 0 1 1 0 6
0 1 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 0 0 1 1 0 1 0 1 1
0 0 1 0 1 2 0 1 0 1 0 1 2
1 0 1 0 1 1 0 1 0 0 0 1 2
0 1 0 1 0 1 0 1 0 1 1 0 5
1 1 0 1 0 0 0 1 0 0 1 0 5
0 0 0 1 1 2 1 0 0 1 0 0 4
1 0 0 1 1 1 1 0 0 0 0 0 4
0 1 1 0 0 1 1 0 0 1 1 1 3
1 1 1 0 0 0 1 0 0 0 1 1 3
0 0 1 1 1 2 0 0 0 0 1 1 0
1 0 1 1 1 1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 0 0 0 0 0 7
1 1 0 0 0 0 0 0 0 1 0 0 7
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Table 8
Aliased effects with two different parametrisations

Weighted parametrisation Classical parametrisation

A A

A2 A2

B B

C C + E.G/3
D D + E.F/3
E E + (C.G + D.F + j7)/3
F F + D.E/3
G G + C.E/3
A.B A.B

A2.B A2.B

A.C A.C

A2.C + E.G A2.C + 2
√

2 E.G/3
A.D A.D

A2.D + E.F A2.D + 2
√

2 E.F/3
A.E A.E

A2.E + C.G + D.F + j7 A2.E + 2
√

2 (C.G + D.F + j7)/3
A.F A.F

A2.F + D.E A2.F + 2
√

2 D.E/3
A.G A.G

A2.G + C.E A2.G + 2
√

2 C.E/3
B.C + j4 B.C + j4

B.D + j5 B.D + j5

B.E B.E

B.F + j2 B.F + j2

B.G + j3 B.G + j3

C.D + F.G + j6 C.D + F.G + j6

C.F + D.G + j C.F + D.G + j

Residual degrees of freedom: 4

It is also possible using the “difference contrasts” in SPSS to get the sums of squares
corresponding to the weightsW1 [9].

Since there is a termABC in the model, marginal means can be computed from
the cell means which are given on the rightside of Table 9. The marginal means forB
are given at the bottom of the table. There are two natural ways to compute them and
hence the main effect forB. In the first way, equal weights are given to the five levels
of factorC (weightW2). This gives the unequal weights 3/5, 2/5 to the levels 1, 2 of
A, respectively. In the second way, equal weights 1/2 are given to the two levels of
A and consequently unequal weights (1/6, 1/6, 1/6, 1/4, 1/4) to the five levels ofC
(weightW1). The third weightWp introduced is the one leading to the SAS type III
mean squares in that case.

It is easy to deduce the mean square forB from these marginal meansmB1, mB2
and from the number of replicationsrabc in the cells:
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MS(B) = (mB1 − mB2)
2∑

a,c W2
ac

(
1

ra1c
+ 1

ra2c

) .

For instance ifW = W1, the denominator is:

0.2673611111=(1/6)2(1 + 1) + (1/6)2(0.5 + 0.5) + (1/6)2(0.5 + 0.5)

+ (1/4)2(0.5 + 0.5) + (1/4)2(0.5 + 1)

and thus

MS(B) = (23.5 − 62/3)2/0.2673611111= 30.02597403.

The SAS type III sums of squares are defined [17] by an orthogonalisation process
in the dual of the parameter space, where the vectorθ of parameters is defined in the
usual way:

θ ′=(µ, α1, α2, β1, β2, αβ11, αβ12, αβ21, αβ22, αγ11, αγ12, αγ13, αγ21, αγ22,

αβγ111, αβγ112, αβγ113, αβγ121, αβγ122, αβγ123, αβγ211, αβγ212,

αβγ221, αβγ222).

It has dimension 24 and orthogonality is with respect to the usual scalar product of
R24. In the non-uniform case, it seems difficult to give a sense to this scalar product,

Table 9
Example withC nested inA andB crossed withA andC

Design
A C B y

1 1 1 54
1 1 2 14
1 2 1 21
1 2 1 17
1 2 2 36
1 2 2 28
1 3 1 24
1 3 1 25
1 3 2 18
1 3 2 15
2 1 1 17
2 1 1 12
2 1 2 21
2 1 2 25
2 2 1 15
2 2 1 14
2 2 2 18

Cell means andB-marginal means
B

1 2
W1 W2 Wp A C mean nb.rep mean nb.rep
1/6 1/5 p/3 1 1 54 (1) 14 (1)

1/6 1/5 p/3 − 2 19 (2) 32 (2)

1/6 1/5 p/3 − 3 24.5 (2) 16.5 (2)

1/4 1/5 (1 − p)/2 2 1 14.5 (2) 23 (2)

1/4 1/5 (1 − p)/2 − 2 14.5 (2) 18 (1)

Marginal means forW1 23.5 62/3
Marginal means forW2 25.3 20.7
Marginal means forWp , 24.029 20.676

p = 0.5294117647a

aSAS type III mean square forB can be computed from theB-means obtained with the weightWp ,
wherep = 0.5294117647
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Table 10
Mean squares for example of Table 9

Factorial d.f.a Mean squares
effect WeightsW1 WeightsW2 SAS type III Splus UNIX MINITAB SPSS 6.1

A 1 314.29 314.29 314.29 0 314.29 223.21
B 1 30.03 81.39 42.75 0 30.03 34.30
A.B 1 291.84 291.84 291.84 0 291.84 118.30
A.C 3 84.53 84.53 84.53 84.53 84.53 84.53
A.B.C 3 317.67 317.67 317.67 317.67 317.67 317.67

a d.f.: degrees of freedom.

hence to the mean squares thus defined. In the example however, it can easily be
seen that theB type-III sum of squares is associated with theB-effect computed with
the weightWp given in Table 9. Note that the means computed with the LSMEANS
statement are different: they are in fact theB-means associated with the weightW1.
So there is no coherence between sum of squares and adjusted means in that case.

In Splus under Windows, we unsuccessfully tried to get the adjusted means by
asking for them in the menu: Statistics> Analysis of variance> fixed effects. This
produced the following diagnostic: “Error in model.means.lm(x, estimable.functions
= F): computataions failed because of term(c% in %a) : b”.

The adjusted mean squares in MINITAB [13] are those obtained with the weights
W1 giving the same weight to the two levels ofA.

The computation of sums of squares in this example relies on the definition of
the weightsWA, WB , WC associated with the three factors. It seems natural in this
context to give the same weight to the two levels ofB and similarly to give equal
weights to all the levels ofC within some level ofA, that is to take

WB(1) = WB(2) = 1/2,

WC(1, 1) = WC(1, 2) = WC(1, 3) = 1/3,

WC(2, 1) = WC(2, 2) = 1/2,

whereWC(a, c) is the weight associated to the levelc of C within the levela of the
nesting factorA.

For the factorA, we have introduced two natural choices:

WA(1) = WA(2) = 1/2,

WA(1) = 3/5, WA(2) = 2/5.

Let T be a term in the model. The weights on which the corresponding factorial
effect depends are easy to find (see Proposition 5.4). They are the weights associated
to factors which appear in a term includingT but not inT itself.

In the example, the factorial effectsA, AB, AC, ABCdo not depend onWA since
A appears in their definition. ButB is dependent onWA sinceA appears in the term
ABwhich includesB.

Another small example with four factorsA, B, C, D and the hierarchies

A > B, C > D
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Table 11
Programs used to compute the MS in Table 10

SAS

data d;
infile ‘nonunif1.don’;
input A C B V;
run;
proc glm data=d;
class A C B;
model V=A C(A) A*B B C*B(A)/ ss3 e3;
lsmeans A C(A) A*B B C*B(A);
run;

Splus

d<-read.table("nonunif1.don",header=T)
d$a<-factor(d$a)
d$b<-factor(d$b)
d$c<-factor(d$c)
result<-aov(v~a/c*b,d)
drop1.aov(result,scope=result$call)
summary(result,ssType=3) (Windows version only)

SPSS (release 6.1)

MANOVA
y BY a(1 2) c(1 3) b(1 2)
/N0PRINT PARAM(ESTIM)
/METHOD=UNIQUE
/ERROR WITHIN
/DESIGN = a, b, c WITHIN a, a BY b, b BY c WITHIN a .

is detailed in Table 12. As in Table 10, each column of mean squares corresponds
either to a given system of weight, or to the output of a particular software. We have
introduced four systems of weight given besides the data. The fourth oneW4 was
selected because it corresponds to some of the SAS type III sum of squares.

Note that the systems of weights only differ by the weights associated withA and
C. For the nested factorsB andD, the standard natural weights have been selected in
each case, that is
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Table 12
Example with four factors satisfyingA > B, C > D

Design
A B C D V

1 1 1 1 3.3
1 1 2 2 6.6
1 1 2 2 7.5
1 1 2 3 13.6
2 2 1 1 6.3
2 2 1 1 8.9
2 2 2 2 11.4
2 2 2 3 17.9
2 2 2 3 15.5
2 3 1 1 11.9
2 3 1 1 11.9
2 3 2 2 14.9
2 3 2 2 14.5
2 3 2 3 19.9
2 3 2 3 20.4

System of weights
WA(1) WA(2) WC(1) WC(2)

W1 1/2 1/2 1/2 1/2
W2 1/3 2/3 1/2 1/2
W3 1/3 2/3 1/3 2/3
W4 0.45 0.55 0.45 0.55

Factorial ddl Mean Squares
effect W1 W2 W3 W4 SAS t-III MINITAB
A 1 79.18 79.18 88.93 83.80 83.80 79.18
C 1 95.29 121.15 121.15 104.16 104.16 95.29
A.C 1 0.62 0.62 0.62 0.62 0.62 0.62
A.B 1 36.96 36.96 36.11 37.59 36.96 36.96
C.D 1 67.89 77.01 77.01 72.03 67.89 67.89
A.C.D 1 0.64 0.64 0.64 0.64 0.64 0.64
A.B.C 1 0.52 0.52 0.52 0.52 0.52 0.52

WB(1, 1) = 1, WB(2, 2) = WB(2, 3) = 1/2,

WD(1, 1) = 1, WD(2, 2) = WD(2, 3) = 1/2.

The model is

E = {A,C,AC,AB,CD,ACD,ABC}.

It does not include the interactionABCDbetweenB andD.
The rule previously mentioned shows thatAC, ABCandACD are independent of

the weightsWA, WC while A, AB are depending onWC andC, CD on WA. This
explains the difference between the columns of mean squares. In that example, the
SAS type III sums of squares forA, C correspond to the system of weightW4 and
those forAB, CD to the system of weightW1. As in the preceding example, the sums
of squares for MINITAB correspond to the first systemW1 of weights.
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3. Orthogonal design

Let T be a set of treatments. A factorA on T can be identified with a mapping
φA : T → TA giving for each treatment its corresponding level. The rangeTA of φA

is the set of levels of the factorA.
If A andB are factors onT, we adopt the convention thatA > B if A nestsB, that

is if for everyt, s in T

φB(t) = φB(s) H⇒ φA(t) = φA(s),

or equivalently if there exists a mappingφAB : TB → TA such thatφA = φAB ◦ φB .
If a = φAB(b) is then the level ofA corresponding to a given levelb of B, a is said
to nest b.

The factorsA andB are said to be equivalent, and we writeA ∼ B, if A 6 B and
B 6 A. This occurs iff they induce the same partition ofT. The partition induced by
a factorA is formed by the reciprocal imagesφ−1

A (a) of its levelsa in TA.
With each factorA and corresponding mappingφA from T into TA is associated

the contravariant linear mappingφ∗
A : xA 7→ xA ◦ φA from RTA into RT and its

imageSA = φ∗
A

(
RTA

)
, subspace of functions fromT into R which are constant on

each classφ−1
A (a). The correspondenceA 7→ SA is such thatA nestsB (A > B) iff

SA ⊂ SB , andA andB are equivalent iffSA = SB . Moreover, any two factorsA and
B have a supremumA ∨ B which is the smaller factor nesting both of them and
SA∨B = SA ∩ SB .

A model is a familyE of factors.
Assume the experimenter wishes to studyn primary factors, numbered 1, . . . ,n.

For eachi in the setI = {1, . . . , n} of these factors, we denote byTi its set of levels
and byφi the corresponding mapping fromT intoTi . The modelE generally includes
the constant factor, the primary factors and theproduct factorsassociated with the
non-zero interactions.

If J ⊂ I is the subset of primary factors defining such an interaction, the associ-
ated product factor, denoted byφJ , is defined by

φJ (t) = (φi(t))i∈J . (12)

It coincides with the product mappingφJ = ∏
i∈J φi and is for this reason called the

product of the family of factors(φi)i∈J . Its set of levelsTJ is a subset of
∏

i∈J Ti .
We shall generally refer to it asthe factor J, though it will sometimes be more
convenient to denote itφJ to distinguish it from the subset. For instance we shall
write sometimesφJ 6 φK rather thanJ 6 K.

WhenJ is reduced to a single elementi, we assume thatTJ = Ti and identifyφJ

with φi .
In what follows, adesignis a triplet (T, W, E) whereT is a set of treatments,W a

weight function onT andE a model. The weight functionW is a function fromT into
the setR+∗ of strictly positive real numbers satisfying

∑
t∈T W(t) = 1. It induces

the following scalar product onRT :
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〈x, z〉 =
∑
t∈T

W(t)x(t)z(t). (13)

Orthogonality being defined with respect to this scalar product, two factorsA and
B are said to begeometrically orthogonalif the orthogonal supplementary subspaces
of SA ∩ SB in SA andSB respectively are orthogonal:

SA ∩ (SA ∩ SB)⊥ ⊥ SB ∩ (SA ∩ SB)⊥. (14)

Definition 3.1 (Orthogonal design). The design (T, W, E) is orthogonal if:
(i) the factors inE are surjective, non-equivalent and geometrically orthogonal,
(ii) E is closed under the formation of maxima.

Let (T, W,E) be an orthogonal design. ForA in E, defineSA as the subspace of
vectors inSA orthogonal to each subspaceSB for B > A. Then it is clear from their
definition that the subspacesSA, A ∈ E, are orthogonal and that for eachA, SA is the
direct sum of the subspacesSB for B > A.

In fact the modelE is used for two things. First to define the subspaceSof RT to
which the vectorτ of treatment effects must belong: it is the sum of theSA for A ∈ E.
Then to provide a decomposition ofτ into meaningful components by projection
onto the orthogonal subspacesSA:

τ =
∑
A∈E

QA τ, (15)

whereQA is the operator of orthogonal projection ontoSA.
AssumeE includes the constant factor. Ifτ ∈ RT is the vector of treatment ef-

fects, the set of linear forms{τ 7→ 〈x, τ 〉 | x ∈ SA} is, whenA is different from the
constant factor, the space of contrasts traditionally associated with the termA of the
model. Note that the weight function must be taken into account in the definition of
contrasts. The linear form〈x, τ 〉 is a contrast ifx is orthogonal to the constant vector
1, that is, if∑

t∈T

W(t)x(t) = 0.

The weightW(S) of a subsetS of T is defined as the sum of the weights of its
elements

W(S) =
∑
s∈S

W(s), (16)

and the weight functionWA induced byA onTA by

WA(a) = W
(
φ−1

A (a)
)

. (17)

Assume thatφA is a surjection ontoTA. If xA, zA are two vectors inRTA , let〈xA, zA〉A
= 〈xA ◦ φA, zA ◦ φA〉 be the scalar product induced by the scalar product (13) ofRT .
Then
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〈xA, zA〉A =
∑
a∈TA

WA(a)xA(a)zA(a) (18)

andφ∗
A is an isomorphism ofRTA equipped with the scalar product (18) ontoSA

equipped with the scalar product (13).
We denote byPA the operator of orthogonal projection fromRT ontoSA. Since

the canonical basis(ea)a∈TA of RTA is orthogonal for the scalar product (18), so is
its image(ea ◦ φA)a∈TA by φ∗

A for the scalar product (13). Hence

PA x=
∑
a∈TA

〈x, ea ◦ φA〉
〈ea ◦ φA, ea ◦ φA〉ea ◦ φA

=
∑
a∈TA

∑
φA(t)=a W(t)x(t)∑

φA(t)=a W(t)
ea ◦ φA. (19)

Thus the projectionPA x is obtained by replacing for everya ∈ TA all the co-
ordinates of indext in φ−1

A (a) by their weighted mean

xa =
∑

t∈φ−1
A (a)

W(t)x(t)

WA(a)
. (20)

If xA = (xa)a∈TA is the vector of these means, then

PA x = φ∗
A(xA). (21)

Let P̃A be the mapping sendingx ontoxA:

P̃A x = xA. (22)

Equality (21) gives the equality

PA = φ∗
A ◦ P̃A, (23)

which shows thatP̃A is the mapping corresponding toPA whenSA is identified to
RTA through the isomorphismφ∗

A.
Equality (21) can be expressed in a more familiar way. We letD, DA be the

diagonal matrices with the weightsW(t), WA(a) on the diagonal andXA be the
matrix ofφ∗

A with respect to the canonical basis ofRTA andRT . Then

DA = X′
ADXA, xA = D−1

A X′
AD x, PA x = XAD−1

A X′
AD x . (24)

Let (T, W, E) be an orthogonal design andA a given factor ofE. Each factorB
nestingA induces a factor onTA, that is, the mappingφBA from TA into TB which
satisfiesφB = φBA ◦ φA. The family of factors thus induced by the factorsB > A in
E is denoted byEA and called the family induced byE onTA. The design (TA, WA,
EA) is called the design induced onTA by the design (T, W, E).

With each factorφBA in EA is associated thecontravariantlinear mappingφ∗
BA :

xB 7→ xB ◦ φBA from RTB into RTA and the subspaceASB = φ∗
BA(RTB ) of RTA .

It is clear thatφ∗
B = φ∗

A ◦ φ∗
BA. Consequently,SB = φ∗

A (ASB). The subspacesSB ,
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B > A, of RT are thus the images byφ∗
A of the corresponding subspacesASB of

RTA . Sinceφ∗
A is an isomorphism fromRTA with the scalar product (13) onto the

subspaceSA with the scalar product (18), it respects the orthogonality and hence the
following proposition.

Proposition 3.1. Let (T ,W,E) be an orthogonal design and A a factor inE. Then
the design(TA,WA,EA) induced by(T ,W,E) onTA is orthogonal. The decompos-
ition into sums of orthogonal subspaces

RTA =
⊕
B>A

ASB, SA =
⊕
B>A

SB

induced by these two designs correspond to each other by the linear injective map-
pingφ∗

A.

Let QB be the operator of orthogonal projection ontoSB . WhenSB is identified
to RTB throughφ∗

B , QB is identified to the mapping̃QB such that

QB = φ∗
B ◦ Q̃B. (25)

If B > A, φ∗
B = φ∗

A ◦ φ∗
BA and therefore

QB = φ∗
A ◦ φ∗

BA ◦ Q̃B, (26)

which shows thatφ∗
BA ◦ Q̃B is the mapping corresponding toQB whenSA andRTA

are identified throughφ∗
A. From the decomposition ofSA given by Proposition 3.1,

it follows thatPA = ∑
B>A QB , henceP̃A = ∑

B>A φ∗
BA ◦ Q̃B and

Q̃A = P̃A −
∑
B>A

φ∗
BA ◦ Q̃B. (27)

This equality can be used to compute recurrentlyQ̃A.
The following proposition, weighted equivalent of Proposition 1 of Tjur [24],

gives a practical condition of geometrical orthogonality.

Proposition 3.2. Let A, B be two factors defined on T andH = A ∨ B. Then A and
B are geometrically orthogonal if and only if for every couple(a, b) ∈ TA × TB such
that a and b are both nested into the same level h ofTH

WA×B(a, b)WH(h) = WA(a)WB(b).

The factorA × B is the mappingt 7→ (φA(t), φB(t) from T into TA × TB . Con-
sequently,WA×B(a, b) is the sum of the weights of the elements having respectively
a andb as levels ofA andB. Note that the productA × B is equivalent toA ∧ B. If
A = φJ andB = φK , it is moreover equivalent toφJ∪K .
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4. Reference design in the non-uniform case

We now show how to define a suitable reference orthogonal design in the general
case. We letI = {1, . . . , n} be the set of primary factors studied by the experimenter.
Any treatment can be defined by the familyt = (ti )i∈I of corresponding levels of
these factors. However, any such vector in

∏
i∈I Ti does not necessarily define a

feasible treatment. If factori is compelled by the nature of things to nest another
factorj, then the levelsti andtj must be compatible, that is must satisfyti = φij (tj ).
We shall assume here that these are the only constraints to be satisfied.

More precisely, it is assumed thatI is partially ordered by the nesting relation and
that for each couplei, j in I such thati > j , there is a mappingφij : Tj → Ti giving
for each leveltj of j the nesting levelti = φij (tj ) of i. These mappings must clearly
satisfy the following two conditions:
1. if i > j > k, thenφik = φij ◦ φjk and
2. for eachi, φii is the identity ofTi .

The feasible treatments are assumed to be all the familiest = (ti )i∈I of
∏

i∈I Ti

satisfyingti = φij (tj ) when i > j . Thus, the setT of treatments of the reference
design is

T = {(ti )i∈I | ti = φij (tj ) for i, j in I andi > j }. (28)

This set is known as theprojective limitof the family(Ti)i∈I [7]. The projective limit
TJ of any subfamily(Ti)i∈J is defined similarly:

TJ = {(ti)i∈J | ti = φij (tj ) for i, j in J andi > j }. (29)

If J = ∅, we adopt the convention thatTJ is a set with one element.
The factor i on T is then the projectionφi of index i, which sends a treatment

t = (ti )i∈I in T on the corresponding levelti in Ti . For each subsetJ of I, the factor
J is the mappingφJ = ∏

i∈J φi defined by (12). It coincides onT with the canonical
projection of indexJ:

φJ

(
(ti)i∈I

)
= (ti)i∈J . (30)

It is clear thatφJ sendsT into the projective limitTJ .
If J ⊂ K, the factorJ nests the factorK. More precisely, letφJK be the projection

of indexJ from TK into TJ defined by

φJK

(
(ti )i∈K

)
= (ti )i∈J . (31)

Then

φJ = φJK ◦ φK. (32)

However, even ifJ is strictly included inK, the mappingsφJ andφK may be equiva-
lent. Assume indeed that for eachk ∈ K, there is aj ∈ J such thatj 6 k. Then the
coordinates onK of an elementt ∈ T are completely determinated by its coordinates
onJ. ConsequentlyφK ∼ φJ . As a particular case, we get the following proposition.
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Proposition 4.1. Let J be a subset of I and K the ancestral subset generated by J,

that is, the set of elements greater or equal than an element of J. ThenφJ andφK

are equivalent factors.

A subsetJ of I is said to beancestralif

j ∈ J and k > j ⇒ k ∈ J. (33)

In view of Proposition 4.1, we consider from now on only factorsφJ associated to
ancestral subsetsJ of I.

For i ∈ I , we denote by]i the set of factors inI strictly greater thani and by[i
the set of those which are greater or equal toi

]i = {j ∈ I | j > i}, [i = {j ∈ I | j > i}. (34)

We letρi be the mapping fromTi into the projective limitT]i of the family(Tj )j>i

defined by

ρi(ti) =
(
φji(ti )

)
j∈]i . (35)

If ]i is empty,T]i is reduced to one element andρi is the constant mapping. Note
that

φ]i = ρi ◦ φi. (36)

The following assumption is needed to avoid constraints other than those induced by
nesting relations and to guarantee that no primary factor reduces to the product of
the factors nesting it.

Assumption 4.1. Each mappingρi is surjective but not injective.

The projective limitT]i of the family (Tj )j>i will be called theprecursor setof
Ti . We shall say of an elementti such thatρi(ti ) = v that it hasv as precursor. The
assumption tells that for eachi, the setsρ−1

i (v) for v in T]i are not empty and that at
least one of them has two or more elements.

For eachi in I, let Wi be a weight function fromTi into the setR+∗ of strictly
positive real numbers satisfying∑

ti∈ρ−1
i (v)

Wi(ti) = 1 for everyv ∈ T]i . (37)

Define then the weightW(t) of an elementt = (ti)i∈I in T as the product of the
weights of its coordinatesti :

W(t) =
∏
i∈I

Wi(ti ). (38)

We will see that the setT and the weight functionW provide two basic ingredi-
ents of the searched reference orthogonal design. The third ingredient is the model
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whose factors are here the projectionsφJ associated to the elements of a familyE of
ancestral subsetsJ of I.

The geometrical orthogonality of these projections will follow from the following
proposition.

Proposition 4.2. Let J be an ancestral subset of I. Then for eachtJ = (ti)i∈J in the
projective limitTJ ,

WJ (tJ ) =
∏
i∈J

Wi(ti).

The weight functionWJ induced by factorJ is defined as in (17) byWJ (tJ ) =
W
(
φ−1

J (tJ )
)
.

Proof. The result is proved by descending recurrence on the number|J | of elements
in J. It is clearly true forJ = I by the definition ofW. Assume it is true for|J | > m

and consider a subsetJ such that|J | = m and a fixedtJ = (ti )i∈J in TJ . Select a
maximal elementj in I\J and letK = J ∪ {j }. It follows from (32) that

φ−1
J (tJ ) = φ−1

K

(
φ−1

JK(tJ )
)

=
⊔

tK∈φ−1
JK(tJ )

φ−1
K (tK),

where
⊔

indicates a disjoint union. Thus

WJ (tJ ) = W
(
φ−1

J (tJ )
)

=
∑

tK∈φ−1
JK(tJ )

W
(
φ−1

K (tK)
)

=
∑

tK∈φ−1
JK(tJ )

WK(tK).

The setφ−1
JK(tJ ) contains all the elementstK = (ti)i∈K which have the same coordin-

ates astJ for i ∈ J and a coordinatetj satisfyingφij (tj ) = ti for eachi > j in J (the
casej > i ∈ J has not to be considered sinceJ is ancestral). This condition ontj
is equivalent toρj (tj ) = v wherev = φ]j,J tJ = (ti )i∈]j . The use of the recurrence
hypothesis and of (37) then gives

WJ (tJ )=
∑

tK∈φ−1
JK(tJ )

∏
i∈K

Wi(ti) =
∏
i∈J

Wi(ti)
∑

tj ∈ρ−1
j (v)

Wj (tj )

=
∏
i∈J

Wi(ti ). �

The following corrollary follows immediately from the strict positivity of the
weightsWi(ti).

Corollary 4.1. The mappingφJ associated to an ancestral subset J of I sends T
onto the projective limitTJ .



264 A. Kobilinsky / Linear Algebra and its Applications 321 (2000) 239–280

ThusTJ is the set of levels of the product factorφJ = ∏
i∈J φi . This corollary also

implies in conjunction with the next easily proved proposition that the mappingsφi

associated with the primary factorsi in I are surjective.

Proposition 4.3. The canonical projectionφi,[i from T[i into Ti is an isomorphism
whose inverse is the mappingti 7→ (φji(ti))j∈[i .

This proposition allows to identifyT[i with Ti and for anyj > i the mapping
φ[j,[i with φji . The spacesRT[i andRTi can consequently be identified, but it must
be noted that the scalar product induced on the latter space by the scalar product of
RT is associated withW{i} = W[i and not withWi .

Proposition 4.4. The mapping sending an ancestral subset J on the partition in-
duced byφJ is a lattice isomorphism. That is, if J and K are both ancestral, the
equivalenceφJ ∼ φK occurs if and only ifJ = K. If J ⊂ K, thenφJ > φK and

φJ∩K ∼ φJ ∨ φK, φJ∪K ∼ φJ ∧ φK.

Proof. AssumeJ\K is not empty and select a minimal elementj in it. Note thatj is
also minimal inJ ∪ K, otherwise there is an elementk in K such thatk 6 j and the
ancestrality ofK impliesj ∈ K which is in contradiction with the choice ofj.

Sinceρj is not injective, there exists a precursorv = (ti)i∈]j in T]j such that
ρ−1

j (v) contains at least to distinct elementstj andt ′j . Letu = (ti )i∈[j be the element
obtained by adding the coordinatetj to v. Thenu clearly belongs to the projective
limit T[j of the family (Ti)i>j . Hence by Corollary 4.1 there is an elementt =
(ti)i∈I having the same coordinates asu for eachi > j . In its projection(ti )i∈J∪K

by φJ∪K , substitutetj by t ′j . The resulting element clearly belongs toTJ∪K , hence
is the projection byφJ∪K of an elements ∈ T . Thent andshave the same image by
φK but not byφJ which proves that these two factors are not equivalent.

If J ⊂ K, (32) impliesφJ > φK .
Let K andJ be arbitrary ancestral subsets andH = J ∩ K. The mappingφH nests

bothφJ andφK , henceφH > φJ ∨ φK . To prove the opposite inequality, consider
two elementss, t such thatφH (s) = φH (t), that is, such thatsi = ti for i ∈ H . Let
ui = si for i ∈ J andui = ti for i ∈ K\J . The family(ui)i∈J∪K clearly belongs to
the projective limitTJ∪K . By Corollary 4.1, it is the projection byφJ∪K of an ele-
mentu of T. ThenφJ (s) = φJ (u) andφK(u) = φK(t) so thats andt are equivalent
for φJ ∨ φK . This provesφJ ∨ φK > φH .

The proof of the other equalityφJ∪K ∼ φJ ∧ φK is immediate. �

We can now prove the geometrical orthogonality of any pair of product factors
φJ andφK . Assume the levelstJ in TJ andtK in TK are both nested into the same
level of φJ ∨ φK ∼ φJ∩K . Then their coordinates inJ ∩ K are equal and there are
elementsti for i ∈ J ∪ K such thattJ = (ti)i∈J , tK = (ti)i∈K .
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Let then h = (ti )i∈J∩K be the common nesting level ofφJ ∨ φK and
g = (ti)i∈J∪K . Then the treatments with(tJ , tK) as level ofφJ × φK are the same
as those with levelg of φJ∪K , hence by Proposition 4.2

WφJ ×φK (tJ , tK)WJ∩K(h)=WJ∪K(g) × WJ∩K(h)

=
∏

i∈J∪K

W(ti)
∏

i∈J∩K

W(ti )

=
∏
i∈J

W(ti )
∏
i∈K

W(ti) = WJ (tJ )WK(tK).

By Proposition 3.2, we therefore have the following proposition.

Proposition 4.5. The projectionφJ for J ⊂ I are geometrically orthogonal.

We now assume thatE is a family of ancestral subsets ofI which is closed for the
intersection. The corresponding family of projectionsφJ , J ∈ E, is then closed under
the formation of maxima and thus defines, together withT andW, an orthogonal
design and orthogonal subspacesSJ .

The next section gives a useful process to get basis of these subspaces.

5. Full rank meaningful reparametrisation for the orthogonal reference design

Let QJ denote the operator of orthogonal projection ontoSJ . The replacement of
QA by QJ in (15) gives

τ =
∑
J∈E

QJ τ. (39)

To handle this decomposition in practice, it is convenient to have for eachJ a basis
XJ of SJ , so thatQJ τ is a linear combination of the vectorsx in XJ :

QJ τ =
∑
x∈XJ

αx x. (40)

The parametersαx in (40), uniquely determined as linear forms ofQJ τ , span the
space of contrasts associated withJ. Note that when the basisXJ is orthogonal, they
take the following simple form:

αx = 〈x, τ 〉 / 〈x, x〉 . (41)

Together, (39) and (40) lead to the model

τ =
∑
J∈E

∑
x∈XJ

αx x, (42)

which provides the expectationτ (t) of the response in function of the parametersαx

for every feasible treatmentt :
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τ (t) =
∑
J∈E

∑
x∈XJ

αx x(t). (43)

At least for the reference designT, this leads to a full rank model whose paramet-
ers belong to the factorial effects of interest and which is therefore very convenient
to perform an analysis of variance [11]. We now describe a simple way to get such a
basisXJ from which model (43) can be derived.

For our aim, the modelE is first completed so that ifJ andK are ancestral subsets
of I,

J ∈ E andK ⊂ J H⇒ K ∈ E. (44)

This can be done by adding every ancestral subsetK included in a subset of the
initial family E. Note that this completion does not change the sumS of the space
SJ , that is, the subspace containingτ , and simply leads to a finer decomposition into
orthogonal subspacesSJ .

If J = ∅, TJ is a set with one element andSJ = SJ is the one-dimensional
subspace generated by the constant vector1 of RT .

Consider now an arbitrary ancestral subsetJ /= ∅. The process described here-
after leads to a basisXJ of J SJ which can be immediately transformed in a basis of
SJ by the isomorphismφ∗

J .
Denote bym(J ) a set of minimal elements inJ andM(J ) = J\m(J ) (laterm(J )

will be theset ofall minimal elements ofJ). Note thatM(J ) is also ancestral.
Let πJ = φM(J )J be the canonical projection fromTJ onto TM(J ). ThenTJ is

the disjoint union of theπ−1
J (v) for v in TM(J ). Consequently, ifFJ (v) denotes the

subspace of vectors inRTJ with zero coordinates outsideπ−1
J (v), then

RTJ =
⊕

v∈TM(J )

FJ (v). (45)

It is clear that the subspacesFJ (v), v ∈ TM(J ), are orthogonal to each other:

x ∈ FJ (v), z ∈ FJ (v′) and v /= v′ ⇒ 〈x, z〉J = 0. (46)

For eachi ∈ m(J ), let δi be the canonical projection fromM(J ) onto]i,
δi = φ]i,M(J ). (47)

Consider then a fixed elementv in TM(J ). The subspaceFJ (v) can be identified

with Rπ−1
J (v) by simply dropping the 0 outsideπ−1

J (v). Then each elementtJ in
π−1

J (v) has the same coordinates asv onM(J ) and, for eachi ∈ m(J ), its coordinate
ti of indexi can be any element inρ−1

i (δiv). Thusπ−1
J (v) can be identified with the

Cartesian product
∏

i∈m(J ) ρ−1
i (δiv) and this identification induces an isomorphism

betweenRπ−1
J (v), henceFJ (v), and

⊗
i∈m(J ) Rρ−1

i (δiv):

FJ (v) ∼ Rπ−1
J (v) ∼

⊗
i∈m(J )

Rρ−1
i (δiv). (48)



A. Kobilinsky / Linear Algebra and its Applications 321 (2000) 239–280 267

For eachi ∈ m(J ), let zi be a vector ofRρ−1
i (δiv). When identified to an element of

FJ (v) ⊂ RTJ , that is to a function fromTJ into R, the tensor product
⊗

i∈m(J ) zi is
defined by

 ⊗
i∈m(J )

zi


 (tJ ) =




∏
i∈m(J )

zi(ti) for tJ = (ti) ∈ π−1
J (v),

0 for tJ 6∈ π−1
J (v).

(49)

The images of this tensor product byφ∗
J , or byφ∗

JK whereK is an ancestral subset
containingJ, are defined quite similarly. For instance, iftK = (ti)i∈K belongs to the
projective limitTK ,

φ∗
JK


 ⊗

i∈m(J )

zi


 (tK) =


 ⊗

i∈m(J )

zi


 (φJK(tK))

=



∏
i∈m(J )

zi(ti) if v = φM(J )K(tK)

0 if v /= φM(J )K(tK).

(50)

To simplify notations, it is therefore possible to omit the mappingφ∗
J , or φ∗

JK ,
and to consider the tensor product

⊗
i∈m(J ) zi as defined directly onT or TK .

Let z = ⊗
i∈m(J ) zi andx = ⊗

i∈m(J ) xi be two such tensor products inFJ (v).
Then (18), withJ instead ofA, gives

〈x, z〉J =
∑

tJ ∈TJ

WJ (tJ )x(tJ )z(tJ ) =
∑

tJ ∈π−1
J (v)

WJ (tJ )x(tJ )z(tJ ).

It follows from Proposition 4.2 that

WJ (tJ ) = WM(J )(v)
∏

i∈m(J )

Wi(ti) for tJ = (ti) ∈ π−1
J (v).

Hence

〈x, z〉J =
∑

(ti )∈∏i∈m(J ) ρ−1
i (δiv)

WM(J )(v)
∏

i∈m(J )

Wi(ti)xi(ti )zi(ti)

=WM(J )(v)
∏

i∈m(J )


 ∑

ti∈ρ−1
i (δiv)

Wi(ti)xi(ti)zi (ti)


 .

Let 〈x, z〉i denote the scalar product onRρ−1
i (δi v) associated with the weight

functionWi , that is

〈x, z〉i =
∑
ti

Wi(ti)x(ti)z(ti), (51)

whereti varies overρ−1
i (δiv). Then the previous equality gives the following pro-

position.
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Proposition 5.1. If z = ⊗
i∈m(J ) zi andx = ⊗

i∈m(J ) xi are two tensor products in
FJ (v) defined as in(49), then〈x, z〉J = WM(J )(v)

∏
i∈m(J )〈xi, zi〉i .

For eachi ∈ m(J ), letZi (δiv) be a basis ofRρ−1
i (δiv). Then it is well known that

ZJ (v) =
⊗

i∈m(J )

Zi (δiv), (52)

which is by definition the set of all tensor products
⊗

i∈m(J ) zi between elements
zi ∈ Zi (δiv), is a basis of the tensor product given in (48), hence ofFJ (v). It follows
from (45) that the unionZJ overv ∈ TM(J ) of these bases:

ZJ =
⋃

v∈TM(J )

ZJ (v) (53)

is a basis ofRTJ . The following proposition sums up this result and the preceding
definitions.

Proposition 5.2. Let J be an ancestral subset of I, m(J ) a set of minimal element of
J andM(J ) = J\m(J ). For eachv ∈ TM(J ) andi ∈ m(J ), defineδiv as the canon-

ical projection ofv ontoT]i . LetZi (δiv) be a basis ofRρ−1
i (δiv) andZJ (v) be the set

of tensor productsz = ⊗
i∈m(J ) zi defined by(49). Then the unionZJ = ⋃

v ZJ (v)

is a basis ofRTJ .

It is now assumed thatm(J ) is the set of all minimal elements ofJ. Each basis
Zi (δiv) is selected so that its first element is the vector1 having all its coordinates
equal to 1 and its other elements are orthogonal to1 for the scalar product〈, 〉i
associated withWi :

xi ∈ Zi (δiv), xi /= 1 ⇒ 〈xi, 1〉 =
∑

ti∈ρ−1
i (δiv)

Wi(ti)xi(ti) = 0. (54)

Denote byXi (δiv) the set of these other elements, that is,Xi (δiv) = Zi (δiv)\1.
LetXJ (v) be the tensor product between these sets:

XJ (v) =
⊗

i∈m(J )

Xi (δiv) (55)

and finallyXJ the union overv of these tensor product:

XJ =
⋃

v∈TM(J )

XJ (v). (56)

Proposition 5.3. XJ is a basis ofJ SJ . It is orthogonal if each basisXi (δiv) is
orthogonal.
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As indicated after (50), the tensor products inXJ can be considered as defined
directly onT andXJ can thus be identified with its image byφ∗

J which provides the
basis ofSJ requested for decomposition (40).

Proof. XJ is made up of all tensor products
⊗

i∈m(J ) zi in ZJ whose components
zi are distinct from1, hence orthogonal to1. From (46) and Proposition 5.1, these
tensor products are orthogonal to the other elements ofZJ , that is to the tensor
products having at least one componentzi equal to1. It remains to show that these
last tensor products generate the sum of the spacesJ SL associated to ancestral sets
L strictly included inJ.

If L is such a set, there is at least one minimal elementj in J not belonging toL.
ThusL ⊂ J\{j } and consequentlyJ SL ⊂ J SJ \{j}. It is therefore enough to consider
setsL of the formL = J\{j } for somej ∈ m(J ).

Assume therefore thatL = J\{j }. Sincem(J )\{j } is a set of minimal elements of
L, Proposition 5.2 can be used. It shows thatZL = ⋃

v∈TM(J )
ZL(v) generatesRTL .

Here,ZL(v) is the set of tensor products
⊗

i∈m(J )\{j} zi such thatzi ∈ Zi (δiv).
Such a tensor product is defined as in (49) by

 ⊗
i∈m(J )\{j}

zi


 (tL) =

∏
i∈m(J )\{j}

zi(ti)

if tL ∈ π−1
L (v), whereπL = φM(J )L, and by 0 otherwise.

The image byφ∗
LJ of ZL thus generatesJ SL. If tJ = (ti ) andz = ⊗

i∈m(J )\{j} zi ,
then

φ∗
LJ (z)(tJ ) = z (φLJ (tJ )) =

∏
i∈m(J )\{j}

zi(ti).

If we let zj = 1, the last product is also equal to
∏

i∈m(J ) zi(ti) and therefore

φ∗
LJ (z) =

⊗
i∈m(J )

zi .

Thus the tensor product
⊗

i∈m(J ) zi with zj = 1 generatesJ SL and the whole set of
tensor products having a component equal to1 generates the sum of the spacesJ SL.

If the Xi (δiv) are orthogonal, the orthogonality ofXJ follows from (46) and
Proposition 5.1. �

Consider now a modelE satisfying (44). LetJ be the set of indices which are not
in J but belong to some setK in E includingJ:

J =

 ⋃

K/K∈E,J⊂K

K


∖J, (57)
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Proposition 5.4. The space of contrasts{〈x, τ 〉 , x ∈ SJ } associated with the
factorial effect J only depends on the weightWj such thatj ∈ J .

Corollary 5.1. If there is no K strictly including J inE, the space of contrasts
associated with J is independent of the chosen weights.

The proof closely follows that given by Kobilinsky [11] in the simpler case of
uniform reference designs.

Proof. We denote by{V} the subspace generated by a familyV of vectors.
Proposition 5.3 shows thatJ SJ is the sum of the spaces{XJ (v)}, henceSJ the

sum of the spacesφ∗
J ({XJ (v)}) for v ∈ TM(J ). It is therefore sufficient to show the

result whenx ∈ φ∗
J ({XJ (v)}).

From (55), we have

{XJ (v)} =
⊗

i∈m(J )

{Xi (δiv)}.

and{Xi (δiv)} is the subspace of{Zi (δiv)} orthogonal to1, that is, the subspace of
vectorsxi in RTi such that
1. xi(ti) is zero whenρi(ti ) /= δiv (i.e. whenti is not compatible withv).
2. xi is orthogonal to1 : 〈xi, 1〉i = ∑

ti
Wi(ti )x(ti) = 0.

Thus the tensor products
⊗

i∈m(J ) xi with xi ∈ {Xi (δiv)} span{XJ (v)} and their
images byφ∗

J spanφ∗
J ({XJ (v)}). Let x be one of these images:

x = φ∗
J


 ⊗

i∈m(J )

xi


 , xi ∈ {Xi (δiv)}.

Then (50) applied withK = I gives fort = (ti )

x(t) =



∏
i∈m(J )

xi(ti) if v = φM(J )(t),

0 if v /= φM(J )(t) .

Hence

〈x, τ 〉 =
∑
t∈T

W(t)x(t)τ (t)

=
∑

t∈φ−1
M(J )

(v)

(∏
i∈I

Wi(ti)

) ∏
i∈m(J )

xi(ti )


 τ (t)

=
∑

t∈φ−1
M(J )(v)


 ∏

i∈M(J )

Wi(ti)




 ∏

i∈m(J )

Wi(ti )xi(ti )




∏

i 6∈J

Wi(ti )


 τ (t).

Using Proposition 4.2 we get
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〈x, τ 〉 =
∑

t∈φ−1
M(J )

(v)

WM(J )(v)


 ∏

i∈m(J )

zi(ti )




∏

i 6∈J

Wi(ti )


 τ (t),

wherezi is the coordinatewise product ofWi andzi defined by

zi(ti ) = Wi(ti)xi(ti).

The conditions 1 and 2 onxi are equivalent to similar conditions onzi :
1. zi(ti) = 0 if ρi(ti ) /= δiv,
2. 〈zi , 1〉 = ∑

ti
z(ti) = 0 .

In the second condition, the scalar product is the standard one onRTi . It does
not depend onWi . Hence the space of contrasts〈x, τ 〉 for x in φ∗

J ({XJ (v)}) is
independant of the weightsWi such thati ∈ m(J ). Since this space is also generated
by the ratios〈x, τ 〉 /WM(J )(v), it is moreover independant of theWj for i ∈ M(J ).
It remains to show that it is also independant ofWj if j does not belong to anyK
strictly includingJ.

Sinceτ belongs to the sumSof the spacesSK for K ∈ E, we haveτ = ∑
K∈E δK

where for eachK, δK ∈ SK . We can therefore consider〈x, δK〉 instead of〈x, τ 〉.
If K does not includeJ, this contrast is 0 becauseSK is orthogonal toSJ by

Proposition 4.5. It is therefore not dependant on anyWi .
Consider then aK includingJ. SinceSJ ⊂ SJ ⊂ SK , x belongs toSK as well as

δK . There are therefore elementsxK andτK in RTK such that

x = φ∗
K(xK), δK = φ∗

K(τK).

In view of the remark following (18), we have

〈x, τ 〉 = 〈xK, τK 〉K =
∑
tK

WK(tK)xK(tK)τK(tK).

It then follows from Proposition 4.2 thatWK(tK) only depends of theWk for k ∈ K.
So〈x, δK〉 only depends onWj if J ⊂ K andj ∈ K. Hence〈x, τ 〉 only depends

on theWj such thatj ∈ ⋃K/J⊂K K. The result follows since we know from the first
part of the proof that〈x, τ 〉 is independant of the weightsWj for j ∈ J . �

Example 5.1. There are four primary factorsA, B, C, D, with non-trivial order
relations

D 6 A, C 6 A, C 6 B.

The model is

E = {∅, A,B,A.B,A.D,A.B.C,A.B.D}
A term like A.B.D denotes the subset{A,B,D}. Thus this model includes all
ancestral subsets except the whole setI = {A,B,C,D}.

The number of levels are:

A : 2, B : 2, D(A = 1) : 3, D(A = 2) : 2,
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C(A = 1, B = 1) : 3, C(A = 1, B = 2) : 2,

C(A = 2, B = 1) : 2, C(A = 2, B = 2) : 3.

By C(A = a,B = b) we denote the subset of levels ofC such that the nesting
factorsA, B in ]C have levelsa, b, respectively, that is, the subsetρ−1

C (v) associated
with the precursorv = (a, b) of C.

The weights are given in Table 13. The levels in this table are numbered se-
quentially, and for a nested factori, independantly within each subsetρ−1

i (v)

determined by the levels of the nesting factors. In fact, the numbers on the lines
beginning byC or D arepseudolevelsthat cannot be considered independantly of
the levels of the nesting factors. The true levels are therefore the combinations of
pseudolevels of the factors nesting or equal to the given factor. For instance, the
true levels ofD are the five pairs of values of(A,D), that is,(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2). The mappingρD is then the projection(A,D) 7→ A on the first
coordinate. Similarly, the true levels ofC are the 10 triples(1, 1, 1) to (2, 2, 3)

of values of(A,B,C) andρC is the projection(A,B,C) 7→ (A,B) onto the first
two coordinates.

Table 13 also gives for eachi in {A,B,C,D} and each precursorvi in T]i an
orthonormal basisXi (vi ), for the scalar product (51), of the orthogonal of1 within

Rρ−1
i (vi ). Again, the notationA = a,B = b following XC refers to the elementvi =

(a, b) in the precursor setT]C of C, that is,XC(A = a,B = b) = XC(a, b).
The vectors ofXi (vi ) appear as row vectors and are denoted sequentiallyxi1(vi),

xi2(vi), . . . or more simplyxi1, xi2, . . . when the precursorvi involved is made clear
by the context. Thus fori = C, A = 2, B = 2, that is,vi = (2, 2), the basis is made
up ofxC1 = [√3/2,−√

3/2, 0] andxC2 = [1/
√

2, 1/
√

2,−2/
√

2].
The weightW on T appears in Table 14 where the marginal weightsWi are also

reported. Within the table, there is one cell per element in the projective limitT.
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Table 14
The weightW induced on the projective limitT by theWi

B 1 2
WB 1/2 1/2

A WA D WD

C 1 2 3 C 1 2
WC 1/3 1/3 1/3 WC 1/2 1/2

1 1/3 1/36 1/36 1/36 1/24 1/24
1 1/2 2 1/3 1/36 1/36 1/36 1/24 1/24

3 1/3 1/36 1/36 1/36 1/24 1/24

C 1 2 C 1 2 3
WC 1/2 1/2 WC 1/3 1/3 1/3

2 1/2 1 1/2 1/16 1/16 1/24 1/24 1/24
2 1/2 1/16 1/16 1/24 1/24 1/24

SinceE satisfies condition (44), Proposition 5.3 can be used to get the vectorsx
appearing in (42). These vectors are divided by their norm, given by Proposition 5.1,
to get an orthonormal basis. They are numbered sequentiallyx0, x1, . . . and given
explicitly in Table 17. To simplify, the basesXi (δiv) used to defineXJ (v) in (55)
have always been selected to be those of Table 13, though it would have been possible
to select them differently for eachJ ∈ E andv ∈ TM(J ).

We give in what follows some more indications on how to get the vectorsxi of
XJ for eachJ in E.
• J = ∅. The only associated vector isx0 = 1.
• J = {A}. There is just one vectorx1 = xA1 defined onTA byxA1(1) = 1,xA1(2) =

−1 and therefore onT by xA1(1, b, c, d) = 1, xA1(2, b, c, d) = −1.
• J = {B}. As forJ = {A}, there is only one vectorx2 = xB1.
• J = {A,B}. The set of minimal elements ism(J ) = {A,B} and thusM(J ) = ∅.

The only vector in XJ is x3 = xA1 ⊗ xB1 which is defined onT by
(xA1 ⊗ xB1) (a, b, c, d) = xA1(a)xB1(b) (it is the coordinatewise product ofx1
andx2).

• J = {A,D}. Thenm(J ) = {D} andM(J ) = {A}. The orthogonal basisXJ in-
cludes two vectorsxD1, xD2 for A = 1, onexD1 for A = 2. SinceWM(J )(v) =
1/2 for v = 1, 2, their norms given by Proposition 5.1 are 1/

√
2 and we can take

x4 = √
2xD1, x5 = √

2xD2 for A = 1, x6 = √
2xD1 for A = 2 as orthonormal

basis. The values of these vectors, which depend only onA andD, are given in
Table 15.

• J = {A,B,C}. Thenm(J ) = {C} andM(J ) = {A,B}. The norm given by Pro-
position 5.1 is

√
WM(J )(v) = 1/2 for each of the four couplesv = (a, b). The

orthonormal basisXJ includes six vectors, two forA = 1, B = 1 (x7 = 2xC1,
x8 = 2xC2), one forA = 1, B = 2 (x9 = 2xC1), one forA = 2, B = 1 (x10 =
2xC1) and finally two forA = 2, B = 2 (x11 = 2xC1, x12 = 2xC2).
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• J = {A,B,D}. Thenm(J ) = {B,D} and M(J ) = {A}. There are two tensor
products

√
2xB1 ⊗ xD1,

√
2xB1 ⊗ xD2 to consider forA = 1 and one

√
2xB1 ⊗

xD1 for A = 2. Their values which depend only on the levels ofA, B, D are given
on the rightside of Table 16.

• If J = {A,B,C,D} had also be inE, we would have also introduced four vectors
for A = 1,B = 1 (x16 = 2xC1 ⊗ xD1, x17 = 2xC2 ⊗ xD1, x18 = 2xC1 ⊗ xD2, x19
= 2xC2 ⊗ xD2), two for A = 1, B = 2 (x20 = 2xC1 ⊗ xD1, x21 = 2xC1 ⊗ xD2),
one for A = 2, B = 1 (x22 = 2xC1 ⊗ xD1) and finally two forA = 2, B = 2
(x23 = 2xC1 ⊗ xD1, x24 = 2xC2 ⊗ xD1).
To link this with the previous notation, consider an elementv = (a, b) in TM(J ).
Since ]C = {A,B} and ]D = {A}, the projectionsδC and δD are defined by
δC(a, b) = (a, b), δD(a, b) = a and thusXJ (a, b) = XC(a, b) ⊗ XD(a). Let
nC(a, b) be the number of levels ofC for A = a, B = b, that is withinρ−1

C (a, b)

and similarlynD(a) the number of levels ofD within ρ−1
D (a). The vectors in

XJ (a, b) are the(nC(a, b) − 1)(nD(a) − 1) productsxCj (a, b) ⊗ xDk(a).
The 25 vectorsx0, . . . , x24 make up an orthogonal basis ofRT for the scalar

product associated with the weightW given in Table 14. The 16 vectorsx0, . . . , x15
associated with the modelE are explicited in Table 17, which also gives on its left
the weightW and the levels of the four factors. The arrows on the left point to a
fraction considered in Section 7.

6. Adjusted means

Let K be an ancestral subset ofI. The mean responseµK(tK) at leveltK of K is
defined as the weighted mean

µK(tK) =
∑

t,φK(t)=tK

W(t)τ (t)/WK(tK). (58)

The replacement ofτ (t) by its expression (43) in function of the parametersαx

gives

Table 15
The orthonormal basis ofXAD

A = 1 A = 2︷ ︸︸ ︷
A D

√
2 xD1

√
2 xD2

√
2 xD1

1 1
√

3 1 0
1 2 −√

3 1 0
1 3 0 −2 0
2 1 0 0

√
2

2 2 0 0 −√
2

x4 x5 x6
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µK(tK) =
∑
J∈E

∑
x∈XJ

λx(tK)αx, (59)

where

λx(tK) =
∑

t,φK (t)=tK

W(t)x(t)/WK(tK). (60)

The mean responsesµK(tK) have been seen in (20) to be the coordinates of the
orthogonal projectionPKτ of τ onSK . More precisely, letP̃K be the mapping such
thatPK = φ∗

KP̃K , that is, the mapping replacingPK whenSK is identified toRTK

by φ∗
K . Then

µK(tK) =
(
P̃Kτ

)
(tK)

and similarly

λx(tK) =
(
P̃Kx

)
(tK).

If x ∈ XJ andJ 6⊂ K, thenP̃Kx = 0 and consequentlyλx(tK) = 0. If x ∈ XJ and
J ⊂ K, then sinceXJ ⊂ SJ ⊂ SK , x has the same coordinates for allt such that
φK(t) = tK and consequentlyλx(tK) = x(t) for any sucht. Moreover ifx ∈ XJ (v)

but v /= φM(J )K(tK), thenx(t) = 0 for all t such thatφK(t) = tK andλx(tK) = 0.
Hence the following proposition.

Proposition 6.1. Let x be a vector inXJ . If J 6⊂ K, thenλx(tK) = 0. If J ⊂ K,

thenλx(tK) = x(t) for any t such thatφK(t) = tK . In particular, λx(tK) = 0 if x ∈
XJ (v) butv /= φM(J )K(tK).

Table 16
The orthonormal basis ofXABD

A=1 A = 2 A = 1 A = 2︷ ︸︸ ︷ ︷ ︸︸ ︷
A B D xB1 xD1 xD2 xD1

√
2 xB1 ⊗ xD1

√
2 xB1 ⊗ xD2

√
2 xB1 ⊗ xD1

1 1 1 1
√

3 1 0
√

3 1 0

1 1 2 1 −√
3 1 0 −√

3 1 0
1 1 3 1 0 −2 0 0 −2 0
1 2 1 −1

√
3 1 0 −√

3 −1 0
1 2 2 −1 −√

3 1 0
√

3 −1 0
1 2 3 −1 0 −2 0 0 2 0

2 1 1 1 0 0
√

2 0 0
√

2
2 1 2 1 0 0 −√

2 0 0 −√
2

2 2 1 −1 0 0
√

2 0 0 −√
2

2 2 2 −1 0 0 −√
2 0 0

√
2

x13 x14 x15



276 A. Kobilinsky / Linear Algebra and its Applications 321 (2000) 239–280

Ta
bl

e
17

M
at

rix
X

of
th

e
lin

ea
r

m
od

el
af

te
r

re
pa

ra
m

et
ris

at
io

n

A
1

2
1

1
2

2
1

2

B
︷

︸︸
︷

1
2

1
2

︷
︸︸

︷
︷

︸︸
︷

︷
︸︸

︷
W

A
B

C
D

A
B

A
B

D
1

D
2

D
1

C
1

C
2

C
1

C
1

C
1

C
2

B
D

1
B

D
2

B
D

1

1/
36

1
1

1
1

1
1

1
1

√ 3
1

0
√ 6

√ 2
0

0
0

0
√ 3

1
0

→
1/

36
1

1
2

1
1

1
1

1
√ 3

1
0

−√ 6
√ 2

0
0

0
0

√ 3
1

0

→
1/

36
1

1
3

1
1

1
1

1
√ 3

1
0

0
−2

√ 2
0

0
0

0
√ 3

1
0

→
1/

24
1

2
1

1
1

1
−1

−1
√ 3

1
0

0
0

2
0

0
0

−√ 3
−1

0

→
1/

24
1

2
2

1
1

1
−1

−1
√ 3

1
0

0
0

−2
0

0
0

−√ 3
−1

0

→
1/

36
1

1
1

2
1

1
1

1
−√ 3

1
0

√ 6
√ 2

0
0

0
0

−√ 3
1

0

1/
36

1
1

2
2

1
1

1
1

−√ 3
1

0
−√ 6

√ 2
0

0
0

0
−√ 3

1
0

→
1/

36
1

1
3

2
1

1
1

1
−√ 3

1
0

0
−2

√ 2
0

0
0

0
−√ 3

1
0

1/
24

1
2

1
2

1
1

−1
−1

−√ 3
1

0
0

0
2

0
0

0
√ 3

−1
0

→
1/

24
1

2
2

2
1

1
−1

−1
−√ 3

1
0

0
0

−2
0

0
0

√ 3
−1

0

1/
36

1
1

1
3

1
1

1
1

0
−2

0
√ 6

√ 2
0

0
0

0
0

−2
0

1/
36

1
1

2
3

1
1

1
1

0
−2

0
−√ 6

√ 2
0

0
0

0
0

−2
0

→
1/

36
1

1
3

3
1

1
1

1
0

−2
0

0
−2

√ 2
0

0
0

0
0

−2
0

1/
24

1
2

1
3

1
1

−1
−1

0
−2

0
0

0
2

0
0

0
0

2
0

→
1/

24
1

2
2

3
1

1
−1

−1
0

−2
0

0
0

−2
0

0
0

0
2

0

→
1/

16
2

1
1

1
1

−1
1

−1
0

0
√ 2

0
0

0
2

0
0

0
0

√ 2

1/
16

2
1

2
1

1
−1

1
−1

0
0

√ 2
0

0
0

−2
0

0
0

0
√ 2

→
1/

24
2

2
1

1
1

−1
−1

1
0

0
√ 2

0
0

0
0

√ 6
√ 2

0
0

−√ 2

→
1/

24
2

2
2

1
1

−1
−1

1
0

0
√ 2

0
0

0
0

−√ 6
√ 2

0
0

−√ 2

→
1/

24
2

2
3

1
1

−1
−1

1
0

0
√ 2

0
0

0
0

0
−2

√ 2
0

0
−√ 2

→
1/

16
2

1
1

2
1

−1
1

−1
0

0
−√ 2

0
0

0
2

0
0

0
0

−√ 2

→
1/

16
2

1
2

2
1

−1
1

−1
0

0
−√ 2

0
0

0
−2

0
0

0
0

−√ 2

1/
24

2
2

1
2

1
−1

−1
1

0
0

−√ 2
0

0
0

0
√ 6

√ 2
0

0
√ 2

1/
24

2
2

2
2

1
−1

−1
1

0
0

−√ 2
0

0
0

0
−√ 6

√ 2
0

0
√ 2

→
1/

24
2

2
3

2
1

−1
−1

1
0

0
−√ 2

0
0

0
0

0
−2

√ 2
0

0
√ 2

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1

0
x

1
1

x
1

2
x

1
3

x
1

4
x

1
5



A. Kobilinsky / Linear Algebra and its Applications 321 (2000) 239–280 277

Thus

µK(tK) =
∑
J

∑
x∈XJ

x(t)αx, (61)

wheret is any element such thatφK(t) = tK andJ varies only among the subsets of
K in E. If x ∈ XJ andv = φM(J )(t), thenx(t) = 0 for all x outsideXJ (v). Thus the
sum forx ∈ XJ can be restricted to the setWJ = XJ (v) = XJ

(
φM(J )K(tK)

)
.

WhenK is the whole set of primary factors (K = I ), (61) coincides with model
(43). In the other cases, the form is similar butJ varies only over subsets ofK.

If αx is estimable for eachx ∈ ∪WJ , whereJ ∈ E andJ ⊂ K, the mean re-
sponsesµK(tK) associated with the levelstK ∈ TK are estimable and their estima-
tions, known as theadjusted meansfor factor K are obtained by adding hats onµ
andα in (61).

If the factorial effect ofK is significant, it is usual to carry on by the examination
of these adjusted means or of some linear combinations of them. Of particular in-
terest are the estimates of the coordinates ofQKτ , or equivalently the coordinates of
Q̃Kτ , which can be determined recurrently by formula (27). These coordinates are
called the factorial effects of factorK. The factorial effect of indextK is denoted by
αK(tK).

Example 6.1. Consider again Example 5.1. The treatment inTare identified with the
feasible quadruples(a, b, c, d) of levels of the four factors. We use the dot notation to
denote a weighted mean likeµK(tK): the dots replace the indices of factors which are
not inK. For instanceτ (a, •, •, •) is the weighted meanµA(a) of all treatment effects
such thatφA(t) = a andτ̂ (a, •, •, •) the corresponding adjusted mean.

Using (27) and (22), we find the factorial effects of Table 18.
The corresponding estimates are obtained by adding hats onα andτ . The factorial

effects are given in function of the mean responses which are themselves expressed
in function of the parametersαx in Table 19. In that last table, thex are indexed as

Table 18
Factorial effects in Example 6.1

α∅ = τ (•, •, •, •)
αA(a) = τ (a, •, •, •) − τ (•, •, •, •)
αB(b) = τ (•, b, •, •) − τ (•, •, •, •)
αAB(a, b) = τ (a, b, •, •) − αA(a) − αB(b) − α∅

= τ (a, b, •, •) − τ (a, •, •, •) − τ (•, b, •, •) + τ (•, •, •, •)

αAD(a, d) = τ (a, •, •, d) − αA(a) − α∅
= τ (a, •, •, d) − τ (a, •, •, •)

αABC(a, b, c) = τ (a, b, c, •) − αAB(a, b) − αA(a) − αB(b) − α∅
= τ (a, b, c, •) − τ (a, b, •, •)

αABD(a, b, d) = τ (a, b, •, d) − αAD(a, d) − αAB(a, b) − αA(a) − αB(b) − α∅
= τ (a, b, •, d) − τ (a, •, •, d) − τ (a, b, •, •) + τ (a, •, •, •)
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Table 19
Mean responses in Example 6.1

τ (•, •, •, •) = µ∅ = α0
τ (a, •, •, •) = µA(a) = α0 + α1x1(a)

τ (•, b, •, •) = µB(a) = α0 + α2x2(b)

τ (a, b, •, •) = µAB(a, b) = α0 + α1x1(a) + α2x2(b) + α3x3(a, b)

τ (a, •, •, d) = µAD(a, d) = α0 + α1x1(a) + α4x4(a, d) + α5x5(a, d) + α6x6(a, d)

τ (a, b, c, •) = µABC(a, b, c) = α0 + α1x1(a) + α2x2(b) + α3x3(a, b) +∑12
i=7 αixi (a, b, c)

τ (a, b, •, d) = µABD(a, b, d) = α0 + α1x1(a) + α2x2(b) + α3x3(a, b)

+∑6
i=4 αixi (a, d) +∑15

i=13αixi (a, b, d)

Table 20
Factor efficiencies for the arrow defined design of Table 17

Factorial effectk A B AB AD ABC ABD︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Rk
11
6

11
6

11
6




4
3 0 0
0 4

3 0
0 0 2







8
3 0 0 0 0 0
0 8

9 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 4

3 0

0 0 0 0 0 4
3







4
3 0 0
0 4

3 0
0 0 2




Factor efficiencies 6
11

6
11

6
11

[
3
4

3
4

1
2

] [
9
8

3
4

3
4

1
2

1
2

3
8

] [
3
4

3
4

1
2

]

at the bottom of Table 17, thenαxi is replaced byαi and finally,xi(t) is replaced by
xi(tJ ) wheneverxi ∈ XJ andφJ (t) = tJ .

7. Factor efficiencies

Factor efficiencies are obtained by comparing the variances of estimation in the
design under consideration to those that would be obtained with the reference design
[12]. To take into account the difference between the number of units in these two
designs, the variances are first transformed toper unit variances by multiplying them
by the corresponding numbers of units.

The comparison is made for each factorial effect separately. If a factorial effect
includes several parameters, the comparison is between the associated per unit co-
variance matrices. Their simultaneous diagonalisation leads to theprincipal factor
efficiencies.
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The computation of efficiencies is straightforward if the parametrisation is defined
by (42), where the vectorsx are an orthonormal basis such as the one provided by
Proposition 5.3. Theper unit information matrix of the reference design is then the
identity matrix and the per unit associated covariance matrix isσ 2I . If σ 2R is the cor-
responding per unit covariance matrix in the design under consideration, the factor
efficiencies are immediately deduced from the blocks associated to the factorial ef-
fects on the diagonal ofR. If Rk is the block associated with thekth factorial effect,
the corresponding factor efficiencies are just the inverses of the eigenvalues ofRk.

Example 7.1. We consider the saturated design with the 16 treatments indicated by
arrows on the leftside of Table 17, which was obtained with aD-optimal exchange
algorithm. The correspondingX matrix contains the 16 corresponding lines of the
table. The per unit information matrix isM = X′X/16 andR = M−1. Table 20 gives
the blocksRk associated with the six factorial effects, which happen to be diagonal
in that example, and the corresponding efficiencies.
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