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Intercellular Ca2+ waves are commonly observed in many cell types. In non-excitable cells, intercel-
lular Ca2+ waves are mediated by gap junctional diffusion of a Ca2+ mobilizing messenger such as IP3.
Since Ca2+ is heavily buffered in the cytosolic environment, it has been hypothesized that the con-
tribution of the diffusion of Ca2+ to intercellular Ca2+ waves is limited. Here, we report that in the
presence of plasma membrane Ca2+ ATPase inhibitors, locally-released Ca2+ from the flash-photoly-
sis of caged-Ca2+ appeared to induce further Ca2+ release and were propagated from one cell to
another, indicating that Ca2+ was self-amplified to mediate intercellular Ca2+ waves. Our findings
support the notion that non-excitable cells can establish a highly excitable medium to communicate
local responses with distant cells.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction In this paper, we demonstrate using non-excitable cells that a
Calcium ions (or Ca2+) are ubiquitous second messengers that
regulate a large number of cellular processes in virtually all mam-
malian cells. In electrically excitable cells such as cardiac and
smooth muscle cells, Ca2+ propagates from cell-to-cell via gap junc-
tion channels. Known as intercellular Ca2+ waves, this form of com-
munication provides a means by which adjacent cells coordinate
their behavior. A major mechanism underlying intercellular Ca2+

waves in excitable cells is calcium-induced calcium release (CICR)
[1], which amplifies Ca2+ through ryanodine receptors (RyRs). In
electrically non-excitable cells such as epithelial cells, on the other
hand, functional RyRs are rarely or only weakly expressed [2]. In
such cases, Ca2+ itself propagates poorly between cells, and is af-
fected by Ca2+ clearance mechanisms and buffering effects in the
cytosol [3,4]. In non-excitable cells, a different mechanism of inter-
cellular Ca2+ waves is more commonly found in which Ca2+ mobi-
lizing molecules such as IP3 rather than Ca2+ diffuse through gap
junction channels intercellularly to activate IP3 receptors that re-
lease Ca2+ [5,6].
chemical Societies. Published by E
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locally-induced Ca2+ increase propagated cell-to-cell via a CICR-
like mechanism presumably without IP3 diffusion when a Ca2+

clearance mechanism (plasma membrane Ca2+ ATPase: PMCA)
was inhibited by sodium orthovanadate. This indicates that Ca2+

was self-amplified to mediate the propagation of intercellular
Ca2+ waves in non-excitable cells. We also show through the use
of a computational model that the experimentally observed effects
of PMCA inhibition on intercellular Ca2+ wave propagation were in
good agreement with computer simulation results.
2. Materials and methods

2.1. Materials

A PMCA inhibitor, sodium orthovanadate [7] was purchased
from Sigma and dissolved in water. Another PMCA inhibitor, 5-
(and-6)-carboxyeosin [8] was purchased from Invitrogen and dis-
solved in DMSO.

2.2. Cell culture

HeLa cells constitutively expressing connexin 43 (Cx43, desig-
nated HeLa Cx43 cells) (a gift from Dr. K. Willecke of Institut für
lsevier B.V. All rights reserved.
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Genetik, Germany) [9] were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal calf serum (Gibco),
100 i.u./mL penicillin and 100 lg/mL streptomycin (Sigma). The
cells were incubated in 10 cm diameter culture dishes at 37 �C un-
der 5% CO2. Prior to flash-photolysis experiments, cells were trans-
ferred to 35 mm glass-bottom dishes and cultured for 1–3 days
under the same culture conditions.

2.3. Immunofluorescence analysis

The primary antibody used in the immunofluorescence analysis
was anti-Cx43 mouse monoclonal antibody (Chemicon; human
Cx43 detected), and the secondary antibody was Alexa 488-conju-
gatedgoat anti-mouse IgG (Molecular Probes).

2.4. Microinjection of Lucifer Yellow

Cells were microinjected with Lucifer Yellow (Molecular
Probes) as a 4% solution in distilled water. Lucifer Yellow
(MW = 443) is capable of propagating from cell-to-cell in the pres-
ence of functional gap junction channels. For fluorescence imaging
of Lucifer Yellow, 430/528 nm wavelengths were used for excita-
tion/emission, and fluorescence images were obtained 3–5 min
after microinjection.

2.5. Fluo-4 and caged-Ca2+ loading

Cytosolic calcium concentrations ([Ca2+]i) were monitored using
the calcium indicator, Fluo4/AM (Molecular Probes). Cells were
first loaded with 2.0 lM Fluo4/AM in Hank’s balanced salt solution
buffered with 25 mM N-2-hydroxyethylpiperazine-N0-2-ethane-
sulfonic acid containing Ca2+ [HBSS-HEPES (+)] for 40 min at room
temperature. The cells were subsequently loaded with 2.5 lM
caged-Ca2+ (o-nitrophenynl EGTA, AM) (Invitrogen) for 10 min at
room temperature. Cells were then washed twice with the HBSS-
HEPES (+) and were left for 20 min prior to flash-photolysis exper-
iments to allow for de-esterification of the AM esters.

2.6. Flash-photolysis of caged-Ca2+ and Ca2+ imaging

Flash-photolysis of caged-Ca2+ and Ca2+ imaging were per-
formed using a fluorescence microscope system (DeltaVision, Ap-
plied Precision Inc., Seattle, WA) equipped with a 406 nm diode
laser module (30 mW). In flash-photolysis experiments, Ca2+ was
photo-released by laser spot illumination (excitation wavelength
406 nm). The center of a cell was selected and the selected spot
was exposed for 1.0 s. Before and after the Ca2+ photo-release
event, [Ca2+]i was determined by the fluorescence intensity of
Fluo4 at 488/528 nm wavelengths for excitation/emission. Fluores-
cence images were obtained using a 40, 60, or 100� oil lens objec-
tive with a 0.2–1.0 s image time interval. Cytosolic Ca2+

concentrations in figures are expressed as relative fluorescence
intensity; i.e., (Ft � F0)/F0, where Ft is the fluorescence intensity
measured at time t after the flash is applied and F0 the resting fluo-
rescence intensity measured prior to the flash. Control experi-
ments were performed with Fluo4 but without loaded caged-Ca2+

to confirm that applying the flash itself had no effect on [Ca2+]i.

2.7. Mathematical modeling

A classical model of Ca2+ oscillation [10] is used to identify con-
ditions under which Ca2+ propagates in a self-amplifying manner.
In brief, [Ca2+]i is represented as Z and that of the calcium store
is Y. The time evolution of Z and Y is described by Eqs. (1) and
(2), respectively, where v0 represents Ca2+ influx from the extracel-
lular environment to the cytosol, v1 and v2 represent Ca2+ uptake to
and release from the calcium store, respectively, kfY is the Ca2+ leak
from the calcium store to the cytosol, and kZ represents Ca2+ ac-
tively transported from the cytosol to the extracellular environ-
ment by PMCA pumps. v1 and v2 are further described in Eqs. (3)
and (4), respectively, using rate constants (VM1, VM2), threshold
constants (K1, KR, KA) and Hill coefficients (n,m,p).

dZ
dt
¼ v0 � v1 þ v2 þ kf Y � kZ ð1Þ

dY
dt
¼ v1 � v2 � kf Y ð2Þ

v1 ¼ VM1
Zn

Kn
1 þ Zn ð3Þ

v2 ¼ VM2
Ym

Km
R þ Ym �

Zp

Kp
A þ Zp ð4Þ

To simulate intercellular propagation of a locally-induced Ca2+

increase, the model was spatially extended to a one dimensional
array of cells, where each cell is represented as Zi and Yi (i = 0 to
N � 1): N is the number of cells tested. The intercellular Ca2+ flux
to Zi is defined as D/L2 � (Zi�1 � 2Zi + Zi+1), where D is the diffusion
coefficient of Ca2+ and L is the size of the array. To simulate a
Ca2+ photo-release event within a cell, vf was added to dZ0/dt for
the first T s.

All simulation results were obtained by numerically integrating
the model equations using Euler’s method with a 0.0001 s time
step. The parameter k is the Ca2+ extrusion rate constant controlled
by PMCA pumps and is varied to observe its impact on the propa-
gation of intercellular Ca2+ waves. The other parameter values used
are as follows: v0 = 0.2 (lM/s), kf = 0.2 (1/s), VM1 = 10 (lM/s),
VM2 = 100 (lM/s), K1 = 1 (lM), KR = 2 (lM), KA = 0.9 (lM),
m = n = 2, p = 4, N = 30 (cells), vx = 0.3 (lM/s), D = 20 (lm/s2),
L = 20 (lm), and T = 1.0 (s).

3. Results

3.1. Functional gap junction channels are formed between HeLa Cx43
cells

The gap junction is a potential gate for Ca2+ propagation in
many mammalian cells. To investigate whether gap junction chan-
nels exist in HeLa Cx43 cells, we first examined the localization of
Cx43 in HeLa Cx43 cells by indirect immunofluorescence staining.
The specific antibody localized Cx43 clustering at cell boundaries
as expected for the gap junction (Fig. 1A). Second, we examined
if the gap junction channels were functional by monitoring the dif-
fusion of microinjected Lucifer Yellow, a membrane-impermeable
tracer, to neighboring cells through the gap junction channels
(Fig. 1B). The gap junction channel-forming rate (a coupling rate)
was calculated as a ratio of the number of cells that increased their
fluorescence intensity out of the number of cells adjacent to the
Lucifer Yellow-injected cell. The average coupling rate of the HeLa
Cx43 cells from our experiments was 0.39 ± 0.1 (n = 56), which is in
good agreement with a previously reported value [9]. These results
suggest that HeLa Cx43 cells form gap junctions with functional
channels capable of propagating small molecules such as Ca2+.

3.2. No apparent cell-to-cell propagation of calcium

To determine whether Ca2+ propagates through gap junction
channels in HeLa Cx43 cells, two sets of experiments (Expts. 1
and 2) were performed using flash-photolysis of caged-Ca2+. In
Expt. 1, a flash was applied for 1.0 s to individual cells that had
no physical contact with other cells (Fig. 2A). In Expt. 2, a flash
was applied for the same duration to cells that were physically
touching 3–6 other cells (Fig. 2B). In both cases, flashed cells exhib-



Fig. 1. Cx43 expression and gap junction channel formation. (A) Immunofluorescence analysis of Cx43 detected the localization of fluorescence along the boundary between
two adjacent cells. The arrows point to strong fluorescence intensity (scale bar: 20 lm). (B) Gap junction channel formation was assayed by microinjection of Lucifer Yellow.
Lucifer Yellow was injected to the cell marked with the arrow and spread to all adjacent cells (scale bar: 20 lm).
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Fig. 2. Flash-photolysis of caged-Ca2+ under control conditions. (A and B) Each image sequence shows a series of Fluo4 fluorescence images obtained before (baseline) and
after a 1.0 s flash was applied to the center of a cell at time 0. (A) The flashed cell is not in contact with other cells. (B) The flashed cell is in physical contact with other cells. (C)
The Fluo4 fluorescence intensity averaged over the entire cytosolic region of a flashed cell is plotted for Expt. 1 (without neighboring cells, e.g., (A)) and Expt. 2 (with
neighboring cells, e.g., (B)). The fluorescence intensity shown is relative to the baseline intensity. The increased decay rate in Expt. 2 indicates that Ca2+ diffuses between cells,
although an increase in [Ca2+] was rarely observed with Fluo4 imaging in cells adjacent to a flashed cell (scale bar: 20 lm).
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ited an increased [Ca2+]i (Fluo4 fluorescence intensity averaged
over the cytosolic region) upon photo-release of Ca2+, which then
gradually decreased (Fig. 2C). The average peak amplitudes mea-
sured in Expts. 1 and 2 were 1.50 ± 0.13 (n = 15) and 1.49 ± 0.07
(n = 19), respectively, for which the results were not significantly
different. On the other hand, the average decay half-time,
9.93 ± 0.79 s (n = 15) for isolated cells (Expt. 1), was slightly higher
than that for injected cells surrounded by other cells (7.52 ± 1.09 s
(n = 19)) (Expt. 2, P < 0.05). As it is evident that gap junctions are
formed in approximately 40% of cells (see above), this slightly
accelerated decay could be indicative of the diffusion of Ca2+

through gap junction channels, even though an increase in [Ca2+]i

was rarely observed in Expt. 2. Since a significant decrease in
[Ca2+]i occurred both in Expts. 1 and 2, irrespective of the presence
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or absence of neighboring cells, we speculated that this decrease
could be caused by mechanisms other than diffusion through gap
junctions. One such mechanism could involve PMCA pumps which
have been reported to control the intracellular Ca2 concentration in
neurons [11].

3.3. PMCA inhibitors increase the intracellular calcium concentration

To test our hypothesis that PMCA pumps may act on controlling
intracellular Ca2 concentration in HeLa Cx43 cells, we used sodium
orthovanadate, a known PMCA inhibitor [7], to reduce the effects of
PMCA that transports Ca2+ to the extracellular environment, there-
by enabling Ca2+ in the cytosolic region to extend their effective
range of action.

The effects of PMCA inhibition on resting [Ca2+]i were examined
with different concentrations of sodium orthovanadate: high
(2 mM), medium (500 lM) and low (50 lM). Under all conditions
tested, PMCA inhibitor had a certain effect, but classified into three
different types, on the Ca2+ dynamics in the cells, suggesting that
PMCA pumps might act on controlling intracellular Ca2+ in the
cells. For each concentration used, the Ca2+ dynamics of each cell
in the presence of sodium orthovanadate was characterized into
following three types as a large increase (Fig. 3A and D-1), an oscil-
latory response (Fig. 3B and D-2), or a small increase (Fig. 3C and
D-3). A large increase was most often observed in the presence
of the high concentration of sodium orthovanadate (2 mM)
(n = 4), the oscillatory response in the presence of the medium con-
centration (500 lM) (n = 4), and small increases when cells were
exposed to low concentrations (50 lM) (n = 4) (Fig. 3E).
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3.4. Low concentrations of PMCA inhibitors caused a locally-induced
increase of intracellular calcium which propagated from cell-to-cell

To assess the ability of a Ca2+ increase to propagate cell-to-cell
in the presence of sodium orthovanadate, we used a low concen-
tration of sodium orthovanadate that had almost no observable ef-
fects on resting [Ca2+]i or only slightly increased it. Flash-
photolysis experiments were performed under conditions where
the resting [Ca2+]i was slightly increased in the presence of sodium
orthovanadate, with results showing that a local [Ca2+]i increase
induced by the flash-photolysis was propagated to adjacent cells.
We observed increased [Ca2+]i as far as five cells away from the
flashed cell (Fig. 4A and B), with the increased [Ca2+]i propagating
a distance of 2.2 ± 0.4 cells (n = 10; excluding the flashed cell) on
average. The amplitude of the Ca2+ transiently observed in an
adjacent cell was sometimes equal to or greater than that in the
flashed cell, indicating that further Ca2+ release was seemingly trig-
gered in adjacent cells. (See Supplementary Fig. S1 for averaged
amplitudes and time delay in Ca2+ increases between two adjacent
cells.)

The PMCA inhibitor, sodium orthovanadate, used in the above
experiments is a general ATPase inhibitor. To verify the effect of
PMCA inhibition, we also used 5-(and-6)-carboxyeosin (CE), a more
specific PMCA inhibitor [8]. Similar to the results of experiments
using sodium orthovanadate, low concentrations (10 lM) of CE
did not cause significant changes to the resting [Ca2+]i, inducing
only slight increases or small amplitude, low frequency oscilla-
tions. In flash-photolysis experiments performed with low concen-
trations of CE, a locally-induced Ca2+ increase in the flashed cell
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showing increased [Ca2+]i. (B) Traces of the average Fluo4 fluorescence intensity measured for each of the six cells.
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propagated to adjacent cells. The average propagation distance
measured was 1.7 ± 0.4 cells (n = 12).

3.5. Experimentally observed effects of PMCA inhibitors on intercellular
Ca2+ propagation were in good agreement with theoretical results

To understand effects of PMCA inhibitors on intercellular Ca2+

propagation, we applied a mathematical model to simulate these
phenomena as described in Methods. The experimentally observed
effects of PMCA inhibitors on intercellular Ca2+ propagation were
in good agreement with theoretical results obtained from a modi-
fied version of the classical model of calcium oscillation in non-
excitable cells [10]. Fig. 5A illustrates the model used in this study
in which the Ca2+ extrusion rate constant (k) represents PMCA
activities (larger k values indicate that PMCA pumps are more ac-
tive or less inhibited). Fig. 5B shows simulation results demon-
strating how the PMCA Ca2+ extrusion rate constant (k) impacts
the Ca2+ dynamics. The resting [Ca2+]i is low for a high Ca2+ extru-
sion rate (k = 0.70), oscillates for an intermediate Ca2+ extrusion
rate (k = 0.60), and is sustained at a high level for a low Ca2+ extru-
sion rate (k = 0.28). The simulation results here are thus in good
agreement with the experimental results shown in Fig. 3D.

Fig. 5C shows the distance that a locally-induced Ca2+ increase
propagates along an array of cells for a range of k values. When k
is large, a locally-induced Ca2+ increase does not propagate (no
propagation). When k is reduced, the Ca2+ increase propagates
along the array, but is attenuated as it proceeds (diffusion-like
propagation). When k is reduced even further, a locally-induced
Ca2+ increase propagates in a self-amplifying manner to the end
of the cell array (regenerative propagation). (It is therefore in the-
ory possible that a Ca2+ increase propagates from a flashed cell to
all the other cells, however, such a case was not observed in our
experiments due, for instance, to the fact that the gap junction
channel-forming rate was about 40% and channels were not always
formed.) The experimental results shown in Fig. 4B can be well
reproduced when the PMCA Ca2+ extrusion rate constant is small
(k = 0.723) as shown in Fig. 5D. It is noted here that similar obser-
vations can be made for other model parameters. For example,
increasing the rate for v0 and v2, and decreasing the rate for v1

has a similar effect as decreasing k, which allows a locally-induced
Ca2+ increase to propagate cell-to-cell.

4. Discussion

Previous studies based on non-excitable cells [12–14] show that
a local Ca2+ increase induced by either microinjection of Ca2+ or
flash-photolysis of caged-Ca2+ was able to generate a Ca2+ wave
that propagated cell-to-cell through a CICR-like mechanism after
cells were stimulated with agonists. Since agonistic stimulation is
known to produce IP3, it has been hypothesized that an elevation
of the basal IP3 level (or the supra-basal IP3 level) is required to
activate such a self-amplifying mechanism in non-excitable cells.

In our experiments, we used PMCA inhibitors, which are not
known to produce IP3, and demonstrated that a locally-induced in-
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crease in [Ca2+]i gives rise to intercellular Ca2+ wave propagation
presumably at the basal IP3 level, (although the involvement of
IP3 in intercellular calcium wave propagation is not determined
in our experiments and needs to be investigated.) The direct effect
of PMCA inhibition is a reduced Ca2+ extrusion rate, which permits
an increase in the diffusion range of cytosolic Ca2+. Under such con-
ditions, locally-released Ca2+ may diffuse without being affected by
PMCA pumps and effectively sensitize IP3Rs to further release Ca2+

at basal IP3 levels. In addition, Ca2+ may also be effectively ampli-
fied through a phospholipase C (PLC) pathway [15], thereby en-
abling the propagation of a local Ca2+ increase in a self-
amplifying manner.

The theoretical model predicts that a local Ca2+ increase in a
non-excitable cell can propagate cell-to-cell through repetitive
processes of Ca2+ release and diffusion when the rate of Ca2+ extru-
sion via PMCA is reduced. In addition, the theoretical model indi-
cates that an elevated IP3 level is not necessarily required as long
as conditions are met to enable regenerative wave propagation
(i.e., modifications to other parameter values can also produce
self-amplifying intercellular Ca2+ waves). Our experimental and
theoretical results together support the idea that non-excitable
cells can form a highly excitable medium under the influence of
a CICR-like mechanism for a range of conditions. In this way, lo-
cally sensed information can be communicated to distant cells.
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