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ABSTRACT

Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep under-
standing of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data,
which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the
majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as ex-
pected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochon-
dria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo
process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available;
these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interro-
gation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine
these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy
and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in
aging, and how these new discoveries are helping to better understand the role of mitochondria in health and
disease. This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva
del Garda, Italy, July 2-6, 2016, edited by Prof. Paolo Bernardi.

Superoxide

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

The Free Radical Theory of Ageing, later updated to the Mitochondri-
al Free Radical Theory of Ageing (MFRTA) was proposed by Denham
Harman in 1956 and 1972 respectively [1,2]. The efforts to test MFRTA
have been instrumental in gaining a better understanding of the aging
process, moreover our knowledge of how free radicals participate in cel-
lular physiology has been extended far beyond the aging field. Primary
support for MFRTA comes from descriptive studies which established
that ROS production and oxidative damage accumulate with age [3-6],
and from correlative studies showing that ROS levels correlate with
lifespan in long-lived animals [ 7-9] or individuals [ 10-13]. Additionally,
excessive ROS levels have been reported in many age-related and de-
generative diseases such as Parkinson's disease (PD) [13], diabetes
[14] and cancer [15]. In contrast to this, MFRTA has been repeatedly

Abbreviations: DCFDA), 2',7'-dichlorofluorescin diacetate; FCCP), carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone; CoQ), Coenzyme Q; CI), Complex I; ETC), electron
transport chain; H,0,), hydrogen peroxide; HE), hydroethidine; LC), liquid chromatogra-
phy; MS), mass spectrophotometry; mtDNA), mitochondrial DNA; MFRTA ), Mitochondrial
Free Radical Theory of Aging; mtROS), mitochondrial Reactive Oxygen Species; mtUPR),
mitochondrial Unfolded Protein Response; PD), Parkinson's disease.

* This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics
Conference, Riva del Garda, Italy, July 2-6, 2016’, edited by Prof. Paolo Bernardi.

http://dx.doi.org/10.1016/j.bbabio.2016.03.018

challenged by experimental data, which has demonstrated that neither
alteration of antioxidant levels nor direct manipulation of ROS produc-
tion alter longevity as predicted by MFRTA [16-18]. Administration of
antioxidants has repeatedly failed to extend lifespan in several animal
models reviewed in [19]. Furthermore, manipulation of endogenous
antioxidant levels also did not support MFRTA [20]. A paradigmatic
example is Caenorhabditis elegans, where suppression of all superoxide
dismutase activity by knocking-out all genes encoding superoxide
dismutase enzymes fails to reduce lifespan even by a day, despite signif-
icantly increasing sensitivity to oxidative stress [21]. Although, Drosophila
melanogaster or Mus musculus are more sensitive to superoxide levels i.e.
knock-out of Sod2 dramatically shortens lifespan to a few days in both
animal species, heterozygous Sod2 knock-out mice have a normal
lifespan despite higher levels of oxidative damage [16]. Direct manipu-
lation of ROS produced by the electron transport chain (ETC) does not
alter longevity as expected either. Reducing superoxide leak from ETC
does not extend lifespan in fruit flies [18], but even more counterintui-
tive is the fact that low doses of ROS-generating toxins such as rotenone
or paraquat, in spite of having different effects on mitochondrial respi-
ration (i.e. only rotenone is a direct inhibitor of respiratory complex I
(CI) [22]), extend lifespan in worms in a ROS-dependent manner [17].
Furthermore, mutations in genes encoding subunits of CI increase ROS
and extend lifespan in both worms and flies through a ROS dependent
mechanism, independently of their effects on mitochondrial respiration
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[23,24]. The concept of mitohormesis proposes that boosting ROS levels
activates a program of responses to stress that over-activate mechanisms
of protection (including antioxidants) which compensate for initial dam-
age caused by ROS [25]. Mitohormesis, fails to explain why overexpres-
sion of these same mechanisms of protection alone is not sufficient to
extend lifespan or why overexpression of these mechanisms suppresses
lifespan extension in those models where ROS have been experimentally
increased [17,24]. Nevertheless, as mentioned previously, ROS levels
have been shown repeatedly to be altered in aging and age-related
diseases. In this review, I intend to discuss the role that ROS play in deter-
mining animal lifespan, reviewing the latest findings in the field. In the
interest of space, I will mainly focus on the three animal models in
which the greatest extension in lifespan has been reported: C. elegans,
D. melanogaster and M. musculus. For the same reason, I will not discuss
ROS generated outside the mitochondrion, although it is clear that they
can also contribute to the onset of aging and age-related disease [26,
27]. For example, it has recently been shown that lifespan of the long-
lived clk-1 mutant worm is further extended by increasing mitochondrial
ROS levels through knock-out of sod2 [28]. However, increasing cytosolic
ROS levels, by knocking out sod3 and sod5, shortened lifespan of this
long-lived mutant. This indicates that ROS can have opposing effects on
longevity, depending on whether they are produced within or outside
of mitochondria. This highlights the importance of understanding
where ROS are generated.

2. ROS are not all the same

Mitochondria are the powerhouses of the cell, producing a consider-
able share of cellular ATP, as well as many other essential cellular com-
ponents such as iron-sulfur clusters or pyrimidine nucleotides, that the
cell requires for survival. In addition, mitochondria participate in calci-
um metabolism and play a leading role in the initiation of apoptosis
and as such are instrumental in maintaining cellular homeostasis acting
as important signaling organelles in different tissues [29]. For example,
mitochondrial ROS are essential for the elimination of bacteria by the
macrophages [30], induction of differentiation of hematopoietic pro-
genitors in fruit flies [31] or control of insulin release in pancreatic -
cells [32]. Most physiological processes taking place in mitochondria
(e.g. ATP generation) are to a greater or lesser extent coupled to mito-
chondrial respiration, which makes mutations, in genes encoding ETC
subunits or those proteins involved in mtDNA maintenance, the most
common cause of inherited metabolic disorders [33]. Most oxygen
consumption occurs during cellular respiration and as a consequence
most of the superoxide produced within the cell is generated by the
mitochondrion in the majority of, although not all, cell types [34].

Since mitochondria play a central role in cellular function and me-
tabolism, it is not surprising that decreased mitochondrial performance
is a hallmark of aging [35]. In fact, mitochondrial malfunction can have
terrible consequences as exemplified by those phenotypes associated
with mitochondrial disease i.e. inherited mitochondrial disorders that
result in progressive neuropathies and myopathies [33]. Thus, many
sporadic and age-related diseases such as PD [36] or diabetes are
suspected to have a mitochondrial component [37]. It is possible that
age-related mitochondrial loss of function is a consequence and not a
cause of aging. A recent intriguing paper supports this hypothesis.
Siegfried Hekimi's laboratory has shown that controlled disruption of
Coenzyme Q (CoQ) biosynthesis, through knock-out of the Mclk1
gene, severely affects mitochondrial function and dramatically reduces
lifespan [38]. Interestingly, restoration of CoQ levels through administra-
tion of 2,4-dihydroxybenzoic acid (an analogue of 4-hydroxybenzoic
acid, the natural precursor of CoQ) that is only able to partially rescue
the mitochondrial phenotype completely rescued the shortened lifespan
of Mclk1 mutant mice. This result is totally unexpected, as chronic mito-
chondrial dysfunction should cause the accumulation of irreversible
damage and a shortened lifespan, if mitochondrial dysfunction is an un-
derlying cause of aging. Conversely, Hekimi's work suggests [38] that

mitochondrial dysfunction per se does not cause aging, as replacement
of damaged mitochondria with functional mitochondria instantly re-
stored a youthful phenotype. This defies the dominant paradigm that
states that chronic mitochondrial dysfunction accelerates aging. It
would be interesting to test if this is applicable to other models of mito-
chondrial dysfunction such as mutations in the mitochondrial polymer-
ase (DNA polymerase y) that has also been shown to accelerate aging
[39] through a reduction in mitochondrial function [40], or if this effect
is unique to alterations in CoQ synthesis.

A topic highly debated in the field is the role that mitochondrial ROS
play in age related and non-age related pathological processes with a mi-
tochondrial component. Are ROS a cause or a consequence of mitochon-
drial dysfunction? This is a very important question, which needs to be
addressed, since it will affect the treatment of those pathologies. Consid-
ering all the available evidence, it is plausible to suggest that ROS can have
both positive and negative roles depending on the type of the ROS, when,
where and how much is produced. Therefore, we can talk about “Good”
and “Bad” ROS. “Good” ROS being low reactivity ROS (i.e. superoxide or
hydrogen peroxide (H,0,)) produced at specific places, at specific times
and in moderate amounts and “Bad” ROS being highly reactive ROS (or
low reactive ROS as H,0, or superoxide produced at high concentrations)
generated continuously and unspecifically. Experimental evidence sug-
gests that boosting ROS production can contribute to the maintenance
of cellular homeostasis and positively affect lifespan when induced cor-
rectly, whereas if produced in excess or in an unspecific way, they shorten
survival and accelerate the onset of age-related disease.

In my opinion, there are two reasons why the role of ROS in aging
and in different diseases is not yet fully understood. Firstly, ROS are
usually considered as a single entity and are measured using unspecific
probes that are prone to experimental artifacts. For example, 2’,7’'-
dichlorofluorescin diacetate (the popular DCFDA) reacts non-
specifically with many types of free radicals that are produced ubiqui-
tously, thus its use is associated with many caveats as for example its
propensity to autoxidize [41]. Each ROS has specific properties that are
determined by its intrinsic reactivity and relative abundance. The sec-
ond issue is that the majority of ROS measurements -in the study of
aging and age-related diseases- have been performed in vitro using iso-
lated mitochondria or cells in culture. I will discuss the first issue now,
and will focus on the second in the following section.

As previously mentioned, it is common to see reference to “R0OS”
without any mention of which specific ROS is being measured or
where they are produced. There are many types of ROS but the three
most studied in aging and age-related pathologies are superoxide (03),
hydrogen peroxide (H,0-) and the hydroxyl radical (*OH), which are
the result of the incomplete reduction of oxygen with one, two and
three electrons respectively. It is usually accepted that ROS are mainly
produced during oxidative phosphorylation, by mitochondria, as a re-
sult of the incomplete reduction of O, to superoxide. This is true for
the majority of cell types but not all, since in some cells other organelles
(e.g. peroxisomes or endoplasmic reticulum) or enzymes (e.g. NADPH
oxidases, xanthine oxidase, lipoxygenase, cyclooxygenase, cytochrome
p450s or nitric oxide synthase) are the main generators of ROS
(reviewed elsewhere [42-44]). In normal conditions, generation of su-
peroxide is not particularly problematic for the cell since it is promptly
detoxified to H,0, by superoxide dismutase. In fact, neither superoxide
nor H,0, are particularly reactive when maintained at low concentra-
tions and are unable to for example cause mutations to DNA by them-
selves [45]. However, they can both generate more reactive ROS,
which are able to cause macromolecular damage including DNA muta-
tions. The main target of superoxide is the iron-sulfur clusters of pro-
teins such as aconitase or respiratory CI and II, which release free iron
as a result of superoxide attack [46,47]. This free iron reacts with super-
oxide and H,0,; to form the extremely toxic. ‘OH through the Fenton/
Haber-Weiss reactions. In addition, superoxide can also react with nitric
oxide to form another highly toxic ROS: peroxynitrite (OONO™). Both
‘OH and OONO™ can react with and damage all biological components
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of the cell [48], and surprisingly there is no specific antioxidant system
to detoxify them. This indicates that they are rarely produced under
normal conditions or that evolution has not yet been able to come up
with a system to neutralize them in an energy efficient manner. Mito-
chondrial H,0, is particularly important in cellular signaling due to its
ability to selectively modify cysteine thiols (reviewed in [49]). These
kinds of modifications are reversible, although prolonged periods of
high H,0, levels can provoke secondary and tertiary oxidative irrevers-
ible modifications. Catalases and peroxiredoxins convert H,O, into H,0
and 0,, and glutathione peroxidases use H,0, to convert glutathione
into glutathione disulfide. Peroxiredoxins are preferential targets of
H,0, and transduce the H,0, signal through both redox (via thio-
disulfide) or non-redox (via protein-protein) interactions [50]. For
example, metformin extends C. elegans' lifespan by a ROS mediated
mechanism that requires PRDX-2 to transmit the signal from the mito-
chondria to the nucleus [51]. Antioxidant systems are usually able to
keep oxidative stress under control in young/healthy cells and in nor-
mal conditions oxidation is maintained at safe levels. Based on experi-
mental evidence (see below), we can consider superoxide and H,0,
as “Good” ROS involved in cellular signaling and able to extend lifespan
if boosted at the right place and time, whilst OH and OONO™ are “Bad”
ROS involved in oxidative damage. As I shall discuss, there are different
ways to measure superoxide and H,0,, ex vivo and in vivo, however
measurement of highly reactive ROS is much more difficult due to
their short half-life and to the best of my knowledge there is currently
no reliable method to detect them in vivo.

3. Problems measuring ROS: in vitro vs in vivo measurements

As mentioned previously, one of the biggest caveats associated with
data supporting MFRTA is that they have been mainly obtained from
in vitro experiments using isolated mitochondria. Such experiments
are typically performed by feeding mitochondria with saturating con-
centrations of specific substrates in combination with inhibitors to
help dissect the specific locations within ETC where ROS are produced.
This approach provides a high resolution that allows precise identifica-
tion of where ROS are generated, but the trade-off is a loss of physiolog-
ical relevance resulting from the artificial conditions used, and therefore
results obtained using this approach cannot be directly extrapolated to
the in vivo situation. A non-exhaustive list of problems associated with
experiments in isolated mitochondria includes (Fig. 1):

(i) Mitochondria are exposed to oxygen levels that are 4-5 times
higher than what they would experience in vivo.

(ii) Mitochondria are isolated from their natural environment that
includes close associations with the cytoskeleton and other

( (i)

i 8 1 p0:

i)
1o 10

organelles (e.g. the endoplasmic reticulum) that contribute to
the determination of mitochondrial morphology and the rate of
respiration [52], and therefore have a direct effect on ROS pro-
duced by ETC.

Substrates and ADP are administered at saturating concentra-
tions that would never be encountered in vivo.

(iv) ROS are usually measured only during the artificial state 4 (with-

out ADP) or more rarely state 3 (with ADP).

(v) Most studies use either complex I- (e.g. pyruvate + malate) or II-
linked (e.g. succinate) substrates e.g. [53,54], whereas in vivo
electrons are fed simultaneously from several entry points in-
cluding CI and I, but also glycerol-3-phosphate dehydrogenase
or the electron transfer flavoprotein.

Most studies only measure H,0, released from mitochondria,
overlooking that superoxide is the main ROS generated by ETC
in animals [55] and that it is largely generated inside the mito-
chondrion by CI, CIl and some Krebs cycle enzymes [56,57]. Mea-
suring H,0, released from the mitochondrion as an indication of
the superoxide produced by ETC is misleading since the activity
of superoxide dismutase may influence the levels detected [58].
To clarify what happens in vivo with superoxide production,
more studies specifically measuring mitochondrial superoxide
are needed (see below).

(iii

=

(vi

=

A characteristic example of the problems referred to above is the
conclusion, by some studies, that only CI produces fewer ROS in long-
lived species or individuals [59]. This conclusion is probably biased for
two reasons. Firstly, in some of these reports differences are only ob-
served when CI produces ROS working in reverse, so called “revere elec-
tron transport” [9,60]. Secondly, other ROS generators as for example
complex I and IIl have been discarded as ROS generators relevant for
longevity using concentrations of succinate that are 4-5 times higher
than those used for pyruvate; these higher concentrations, much higher
than in vivo, inhibit production of ROS by CII, compromising the physio-
logical relevance of the results [61]. In fact based on my own experience
at the bench, changes in the concentrations of substrates used to feed
ETC can alter the conclusions of one specific study dramatically. RET
was considered an in vitro artifact until recently when it was shown to
be responsible for the damage caused by ROS during ischemia-reperfu-
sion [62]. RET occurs as a consequence of the preferential use of FADH,-
linked substrates (i.e. succinate, glycerol 3-phosphate or fatty acids),
which causes an over-reduction of the ubiquinone pool and generates
thermodynamically favorable conditions for ubiquinol to transfer elec-
trons to Cl reducing NAD + to NADH [63]. During this process a consid-
erable amount of superoxide is produced by CI. RET is abolished by
depolarization (e.g. using uncouplers such as carbonyl cyanide-p-

(iii)

4 [Substrates + ADP]
~

(iv) (v) {vi)
_ADP State 4
B
+ADP State 3
Fig. 1. Problems associated with ROS measurements in isolated mitochondria: (i) non-physiological levels of oxygen, (ii) loss of cellular interactions, (iii) saturating concentrations of

substrates and ADP, (iv) measurement of “artificial respiratory” states, (v) use of CI- or ClI-linked substrates, (vi) detection of extra-mitochondrial H,05.
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trifluoromethoxyphenylhydrazone (FCCP)) or by CI Q-site inhibitors
(e.g. rotenone) in vitro, and by inhibitors of CII (e.g. malonate) in vivo
[62]. The role of RET in non-pathological conditions if any remains to
be elucidated. In relation to this, it is worth noting that inhibition of
CIIl and IV or the action of CV working in reverse mode would generate
the conditions for RET to occur in vivo [64]. In fact, ROS produced via RET
have been proposed to be involved in cellular signaling and the activa-
tion of mechanisms of protection in response to stress [65].

The use of cells instead of isolated mitochondria negates most (i, iii,
iv, v, vi), but not all (i) the problems outlined above and has other
specific drawbacks. Cells are routinely grown under chronic hyperoxic
conditions (i.e. 20% O, levels) and in most studies, highly glycolytic
transformed cells are used. Cells develop non-physiological adaptations
when they are continuously cultured under these conditions that may
compromise the physiological relevance of results obtained in vitro.
Two examples related with aging and mitochondrial function perfectly
illustrate this problem. Fibroblasts cultured under 20% oxygen levels
rapidly develop a senescent phenotype characterized by the accumula-
tion of transversions, a type of mutation that is characteristic of oxida-
tive stress supporting a major role of ROS in this process [66].
However, if oxygen levels are reduced to 3% - closer to the physiological
reality - neither senescence or transversions are observed [66]. Similar-
ly, loss of mitochondrial membrane potential triggered by FCCP in cells
overexpressing Parkin only induces mitophagy if they are cultured in a
glucose-rich medium [67]. However, if cells are forced to use their mito-
chondria to obtain energy (replacing glucose by galactose), mitophagy
does not occur due to a lack of activation of OMA1 and subsequent
cleavage of L-OPA1 that prevents mitochondrial fission and therefore
mitochondrial turnover. The fact that mitophagy triggered by FCCP
only occurs under very restricted conditions in vitro (i.e. in cells overex-
pressing Parkin grown in a glucose-rich medium) demonstrates the
limitation of this model, which is considered paradigmatic, to study mi-
tochondrial turnover [67,68] and may explain the lack of physiological
effects of parkin knock-out in mouse models [69,70]. Using cells cul-
tured in glucose-rich media and under hyperoxic conditions, some stud-
ies have discarded the role of ROS as inducers of cellular senescence [71]
or regulators of mitophagy [68]. While other studies, using similar
growth conditions (i.e. a glucose-rich medium and 20% oxygen levels)
but which control better antioxidant concentration in the media (i.e.
avoiding excess of antioxidants that can interfere with ROS signaling)
or use specific mitochondrial dyes for ROS measurements (e.g. MitoSOX
to detect mitochondrial superoxide), have reported a major role of ROS
in mitophagy and cellular senescence [72,73].

This shows that experimental conditions clearly influence the out-
put of the experiment, and remind us that in vitro experiments must
be carefully interpreted and conclusions should not be immediately ex-
trapolated to in vivo. Another good example of how problematic study-
ing mitochondrial phenotypes using an in vitro approach can be is
mitochondrial disease. It is not uncommon that fibroblasts from mito-
chondrial patients, diagnosed from muscle biopsies, do not display any
mitochondrial alterations when cultured in vitro [74]. It is unclear
whether this is caused by differences in the cell type or the conditions
in which cells are cultured [74], in any case, it further demonstrates
that conclusions from in vitro studies should be made with caution. A so-
lution in some cases has come from reprogramming those fibroblasts
into neurons or myocytes, which partially recapitulate the phenotype
observed in the patients and can help to clarify whether or not ROS
are involved in mitochondrial disorders [75].

4. New approaches for measuring ROS

As a result of the problems referred to above, there have been con-
tinuous efforts to develop novel strategies to measure ROS in vivo. In
many instances ROS levels are inferred indirectly from oxidative dam-
age markers, which is far from optimal since the levels of oxidative dam-
age depend not only upon ROS generation but also upon repair and

turnover mechanisms. In addition, effects of ROS signaling on lifespan
can be modulated without causing detectable oxidative damage. It is
out of the scope of this review to discuss the technical details of different
methods to measure ROS in vivo, and readers are referred to some excel-
lent reviews, which have recently been published [41,76]. However, |
will briefly discuss those approaches that have been used recently to
study how mitochondrial ROS affect lifespan. The nature, the when
and the where of ROS production is essential when selecting the most
appropriate system of detection. The half-life of ROS ranges from nano-
seconds to seconds depending on their reactivity and the abundance
and existence of antioxidant systems targeted against them. For obvious
reasons, fluorescent probes are usually chosen for in vivo measure-
ments. The most frequently used probes are either small dyes or genet-
ically encoded fluorescent protein reporters that unfortunately are
prone to technical artifacts. As such, confirmation using alternative ap-
proaches like overexpression/knockdown of specific antioxidants is
highly recommended (Fig. 2).

Protein-based reporters such as reduction-oxidation circularly per-
muted Yellow Fluorescent Protein (cpYFP), Hydrogen Peroxide sensor
(HyPer) or Green Fluorescent Protein (roGFP) have the advantage that
they can be engineered to be expressed in a temporally and spatially
controlled manner [76]. For example, they can be expressed exclusively
in specific tissues or targeted to discreet organelles, which in the study
of mtROS is a must have. cpYFP has been presented as a highly selective
and sensitive superoxide detector [77], however its ability to detect su-
peroxide has recently come in to question as it has been claimed that it
in fact detects changes in pH and not superoxide itself [78,79]. A modi-
fied version of cpYFP - Hyper - has been engineered to measure H,0,
levels in vivo [80]. Hyper is a ratiometric fluorescent that consists of a
cpYFP protein inserted into the regulatory domain of an Escherichia
coli peroxide sensor oxyR. Using hyper, Ursula Jakob's lab has reported
that peroxide levels are highest during development, decrease during
adulthood and increase again at old ages [81]. Interestingly, in the
same study, short-lived daf-16 and long-lived daf-2 mutants had more
and less ROS respectively compared with controls. Unfortunately, the
authors did not measure any markers of oxidative stress or investigate
whether effects of ROS levels are mediated through signaling. Therefore
it remains unclear if changes in ROS levels are merely correlative or if
they may be able to explain differences in longevity. roGFPs are dual-
excitation ratiometric probes that were originally developed to detect
changes in the redox state of glutathione [82], however they have
been converted into probes for specifically detecting H,O, through fu-
sion to the microbial H,0, sensor oxidant receptor peroxidase 1
(Orp1) [83]. Using this approach, the laboratories of Tobias Dick and
Aurelio Teleman studied changes in mitochondrial and cytosolic H,0,
levels during aging in specific fly tissues using both a mitochondrially-
and a cytosolically-targeted versions of Orp1roGPF [84]. Although,
they reported important differences between tissues (e.g. gut cells
have higher levels of cytosolic H,O, than other cell types) and between
different regions of the same tissue (e.g. they reported areas of both
high and low ROS levels in fat body), they did not observe any signifi-
cant increase in mitochondrial H,0, levels with age. However, only
young flies (~21 days old) were used, preventing conclusions on in-
creased ROS levels at later ages as other studies using alternative
in vivo approaches (see work from Mike Murphy's lab below) have re-
ported [85].

Most of aforementioned approaches require the use of optically
accessible systems, thus quantification can be difficult and detection of
small differences between groups can be technically challenging. The
use of liquid chromatography (LC) coupled to fluorescence, electrochem-
ical or mass spectrophotometry (MS) can help to increase specificity and
detection of smaller differences. The use of MS to detect superoxide has
been applied using hydroethidine (HE) or its mitochondrially-targeted
version Mito-HE popularly known as MitoSOX. The specificity of HE
(and Mito-HE) is limited by the lack of specificity since HE can be oxi-
dized by molecules other than superoxide. However, HE specifically
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Fig. 2. Four steps to validate the role of ROS in the aging process in vivo using the state-of-the art technology to measure ROS. Measurement of mitochondrial ROS levels in vivo is required to
understand how ROS contribute to aging and age-related diseases. (i) Experimental animals can be injected or fed with small dyes or genetically encoded fluorescent proteins can be
expressed both ubiquitously or in a tissue-specific manner. (ii) Small animals can be directly visualized under the microscope (e.g. worms) or tissues can be dissected (e.g. fly brain)
allowing study of specific areas or cells using fluorescence reporters. Alternatively, superoxide (using e.g. MitoSOX) or H,0, (using e.g. MitoB) can be extracted from cell or tissue
homogenates and quantified using Mass spectrophotometry analysis. (iii) Lifespan is then studied using appropriate controls. (iv) Finally, conclusions can be validated by feeding
animals with specific antioxidants (e.g. mitoQ) or through overexpressing/depleting endogenous enzymes.

reacts with superoxide to form 2-hydroxyethidium [86] this is difficult to
detect specifically using fluorescence microscopy, but is clearly identified
by separating the different oxidation products of HE by LC and then de-
tecting 2-hydroyethidium using a, for example, fluorescence detector
[86]. To the best of my knowledge no one has studied superoxide levels
during aging measuring MitoSOX coupled to fluorescence or more sensi-
tive MS detection. A similar approach has been developed by Mike
Murphy's laboratory to detect mitochondrial H,0, using the radiometric
system mitoB/mitoP that controls for artificial oxidation of the probe,
variations in its absorption and accumulation in the mitochondrion
[85]. Using mitoB/mitoP, a significant increase in the levels of mitochon-
drial H,0, has been described in vivo during aging, however no correla-
tion between mitochondrial H,0; levels and lifespan was found in this
study [85]. MitoB/MitoP relies on mass spectrophotometry technology
for its detection, which makes the method necessarily invasive since it
requires the use of tissues or cell homogenates, making it difficult to dif-
ferentiate between different cell types and impossible to discern wheth-
er distinct mitochondria within the same cell produce different ROS, thus
it also complicates the establishment of whether differences in ROS
levels are caused by mitochondria which produce more ROS or by an in-
crease in the number of mitochondria. In order to estimate whether dif-
ferences in ROS levels are caused by changes in number of mitochondria
vs mitochondria which are producing more ROS, it is possible to normal-
ize results using classical methods to measure mitochondrial density
such as citrate synthase measurements or estimation of mtDNA copy
number [87]. For obvious reasons, it is important to understand if chang-
es in ROS levels are caused by more or less mitochondria in order to
design strategies that impact ROS levels and can alter lifespan.

5.Is where ROS are produced important?

Another major problem when studying the role of ROS in aging is the
lack of resolution of in vivo measurements when compared with mea-
surements in isolated mitochondria. Presently, it is virtually impossible
to identify which specific respiratory complex or mitochondrial enzyme
is producing ROS. As I mentioned previously, in vitro studies have
singled out CI as the location where ROS most important for aging are
produced [59]. An interesting proteomic study from Ulrich Brandt's

laboratory which studied changes in the redox state of mitochondrial
cysteines in response to changes in ROS levels showed that where (i.e.
at which respiratory complex ROS are produced) is as important as
the amount of ROS produced in determining if a specific cysteine will
be oxidized or reduced [88]. For example, ROS produced by CI only af-
fected the redox state of proteins located within the matrix, indicating
that direct targets of CI action can be found in this compartment. Sur-
prisingly, whether some proteins were affected depended on whether
CI produced ROS in the forward (e.g. ATP synthase subunit d) or reverse
direction (e.g. Succinate dehydrogenase [ubiquinone] flavoprotein
subunit), suggesting that depending on how ROS are generated also
informs how they alter individual proteins. Similarly, exposure to para-
quat or knock-down of Sod2 increases superoxide levels and dramati-
cally shortens Drosophila lifespan [89]. However, only paraquat causes
a significant increase in protein carbonylation, indicating that the reduc-
tion in survival in Sod2 mutants could be related more with Sod2 acting
as a signaling transducer than as an antioxidant protecting against
oxidative damage.

Brandt's study is subject to all the caveats of experiments performed
using isolated mitochondria (see before), but it also highlights the need
to increase the resolution of in vivo ROS measurements if we want to
identify selective targets that are important for aging or age-related dis-
eases. For example, the activity of DJ-1 depends on the oxidation state of
a single cysteine [90], and mutations in this gene have been found in fa-
milial Parkinson's disease patients [91]. In order to identify how DJ-1 is
aberrant in the pathological situation we must identify where and how
the ROS that modify the redox state of DJ-1 are generated i.e. we need to
increase the resolution of in vivo ROS measurements. In flies and worms
“resolution” can be increased by feeding animals with specific inhibitors
of ETC complexes and/or by altering electron flow using genetic ap-
proaches (e.g. RNA interference (RNAi) or CRISPR/Cas9) [92] and then
studying the changes in ROS using in vivo fluorescent reporters like
those described in the previous section.

ROS are now recognized as essential cellular messengers, like other
well-known messengers such as NO, Ca®>*, cAMP or IP3 [93]. Since
ROS are important contributors to redox homeostasis, it has been pro-
posed that aging is a consequence of a pro-oxidizing shift in the redox
state of cells that could affect signal transduction and gene regulation
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[94,95]. The increase in ROS produced during aging would contribute to
altered redox signaling causing a deregulation of redox regulated pro-
teins and feedback systems; however it is unclear how the increase in
ROS would occur. It is possible that the increase in ROS is a consequence
and not a cause of aging. From this point of view, ROS production could
have an adaptive function that is important in order to maintain homeo-
stasis and as such, prevention or suppression of ROS production could
have unwanted side effects. “The redox stress hypothesis of ageing”
[94] is supported by a redox change to a more pro-oxidative state of
both glutathione and NADPH during aging [96,97]. Accordingly, overex-
pression of enzymes that maintain a high GSH:GSSG or NADPH:NADP +
ratio extend lifespan in fruit flies [98,99]. However, during aging, the
ratio NAD +:NADH seems to change in the opposite direction (i.e. to a
more reductive state) due to a decline in steady-state NAD + levels
that negatively impacts on the activity of Sirt1 [100] and mitochondrial
function [101]. This indicates that changes in redox state to a more re-
ductive state can also cause age-related physiological alterations.

As I discussed earlier, ROS are quite reactive and short-lived, there-
fore they can exert effects close to their site of generation. Redox-
sensitive proteins located at these locations are the most probable
candidates in the coordination of ROS signaling. The increase in ROS ob-
served during aging has the potential to disturb this signaling, especially
if it is produced ubiquitously and not by specific enzymes (e.g. Cl) as
seems to be the case in young individuals [102]. According to Brandt's
work [88] a change in the location of ROS production would significant-
ly alter cellular signaling as predicted by the redox stress hypothesis of
aging [94] contributing to the loss of cellular homeostasis. Several labo-
ratories have initiated a pursuit of the network of proteins implicated in
the alteration of redox signaling during aging but there are as yet no
conclusive results. An in vivo redox proteomic study detected a decrease
in the ability to confront redox stress in the muscle of old rats [103],
however these results were not replicated in fruit flies where no signif-
icant change in the redox state of cysteines was observed during aging
[104]. The former approach has the disadvantage that it fails to detect
proteins of low abundance that may have a prominent role in redox
regulation. Thus, it has only been applied to cell homogenates and so
cell- or even organelle-specific changes may remain undetected using
this approach. Therefore, we will need to wait until redox proteomic
techniques have been improved in order to make definitive conclusions.

Finally, Brandt's study provides evidence that not only where but
also how ROS are produced is important when considering downstream
effects. From this point of view, the role of the supercomplexes in ROS
production should thoughtfully be taken into account. Growing
evidence indicates that respiratory complexes are organized into
supercomplexes [105]. It has been proposed that supercomplexes
contribute to optimize electron transfer [105], through changes in the
organization of ETC in response to a whole range of metabolic signals in-
cluding variations in oxygen levels, substrate supply or calcium [106].
Accordingly ROS production varies depending on how the respiratory
complexes are organized [107], and through feedback mechanisms
ROS contribute to fine-tune the organization of ETC [108]. Two manu-
scripts reported a reduction in the amount and organization of the mi-
tochondrial supercomplexes during aging in rat heart [109] and brain
cortex [110]. These changes may affect how and where ROS are pro-
duced and may contribute to changes in redox signaling reported dur-
ing aging [90,110]. In conclusion, strategies that aim to alter lifespan
through changes in mitochondrial ROS levels must consider whether
and how these strategies will affect organization of the supercomplexes.
Moreover, strategies that alter mitochondrial supercomplexes with and
without altering total ROS levels could be more efficient in altering
lifespan than unspecific strategies that affect the total amount of ROS.
A handful of targets that do affect the organization of supercomplexes
and are susceptible to genetic or pharmacological treatment have
been reported [106,108] so it would be interesting to study how modi-
fication of the levels of these proteins affects ROS levels and if this has an
effect on lifespan.

6. Do changes in ROS production modulate longevity in animals?

Since the discovery of superoxide dismutase by McCord and
Fridovich in 1969 [111] ROS have been proposed as the primary cause
of many different degenerative diseases [112]. Indeed, an imbalance of
ROS levels and the presence of markers of oxidative stress is a hallmark
in multiple diseases (reviewed in [113-119]). Interestingly, as I men-
tioned previously reductive stress can also lead to pathology [120], sug-
gesting that redox alterations can also underlie aging and age-related
diseases independently of structural damage caused by ROS [94,95]. De-
spite thousands of published studies, implicating ROS in many diseases
it is still unclear if ROS are a cause, a consequence or both. Moreover,
there is no clear mechanism by which ROS are pathological (i.e. oxida-
tive stress, changes in redox signaling, both or other unknown mecha-
nism(s)). Excessive ROS levels have been associated with deleterious
effects on health and lifespan. For example, feeding experimental ani-
mals with poisons that block ETC and increase ROS levels (e.g. paraquat
or rotenone) causes the death of experimental animals in minutes or
hours [121], this phenotype is partially rescued by the administration
of antioxidants [122,123]. The former indicates that part of the effect
is due to ROS accumulation. Similarly, prevention of the surge in ROS
produced after ischemia and during reperfusion protects the heart
against apoptotic and necrotic cell death [62]. Similarly mutations in
key antioxidants genes such as Sod2 dramatically shorten lifespan in
the fly and mouse although intriguingly not in the worm [16,21,124].
This highlights an important difference between worms and other
model organisms that should be taken into consideration in longevity
research and other fields focused on mitochondrial biology. Surprising-
ly, no one seems to have noted the importance of understanding how
worms are resistant to levels of superoxide that are lethal in other ani-
mal species, understanding how this is mediated may help to prevent,
for example, the consequences of excessive ROS during ischemia-reper-
fusion [62].

If the contribution of ROS to the onset of several different diseases
(e.g. cancer and diabetes) is clear [125], their role in the progression of
normal aging is controversial. For example, it is well known but still sur-
prising that low doses of paraquat, rotenone or piercidine A extend
C. elegans lifespan via increased ROS levels [17,126]. Similarly, metfor-
min blocks CI and extends lifespan through a ROS mediated mechanism
[51]. However, this seems to be something specific to C. elegans since
feeding metabolic poisons has not been reported to extend lifespan in
other model organisms [127,128], and metformin does not increase lon-
gevity in fruit flies either [ 129]. Of course, it is possible that no effect has
been found because the right doses have not been used, as most pub-
lished studies in mice or flies use rotenone to induce a Parkinson's like
phenotype and not to extend lifespan [130]. Another substantial differ-
ence between worms, flies or mice is how mitochondrial dysfunction
alters lifespan. In worms, there is a narrow temporal window where in-
duction of mitochondrial dysfunction is effective in extending lifespan
[23,131]. Mitochondrial function may be interrupted during develop-
ment to efficiently extend lifespan in C. elegans [131], thus both muta-
tions and gene knock-down extend lifespan to a similar extent but not
through the same mechanisms [23]. In flies, mutations in or strong de-
pletion of ETC components using RNAi dramatically shortens fly lifespan
[24,132-134], whilst mild knock-down of ETC subunits has a positive ef-
fect on longevity [24,92]. However, and in contrast to what occurs in
worms, knock-down must be induced both during development and
adulthood in order to extend fly lifespan [92,135]. These differences in-
dicate separate downstream mechanisms that should be carefully con-
sidered before planning to translate these strategies into mammalian
models or human beings. Interestingly, and as mentioned previously, al-
though mutations and knock-down of specific ETC subunits extend
lifespan in worms, they do by distinct mechanisms [23]. Mutations in
ETC subunits extend lifespan in worms by increasing mitochondrial
ROS levels, since administration of antioxidants suppresses the positive
effect on lifespan [17], whereas how lifespan is extended by knocking-
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down of ETC subunits remains to be elucidated. It has been proposed
that knock-down of ETC subunits or other mitochondrial proteins
causes the accumulation of free subunits, which provokes the induction
of the mitochondrial unfolded protein response (mtUPR) that would ac-
count for the extension in lifespan [24,136]. This seems to be the case at
least for mitochondrial ribosomal proteins, whose knock-down results
in an imbalance between nuclear and mitochondrial subunits that
activates mtUPR and is instrumental for the extension of lifespan in
C. elegans [136,137]. A recent study, however, shows that induction of
mtUPR is not necessary (in models of mitochondrial dysfunction) or
sufficient to extend lifespan [138]. Activation of mtUPR has been de-
scribed as ROS-independent in worms [136] but ROS-dependent in
flies [24]. In fact, in fruit flies only knock-down of ETC CI subunits that
increase ROS levels and induce mtUPR is able to prolong lifespan [24].
To the best of my knowledge only deletion of the CIV assembly factor,
Surfl, and heterozygous mutations in MCLK1 -implicated in the synthe-
sis of ubiquinone- extends lifespan in mice [139,140]. As in flies, the
general rule is that mutations in ETC subunits or essential mitochondrial
genes are developmentally lethal or dramatically shorten lifespan in
mammals [39,141,142]. Extension of lifespan resulting from mutations
in genes involved in mitochondrial respiration have been reported to in-
crease ROS levels (MCLK1) [143] but also leave them unchanged (Surf1)
[144]. Unfortunately experiments increasing or decreasing antioxidants
have not been performed in these mice, and so no definitive conclusion
about the effects of ROS on lifespan can be formulated yet.

In worms, lifespan extension elicited by paraquat is potentiated in a
Sod2 depleted background indicating that superoxide is the ROS respon-
sible for lifespan extension [17]. However, in fruit flies where boosting
of ROS levels also extends lifespan, it seems that H,0, and not superox-
ide is the ROS responsible. For instance, overexpression of Sod1 and
Sod2, mutations in dj-1/3 that increase mitochondrial H,0, or feeding
flies with H,0, supplemented food have all been reported to extend
lifespanin flies [ 145-148]. Similarly, the extension of lifespan associated
with knock-down of CI, which is ROS-dependent, is supressed by over-
expression of catalase or glutathione peroxidase [24]. However, some of
these results are not always consistent, some reports do not observe ex-
tension in lifespan with overexpression of Sod1 or Sod2 [149,150] and a
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shortening of lifespan has been reported in dj-13 mutants [151]. A cou-
ple of studies from the laboratory of David Gems found that overexpres-
sion of Sod1 prolongs lifespan in worms but increases H,0, and levels of
oxidative damage [152,153]. However, the deletion of all superoxide
dismutase genes, which should impact on the levels of H,0, [154], did
not affect lifespan [21], indicating that the role of H,0, on lifespan in
C. elegans is complex. In mice, catalase has been reported to extend
lifespan when specifically targeted to the mitochondrion [155], howev-
er these results have not yet been repeated independently and the lab
that generated the transgenic mouse has acknowledged its own difficul-
ties in repeating the results [156]. In flies, by contrast, ectopic expres-
sion of catalase in the mitochondrion shortens Drosophila lifespan
[149], indicating that reducing mitochondrial H,0, can be deleterious
for survival. Interestingly, a decrease in the levels of different
peroxiredoxins is associated with shorter lifespan in worms, flies and
mice [157-159], whilst boosting peroxiredoxin levels has been associat-
ed with an extension of lifespan in flies [ 158,160]. It may seem paradox-
ical that overexpression of peroxiredoxins and ectopic expression of
catalase have opposing effects on lifespan. However, some in vitro
studies indicate that catalase is much more effective than several
peroxiredoxins at detoxifying H,O, [161]. Targeting expression of cata-
lase to the mitochondrion may cause a much more important reduction
in H,0, than overexpression of peroxiredoxins 3 and 5 and affect signal-
ing without offering further protection against oxidative stress. This
would fit with a model where H,0, levels need to be maintained within
a certain range: excessive mitochondrial H,0, would cause oxidative
damage (by generation of. OH), and very low levels would interrupt sig-
naling affecting inter-organelle communication. It would be interesting
to test this model in vivo using the powerful genetic tools available in
flies and worms combined with the latest technology to measure ROS
and oxidative damage (Fig. 2).

Lifespan studies in flies and worms are affected by diet and genetic
background [162], so it is possible that ROS extends lifespan in certain
conditions but not in others. Similarly, differences could be related to
the nature of expression i.e. where and when the transgene that alters
ROS levels is expressed [ 163]. This indicates that ROS probably regulates
lifespan through signaling, and not through the generation of oxidative
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Fig. 3. Summary of the genetic and pharmacological approaches that extend lifespan in animals through a ROS mediated mechanism. Feeding metabolic poisons (e.g. rotenone or
paraquat) or mutating ETC subunits that increase superoxide levels extends lifespan in worms. In flies knock-down of CI subunits, mutations in DJ-1/3 or overexpression in Sod1 and
Sod2 increase H,0; levels and extends lifespan. Although mutations in MCLK1 in mice increase ROS levels, there is no definitive evidence that boosting ROS extends lifespan in mammals.
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damage, since the positive or negative role of ROS as signaling mole-
cules should depend on the interaction with the environment and the
system of expression, whilst if they are causing oxidative damage the ef-
fect should be unchanged i.e. negative when oxidative stress is in-
creased and positive when it is attenuated. Unfortunately, almost
none of the studies mentioned in this section take advantage of the
new techniques previously described to measure ROS in vivo. However,
an important technical advantage has been introduced in lower organ-
isms, which is that conclusions from most experiments are now being
validated by genetic and pharmacological approaches that for example
alter antioxidant levels e.g. [24] and [17] (Fig. 2).

7. Conclusions

Presently, we can conclude that mitochondria play an important role
in the onset of aging and age-related diseases. However, if mitochondri-
al deterioration is a cause or a consequence of the aging process remains
unresolved. The role of mitochondrial ROS is still controversial, with old
data supporting MFRTA and new data challenging MFRTA and indicat-
ing that ROS can extend lifespan, at least in lower organisms such as
worms or flies (Fig. 3). Superoxide seems to be the key ROS that extends
lifespan in worms, whereas H,0, seems to play this role in flies, conclu-
sions in mice will have to wait for more mechanistic studies (Fig. 3). Fu-
ture work should address which cells and cellular compartments are
most important in generating ROS and how, when and where ROS are
generated affects lifespan and/or age-related diseases. The new tech-
niques to measure ROS in vivo that are already available and those
that are on their way, combined with the state-of-art technology to
edit the genome will undoubtedly help to achieve this objective.
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