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SUMMARY

Synthesis of ribosomal RNA (rRNA) by RNA
polymerase (Pol) I is the first step in ribosome
biogenesis and a regulatory switch in eukary-
otic cell growth. Here we report the 12 Å cryo-
electron microscopic structure for the complete
14-subunit yeast Pol I, a homology model for
the core enzyme, and the crystal structure of
the subcomplex A14/43. In the resulting hybrid
structure of Pol I, A14/43, the clamp, and the
dock domain contribute to a unique surface
interacting with promoter-specific initiation fac-
tors. The Pol I-specific subunits A49 and A34.5
form a heterodimer near the enzyme funnel that
acts as a built-in elongation factor and is related
to the Pol II-associated factor TFIIF. In contrast
to Pol II, Pol I has a strong intrinsic 30-RNA
cleavage activity, which requires the C-terminal
domain of subunit A12.2 and, apparently, en-
ables ribosomal RNA proofreading and 30-end
trimming.

INTRODUCTION

The multisubunit RNA polymerases (Pol) I, II, and III cata-

lyze DNA-dependent RNA synthesis in the eukaryotic

nucleus. Whereas Pol II and Pol III synthesize mainly mes-

senger and transfer RNAs, respectively, Pol I synthesizes

ribosomal RNA (rRNA). Synthesis of rRNA is the first step

in ribosome biogenesis and a focal point for the regulation

of cell growth (Grummt, 2003; Moss et al., 2007). In yeast,

Pol I activity accounts for up to 60% of all nuclear tran-

scription, and the product rRNA accounts for up to 80%

of all cellular RNA (Warner, 1999).

Pol I has a molecular weight of 590 kDa and comprises

14 subunits (Russell and Zomerdijk, 2006) (Table 1). Sub-

units Rpb5, Rpb6, Rpb8, Rpb10, and Rpb12 are identical

in all three polymerases. The two large Pol I subunits A190

and A135 contain regions homologous to the Pol II

subunits Rpb1 and Rpb2, respectively. Subunits AC40
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and AC19 are identical in Pol I and Pol III, and homologous

to the Pol II subunits Rpb3 and Rpb11, respectively. Sub-

units A14 and A43 form the heterodimer A14/43, which is

distantly related to Rpb4/7 in Pol II and C17/25 in Pol III (Hu

et al., 2002; Jasiak et al., 2006; Meka et al., 2003;

Peyroche et al., 2002; Sadhale and Woychik, 1994; Siaut

et al., 2003). For subunits A49 and A34.5, no counterparts

in other polymerases have been found. Subunit A12.2 is

homologous to subunit Rpb9 in Pol II and C11 in Pol III,

but its C-terminal domain is also related to the Pol II tran-

script cleavage factor TFIIS.

To date most progress in structural studies of nuclear

RNA polymerases has been made for Pol II, culminating

in the refined atomic structures of the 10-subunit core

(Cramer et al., 2001) and the complete enzyme (Armache

et al., 2005). For Pol III, a 17 Å electron microscopy (EM)

structure (Fernandez-Tornero et al., 2007) and a homology

model for the core enzyme and the crystal structure of the

C17/25 subcomplex are available (Jasiak et al., 2006) (for

comparability, EM resolutions throughout this paper gen-

erally refer to a Fourier shell correlation (FSC) of 0.5). For

Pol I, the overall shape and dimensions were first revealed

by EM analysis of two-dimensional crystals (Schultz et al.,

1993). Subsequent cryo-EM at 34 Å resolution visualized

a stalk containing A14/43, and densities for A49 and

A34.5 over the central cleft (Bischler et al., 2002; Peyroche

et al., 2002). Later EM analysis with cryo-negative staining

at 22 Å confirmed the stalk but not the location of A49

and A34.5 (De Carlo et al., 2003).

Here we integrate structural biology methods to estab-

lish the complete subunit architecture and domain organi-

zation of Pol I. In addition, we define functional roles for

subunits A49, A34.5, and A12.2, and report an intrinsic

RNA cleavage activity of Pol I. The results uncover con-

served and specific structural and functional principles

in eukaryotic RNA polymerases and enable a detailed

structure-function analysis of rRNA transcription.

RESULTS AND DISCUSSION

Cryo-EM Structure of Pol I at 12 Å Resolution
To study the Pol I structure in detail, we established

a large-scale purification protocol for the complete
r Inc.
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Table 1. Pol I Subunits

Polymerase

part Pol I subunit

MW

(kDa)

Corresponding

Pol II subunit

Subunit

type

Sequence

identity1 (%)

Conserved Pol II

fold2 (%)

Core A190 186.4 Rpb1 homolog 22.3 47.8

A135 135.7 Rpb2 homolog 26.0 62.1

AC40 37.7 Rpb3 homolog 21.2 53.5

AC19 16.2 Rpb11 homolog 17.6 77.5

A12.2 13.7 Rpb9 homolog 19.2 35.2

Rpb5 (ABC27) 25.1 Rpb5 common 100 100

Rpb6 (ABC23) 17.9 Rpb6 common 100 100

Rpb8 (ABC14.5) 16.5 Rpb8 common 100 100

Rpb10 (ABC10b) 8.3 Rpb10 common 100 100

Rpb12 (ABC10a) 7.7 Rpb12 common 100 100

Subcomplex

A14/43

A14 14.6 Rpb4 counterpart 4.5 25.03

A43 36.2 Rpb7 counterpart 8.0 78.43

Subcomplex

A49/34.5

A49 46.7 RAP744 specific 7.6 57.2

A34.5 26.9 RAP304 specific 8.3 80.5

Total - 589.6 - - 29.5 60.8

1 Number of amino acid residues in the Pol I subunit that are identical in the corresponding Pol II subunit divided by the total number

of residues in the Pol I subunit. For A49/34.5, number of amino acid residues in the TFIIF RAP74/30 dimerization module structure

that are identical in the A49/34.5 model divided by the total number of residues in the RAP74/30 heterodimer structure (Gaiser et al.,

2000).
2 Number of amino acid residues in the Pol II core structure that have the same fold in the Pol I homology model divided by the total

number of residues in the Pol II subunit.
3 For A43, number of amino acid residues in the Rpb7 structure that have the same fold in the A43 structure divided by the total

number of residues in the Rpb7 structure. For A14, number of amino acid residues in the Rpb4 structure that have the same
fold in the A14 structure divided by the number of residues of the tip-associated domain of Rpb4 (residues 1–155, HRDC domain

excluded).
4 Predicted to be partially homologous to the TFIIF subunits RAP74 and RAP30. For details see text.
14-subunit endogenous enzyme from S. cerevisiae that

relies on an initial precipitation step (Gerber et al., 2007;

Milkereit et al., 1997; Tschochner, 1996) (Experimental

Procedures). Pol I preparations were monodisperse, com-

prised all subunits in a stoichiometric manner, contained

single particles according to EM with negative staining,

and enabled collection of high-quality cryo-EM data (Fig-

ure 1). The cryo-EM reconstruction with 46,056 particles

led to a map at 11.9 Å resolution (Experimental Proce-

dures, Figures 1D and 1E).

The crystal structure of the 10-subunit Pol II core was

placed into the EM map as a rigid body by fitting the 5

common subunits, which occupy equivalent positions on

the polymerases’ surfaces (Jasiak et al., 2006). A perfect

fit of the common subunits confirmed the high quality of

the map (Figures 2A and 2B). Many regions of the homol-

ogous subunits fitted the map equally well, but strong

deviations were also observed, in particular at the poly-

merase clamp and foot (Cramer et al., 2001) (Figures 2D

and 2E). The clamp had swung inwards, entirely closing

off the cleft (Figures 1E and 1F). This is the predominant
Cel
state of the enzyme under our EM conditions (Experi-

mental Procedures).

Homology Model of the Pol I Core
To explain differences between the EM map and the Pol II

core structure, we constructed a homology model for the

Pol I core. Modeling was achieved as for the Pol III core

(Jasiak et al., 2006), but was complicated by the weaker

sequence conservation between Pol II and Pol I subunits

(Table 1). We identified regions of conserved fold in cycles

of sequence alignment, model construction, detection of

incorrect internal contacts, realignment of the erroneous

sequence stretches, and construction of an improved

model (Figures 2C and S1, Experimental Procedures). In

the Pol I core model, well-conserved regions cluster

around the active site, and peripheral regions are diver-

gent (Figure S1). However, some peripheral Pol I domains,

such as the jaw and lobe, resemble in shape the Pol II

domains, suggesting that their folds are conserved de-

spite divergent sequences. The predicted conservation

of Pol II folds is far less in Pol I (60.8% overall, Table 1)
l 131, 1260–1272, December 28, 2007 ª2007 Elsevier Inc. 1261



Figure 1. EM Reconstruction of Pol I

(A) SDS-PAGE analysis of purified yeast Pol I (Coomassie staining).

(B) EM image of negatively stained Pol I.

(C) EM image of Pol I variant 6A49/34.5 under cryo conditions.

(D) Fourier shell correlation (FSC) function plot. Based on a cut-off value of FSC = 0.5, the resolution is 11.9 Å.

(E) Cryo-EM reconstruction of Pol I. Views and structural regions are named according to the Pol II structure (Cramer et al., 2001).

(F) Schematic representation of the clamp positions in Pol I, the complete 12-subunit Pol II (Armache et al., 2005), and the 10-subunit core Pol II

(Cramer et al., 2001).
than in Pol III (83.4% for an 11-subunit model [Jasiak et al.,

2006]).

Inspection of the EM map after placement of the core

model confirmed the expected conservation of the active

center, including the bridge helix, but also identified many

structural features that create a Pol I-specific surface. The

clamp shows two insertions near zinc site 7 (‘‘clamp

knob’’) and an extended, structurally different clamp

head (Figures 1E and 2E). The dock domain shows density

for a predicted (Chen and Hahn, 2003) Pol I-specific

14-residue extension (Figures 2C and 2E). In AC40, two

surface elements differ from Rpb3 (Figures 2C and 2E).

The foot domain has a divergent sequence, is 62 residues

shorter, and has a different shape than in Pol II (Figures 2C

and 2E). The jaw region contains 93 additional residues

(Figure 2C), which are not conserved among fungi and

lack EM density, showing they are mobile. A12.2 occupies

the location of the Pol II core subunit Rpb9 and is thus

a structural counterpart of Rpb9, not TFIIS (Figure 2B).
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Crystal Structure of the A14/43 Subcomplex
After assigning EM densities to the Pol I core, a stalk-like

density remained at the expected location for A14/43

that was much smaller than the structure of Rpb4/7 (Fig-

ures 1E, 2A, and S3). Since the weak sequence similarity

between A14/43 and Rpb4/7 or C17/25 did not allow for

homology modeling, we determined the crystal structure

of A14/43 (Experimental Procedures). Partial proteolysis

of a recombinant A14/43 heterodimer and bioinformatics

revealed four mobile regions in A14/43 that were dispens-

able for dimerization (Figures 3A and S4). An A14/43 vari-

ant lacking the mobile regions crystallized and enabled

structure determination at 3.1 Å resolution (Figure 3B

and Table S1).

The overall structure of A14/43 resembles its counter-

parts Rpb4/7 (Armache et al., 2005), C17/25 (Jasiak

et al., 2006), and the archaeal RpoF/E (Todone et al.,

2001), except that A14 lacks the HRDC domain present

in all counterparts (Figures 3B and S4). The N-terminal
Inc.



tip domain of A43 shows RMS deviations in Ca atom

positions of 2.2–2.5 Å, whereas the C-terminal OB domain

is more divergent. A14 forms two helices that pack on the

A43 tip domain (Figures 3B and S4).

Interaction of A14/43 with the Pol I Core
In Pol II, the Rpb4/7 complex interacts with the core

enzyme via two loops, the A1-K1 loop, which forms

a conserved contact of Rpb4/7-like subcomplexes with

their cognate core enzymes, and the tip loop, which

may confer specificity to the interaction in the different

RNA polymerases (Armache et al., 2005; Jasiak et al.,

2006). To dock the A14/43 structure into the EM map,

we modeled the conserved contact between an invariant

proline residue in the A1-K1 loop (P51 in A43, Figures 3B

and 3D) and the common core subunit Rpb6 (Armache

et al., 2005; Jasiak et al., 2006). The tip domain and

the tip-associated domain of the A14/43 structure fitted

well to the EM map, and the lack of an HRDC domain

could in part explain the smaller EM density (Figure

3C). However, the peripheral OB domain of A43 was

not revealed in the EM density (Figure 3C), suggesting

a high degree of mobility. Consistently, the OB domain

shows slightly higher B factors in the crystal structure, al-

though it is involved in crystal contacts (Figure S5), and

normal mode analysis of the Pol II crystal structure

shows that the OB domain is the most flexible region

of the enzyme (not shown). The A43 tip loop contains

a specific ten-residue insertion that may confer specific-

ity to the interaction between A14/43 and the Pol I core

(Figure S4). The A43 tip loop is flexible in the crystal

structure (Figures 3B and S4), but is likely folded upon

binding to the Pol I core, as observed for Pol II (Armache

et al., 2005).

Specific Interactions with Initiation Factors
Subunit A43 forms an essential bridge to the conserved

Pol I initiation factor Rrn3 (Milkereit and Tschochner,

1998; Peyroche et al., 2000). Rrn3 was shown by EM to

colocalize with A43 (Peyroche et al., 2000) and binds other

initiation factors to recruit Pol I to the rDNA promoter. The

A43-Rrn3 interaction is conserved in human (Yuan et al.,

2002) and S. pombe (Imazawa et al., 2005). In a Pol I

variant that is defective for Rrn3 interaction (rpa43-6

[Peyroche et al., 2000]), two out of three altered A43 resi-

dues map near conserved residues on the upstream

surface of A14/43 (Figure 3D). Thus Rrn3 binds to A14/

43 from the upstream side (Figure 1E). Additional Pol I-

specific surfaces in the vicinity include the extended

dock domain and the clamp knob, which together with

A14/43 create a specific upstream face for Pol I initiation

complex assembly (Figures 1 and 2).

Differential initiation factor interactions and promoter

specificity of the three polymerases may generally result

from differently structured dock domains, clamps, and

Rpb4/7-like subcomplexes, which all constitute initiation

factor binding sites. Rpb4/7 is required for Pol II initiation

(Edwards et al., 1991). C17/25 binds to the Pol III initiation
Cell
factor TFIIIB (Ferri et al., 2000), to the subcomplex C82/34/

31 that bridges to TFIIIB (Bartholomew et al., 1993; Brun

et al., 1997; Thuillier et al., 1995), and to the initiation factor

TFIIIC (Hsieh et al., 1999). Since the surfaces, flexibility,

and in vivo function of the HRDC domains differ in Rpb4/

7 and C17/25 (Jasiak et al., 2006), the absence of an

HRDC domain in A14/43 is likely functionally significant.

A49 and A34.5 Form a TFIIF-like Heterodimer Near
the Funnel
After assigning EM densities to the Pol I core and A14/43,

one additional large density remained on the enzyme

surface that was assigned to the Pol I-specific subunits

A49 and A34.5 (Figure 1E). To confirm this assignment,

we dissociated subunits A49 and A34.5 from Pol I with

the use of urea (Huet et al., 1975), purified the resulting

12-subunit variant Pol I DA49/34.5 (previously called Pol

A* [Huet et al., 1975]), and solved its structure by cryo-

EM at 25 Å resolution (Figures 4A and 4B; Experimental

Procedures). The structure was similar to the complete

Pol I, except that the density assigned to A49 and A34.5

was lacking (Figure 4B). In addition, there was a minor

change in the clamp conformation, which however repre-

sents an average clamp position and is unlikely to result

from the absence of A49/34.5 (Experimental Procedures).

Density assigned to A49 and A34.5 is located near the

enzyme funnel, the external domain 1, a conserved core

loop with a Pol I-specific insertion (corresponding to

loop a16-b20 of the Pol II pore domain), and A12.2. This

is consistent with loss of A49 when Pol I is purified from

A12.2 deletion strains (Van Mullem et al., 2002).

To investigate the structure and function of A49 and

A34.5, we searched for weak homologies with HHpred

(Soding et al., 2005). Local homologies were detected

between A49 and RAP74, the large subunit of the Pol II-

associated factor TFIIF, and between A34.5 and RAP30,

the small TFIIF subunit (Figure S6 and Experimental

Procedures). Consistently, the N-terminal regions of A49

and A34.5 were predicted to contain b strands consistent

with the fold of the RAP74-RAP30 dimerization module

(Gaiser et al., 2000), and hydrophobic core residues in

this fold were predicted to be conserved (Figures 4C

and S6). Consistent with these predictions, bacterial

coexpression of A49 and A34.5 enabled isolation of a stoi-

chiometric A49/34.5 heterodimer (Figure 4D and Experi-

mental Procedures) and alanine point mutations in three

different conserved hydrophobic residues in the dimeriza-

tion interface (I12 and Y76 in A49, W54 in A34.5) abolished

or strongly impaired A49/34.5 copurification (not shown).

Thus, A49 and A34.5 form a stable TFIIF-like heterodime-

rization module.

Heterodimerization of A49 and A34.5 explains why the

two subunits dissociate together from Pol I upon urea

treatment (Huet et al., 1975), why Pol I purified from a yeast

strain lacking the gene for A34.5 also lacks A49 (Gadal

et al., 1997), and why two distantly related mammalian

Pol I subunits bind each other (Yamamoto et al., 2004). It

is also consistent with the observed continuous EM
131, 1260–1272, December 28, 2007 ª2007 Elsevier Inc. 1263



Figure 2. Model and EM Features of the Pol I Core

(A) Placement of the Pol II ten-subunit core structure (Armache et al., 2005) (gray) into the EM density (blue). The foot was deleted, and subunits Rpb5,

Rpb8, and Rpb9 are highlighted in magenta, green, and orange, respectively. The clamp has been fitted as a separate rigid body.

(B) Fit of the common subunits Rpb5 and Rpb8 to the EM map, and density for the core subunit A12.2 (the Pol II homolog Rpb9 is shown as a ribbon

model).

(C) Pol II structure-guided sequence alignment of the five Pol I subunits with homologs in Pol II (compare Table 1). The domain organization of Pol II

subunits Rpb1, Rpb2, Rpb3, Rpb11, and Rpb9 is shown as diagrams (Cramer et al., 2001). Insertions and deletions exceeding five amino acid res-

idues are indicated. Conserved folds are indicated by orange highlighting of the bar above the diagrams. For details see Figure S1.
1264 Cell 131, 1260–1272, December 28, 2007 ª2007 Elsevier Inc.



Figure 3. X-Ray Structure of the A14/43 Subcomplex

(A) SDS-PAGE analysis of purified yeast A14/436loop used for crystallization (Experimental Procedures).

(B) Structures of yeast A14/43 (left) and Rpb4/7 (Armache et al., 2005) (right). A43 and Rpb7 are in blue and A14 and Rpb4 are in red, with the HRDC

domain in light red. For details see Figure S4. The view is as in Figures 1E and 2A.

(C) Fit of the A14/43 structure into the Pol I EM density.

(D) Surface representation of the A14/43 complex. Residues conserved among eight selected Saccharomycotinae are colored in green, orange, and

yellow, according to decreasing conservation (compare Figure S4). Residues affected by the A43-6 mutations (Peyroche et al., 2000) are in red.
density, which reconciles previous EM data. Initial cryo-

EM showed two separated densities over the cleft that

were assigned to A49 and A34.5 (Bischler et al., 2002).

EM at higher resolution did not confirm these densities

but revealed a new additional density (De Carlo et al.,

2003) that was close to the location of A49/34.5 found

here. The location of A49 and A34.5 distant from the

DNA-binding cleft explains why neither A49 nor A34.5

could be crosslinked to DNA in Pol I initiation complexes

(Bric et al., 2004).

The location of A49/34.5 at the Pol I funnel deviates from

that of TFIIF on Pol II as observed by cryo-EM (Chung

et al., 2003) but is more consistent with protein-protein

crosslinking that maps TFIIF to the polymerase lobe and

outer surface near Rpb9 (Chen et al., 2007). Discrepancies

in the location of A49/34.5 and TFIIF may be explained by

different locations of a related dimerization module on the
Cell
two polymerases, or by the presence of additional, unre-

lated domains in both factors. Sequence analysis showed

that A49/34.5 and TFIIF possibly have a counterpart in Pol

III, the C37/53 heterodimer (not shown), which may

occupy a similar location on the Pol III surface near the

lobe and funnel (Fernandez-Tornero et al., 2007).

A49/34.5 Is a Built-In Elongation Factor
The apparent homology of the A49/34.5 heterodimer with

the N-terminal regions of the two large TFIIF subunits sug-

gested that A49/34.5 has elongation-stimulatory activity.

This prediction is consistent with previous reports that

deletion of A49 or A49 and A34.5 reduce Pol I activity

(Huet et al., 1975; Liljelund et al., 1992), and that A34.5

genetically interacts with DNA topoisomerase I (Gadal

et al., 1997). We therefore compared the complete Pol I

with Pol I 6A49/34.5 in an RNA extension assay using
(D) View of the core Pol II structure (Cramer et al., 2001) from the side, with domains depicted in (E) highlighted.

(E) Pol I-specific structural elements. Fitted Pol II elements are shown as ribbon models. Insertions and deletions explaining the EM density are named

according to (C). The clamp head is in light red and the clamp core in red. The dock and foot domains are in beige and blue, respectively, and Rpb3,

Rpb10, and Rpb11 are in red, dark blue, and in yellow, respectively. Zinc ions are depicted as marine spheres.
131, 1260–1272, December 28, 2007 ª2007 Elsevier Inc. 1265



Figure 4. Structural and Functional Features of A49/34.5

(A) SDS-PAGE analysis of the variant Pol I 6A49/34.5 (right), obtained by urea treatment of the complete Pol I (left).

(B) Overlay of EM structures of Pol I 6A49/34.5 (silver surface) and the complete Pol I (blue). The density assigned to A49/34.5 is highlighted in green.

(C) Conservation of the TFIIF RAP74/30 dimerization module (Gaiser et al., 2000) in A49/34.5. Secondary structure elements aligned to RAP74/30 are

highlighted in dark and light green, respectively. For details see Figure S5.

(D) SDS-PAGE analysis of recombinant A49/34.5 heterodimer.

(E) A49/34.5 shows elongation-stimulatory activity in RNA extension assays with a minimal nucleic-acid scaffold. The fluorescent label 6-carboxy-

fluoresceine (FAM) on the RNA 50 end is indicated. The times molar excess of added factors are indicated above the lanes. For lane 4, Pol I

6A49/34.5 was complemented with a 5-fold molar excess of recombinant A49/34.5 for 10 min at 20�C prior to addition of the scaffold.

(F) Elongation assay as in (E) but with a complete complementary bubble (Kireeva et al., 2000).

(G) Deletion of the gene for A34.5 leads to a 6-azauracile-sensitive phenotype. From left to right 1:10 dilution series are shown. As a control, cells were

spread onto SDC plates containing uracil.
a minimal DNA-RNA scaffold (Brueckner et al., 2007). The

complete Pol I extended the RNA to the end of the tem-

plate, whereas Pol I 6A49/34.5 did not produce the run-

off product (Figure 4E). Addition of recombinant A49/

34.5 rescued the defect of Pol I 6A49/34.5 and enabled

elongation to the end of the template (Figure 4E, lane 4).

We repeated the elongation experiments using a com-

plete, complementary transcription bubble scaffold (Kir-

eeva et al., 2000) (Figure 4F). The complete Pol I pro-

duced the run-off transcript (+18), whereas Pol I 6A49/34.5

did not, but addition of recombinant A49/34.5 heterodimer

restored run-off formation (Figure 4F). The defect was not

due to differential binding of the polymerase variants to

the scaffold, as it was also observed when the elongation

complexes were covalently coupled to magnetic beads
1266 Cell 131, 1260–1272, December 28, 2007 ª2007 Elsevier
and extensively washed before the reaction (not shown).

Thus, A49/34.5 is required for normal elongation activity

of Pol I in vitro.

To test whether A49/34.5 may have elongation-stimula-

tory function in vivo, we investigated if the growth pheno-

type of a yeast strain that lacked the gene for A34.5

(6A34.5) is affected when nucleotide supply was limited

due to the presence of 6-azauracil (6AU). 6AU sensitivity

is an indicator for Pol II-associated elongation factor func-

tion in vivo and recently also identified a Pol I mutant

defective in rRNA elongation (Schneider et al., 2007).

Whereas the wild-type and 6A34.5 strains did not show

a growth difference on normal media, the 6A34.5 strain

showed a mild slow-growth phenotype on 6AU-containing

media (Figure 4G). This suggests that A49/34.5 is required
Inc.



Figure 5. Intrinsic RNA Cleavage Activity and Functional Architecture of Pol I

(A) DNA-RNA hybrid scaffold used in cleavage assays.

(B) Comparison of RNA cleavage by Pol I variants with Pol II and the Pol II-TFIIS complex. Pol I mainly removed four nucleotides from the RNA,

consistent with binding of the terminal hybrid base pair to the nucleotide insertion site (+1), extrusion of the RNA 30 overhang into the polymerase

pore and cleavage of the phosphodiester bond between nucleotides at positions �1 and +1 (Figure 5A). The Pol II-TFIIS complex removed three

or four nucleotides, indicating that a mixture of complexes was present with the terminal hybrid base pair occupying either position �1 or +1.

(C) pH dependence of pol I cleavage activity.

(D) Elongation activity of the Pol I variant A12.26C.

(E) Hybrid structure and functional architecture of Pol I. The EM envelope is shown as a blue line, the Pol I core ribbon model in gray with Rpb9 (A12.2)

highlighted in orange, and the A14/43 crystal structure in red/blue. The window shows a cut-away view of the active center containing a modeled

DNA-RNA hybrid. Red dashes indicate the RNA 30 end extruded into the pore.
for normal RNA elongation by Pol I also in vivo. The elon-

gation-stimulatory activity may be due to an allosteric ef-

fect or due to an extension from A49/34.5 into the active

center, but we cannot distinguish between these possibil-

ities with the available structural data.

Pol I Has Intrinsic RNA Cleavage Activity
The active site of Pol II exhibits weak 30-RNA cleavage

activity that is stimulated by TFIIS (Wind and Reines,

2000). For Pol I, a RNase H-like nuclease activity was ini-

tially described (Huet et al., 1976), but was later found to

reside in a dissociable factor (Huet et al., 1977; Iborra

et al., 1979; Labhart, 1997; Tschochner, 1996). To clarify

whether Pol I possesses intrinsic RNA cleavage activity,

we assembled a ‘‘backtracked’’ elongation complex

from purified Pol I and a DNA-RNA scaffold that contained

an RNA 30 overhang (Figure 5A) (Experimental Proce-

dures). Incubation of the backtracked complex with

8 mM magnesium ions led to efficient shortening of the

RNA from the 30-end (Figure 5B, lanes 1–3). In compari-

son, Pol II was unable to cleave the RNA under these con-

ditions, but addition of TFIIS resulted in cleavage

(Figure 5B, lanes 8–11). Thus, Pol I has a strong intrinsic

RNA cleavage activity.

The intrinsic cleavage activity likely escaped detection

previously since the nucleic-acid substrates used in pub-

lished studies did not allow for the formation of a back-

tracked state, from which cleavage occurs. The previously
Cell 1
described dissociable factor (Huet et al., 1977; Iborra

et al., 1979; Labhart, 1997; Tschochner, 1996) may not

be required for cleavage per se, but may induce back-

tracking of Pol I, to create a state of the elongation com-

plex that is prone to cleavage.

Pol I Cleavage Activity Requires A12.2
Additional cleavage assays showed that the Pol I variant

6A49/34.5 cleaved RNA less efficiently than the complete

Pol I (Figure 5B, lanes 4 and 5). Cleavage stimulation by

A49/34.5 is consistent with an early investigation of an

RNase H-like activity in Pol I-containing fractions (Huet

et al., 1976). We also asked whether subunit A12.2 is

required for cleavage, since its counterpart C11 is essen-

tial for cleavage activity of Pol III (Chedin et al., 1998;

Whitehall et al., 1994). A Pol I variant lacking residues

79–125 of A12.2 (A12.26C, Experimental Procedures)

was totally inactive in RNA cleavage (Figure 5B, lanes 6

and 7), but bound the nucleic-acid scaffold in electropho-

retic mobility shift assays (not shown) and retained elon-

gation activity (Figure 5D). Consistent with a function

specific for the A12.2 C-terminal domain, a truncation var-

iant remains bound to Pol I and does not show a condi-

tional growth defect (Van Mullem et al., 2002).

The A12.2 C-terminal domain shows homology to the

TFIIS C-terminal domain that inserts into the Pol II pore

to stimulate RNA cleavage (Kettenberger et al., 2003),

but its location in Pol I corresponds to that of the Rpb9
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C-terminal domain on Pol II (Figure 2B). Although the long

linker between the A12.2 N- and C-terminal domains

could in principle allow swinging of the C-terminal domain

into the pore, our results suggest that the effect of A12.2

truncation on cleavage is due to an allosteric rearrange-

ment in the Pol I active center. The conserved polymerase

active site is capable of RNA cleavage in the absence of

cleavage stimulatory factors, since free Pol II and the

bacterial RNA polymerase can cleave RNA under mild

alkaline conditions (Orlova et al., 1995; Weilbaecher

et al., 2003). Consistently, the intrinsic cleavage activity

of Pol I increased with increasing pH (Figure 5C). The

structural basis of the effect of A12.2 truncation on RNA

cleavage awaits the crystal structure of Pol I.

Possible Functions of the Cleavage Activity
Since A12.2 is required for transcription termination

(Prescott et al., 2004), Pol I cleavage activity may be

involved in a termination-coupled reaction. RNA cleavage

could be required for rRNA 30-terminal trimming, a Pol

I-associated RNA processing event that intimately follows

termination and involves cleavage of ten nucleotides from

the pre-rRNA 30 end (Kuhn and Grummt, 1989). Consis-

tently, Pol II can form a binary complex with RNA and

cleave RNA from the 30 end in the presence of TFIIS

Johnson and Chamberlin, 1994).

It is very likely that the intrinsic cleavage activity of Pol I

also enables rRNA proofreading to increase transcrip-

tional fidelity. Indeed, repetition of our cleavage assay

with a scaffold that contains only a single mismatch at

the RNA 30 end, mimicking the situation after a misincorpo-

ration event, induced efficient RNA cleavage (not shown).

For Pol III, the intrinsic cleavage activity was recently

shown to enable proofreading in a manner dependent on

the A12.2 homolog C11 (Alic et al., 2007), which is required

for the intrinsic cleavage activity of Pol III (Chedin et al.,

1998; Landrieux et al., 2006).

Conclusions
Here we analyzed the detailed functional architecture of

Pol I by a combination of structural biology techniques

and structure-based functional analysis (Figure 5E). A

comparison with the Pol II system revealed Pol I-specific

features that match the unique nature of rRNA transcrip-

tion. First, the distinct structure of the Pol I upstream

face allows for specific initiation-factor interactions and

recruitment of Pol I to the rRNA promoter. Second, the

built-in elongation-stimulatory Pol I-specific subcomplex

A49/34.5 can explain the efficient and processive nature

of rRNA transcription during cell growth. Third, the intrin-

sic RNA cleavage activity apparently enables rRNA 30

trimming and proofreading, to prevent formation of erro-

neous rRNAs and catalytically deficient ribosomes.

Finally, our results unravel structural and functional rela-

tionships between the three eukaryotic transcription

machineries and form the basis for a detailed structure-

function analysis of rRNA transcription and processing.
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EXPERIMENTAL PROCEDURES

Pol I Preparation

The S.cerevisiae strain GPY2, carrying a pAS22 plasmid coding for HA-

and hexahistidine-tagged A43 (Fath et al., 2000), was grown in a 200 L

fermenter overnight at 30�C, and cells were harvested at an OD600 of

5-6. Cells (30% slurry) were lysed by bead beating in 400 mM ammo-

nium sulfate, 60 mM MgCl2, 150 mM HEPES pH 7.8, 30% glycerol,

5 mM DTT, 1 mM PMSF, 1 mM benzamidine, 200 mM pepstatin, and

60 mM leupeptin. After filtration, the lysate was cleared by centrifuga-

tion (30 min, 8000 g), and ultracentrifugation (90 min; 30,000 g). The

supernatant was dialyzed overnight at 4�C against 50 mM potassium

acetate (KOAc), 20 mM HEPES at pH 7.8, 1 mM MgCl2, 10% glycerol,

and 10 mM b-mercaptoethanol. After centrifugation, (1 hr; 18,500 g),

the pellet was resuspended in 1.5 M KOAc, 1 mM MgCl2, 10% glycerol,

and 10 mM b-mercaptoethanol and incubated with 8 ml Nickel-NTA

agarose for 4 hr at 4�C. Bound protein was washed with 5 column

volumes of 300 mM KOAc, 1 mM MgCl2, 10% glycerol, and 10 mM

b-mercaptoethanol and eluted with the same buffer containing

100 mM imidazole. Eluted protein was bound to an anion exchange

column (MonoQ 10/100 GL) and eluted with a gradient from 300 mM

to 2 M KOAc. Pol I eluted at 1100 mM KOAc. Pol I was bound to a cation

exchange column (MonoS 5/50 GL), and eluted at 490 mM KOAc,

using a gradient from 200 mM to 2 M KOAc. Final purification over

a Superose 6 HR 10/30 size-exclusion column equilibrated with

60 mM ammonium sulfate, 1 mM MgCl2, 5 mM HEPES at pH 7.8,

10 mM ZnCl2 and 5 mM DTT, resulted in 0.5 mg of pure polymerase

from 350–400 g of cells. For further details see Gerber et al. (2007).

Cryo-EM Structure Determinations

Purified Pol I at 0.1 mg/ml was applied to carbon-coated holey grids

(Quantifoil) in 60 mM ammonium sulfate, 1 mM MgCl2, 5 mM HEPES

at pH 7.8, 10 mM ZnCl2, and 5 mM DTT. Micrographs were recorded

under cryo low-dose conditions (20 electrons/Å2) on a Tecnai G2

Polara electron microscope at 300 kV and digitized on a Heidelberg

drum scanner with a pixel size of 1.23 Å on the object scale. Defocus

values were determined with CTFFIND and SPIDER (Frank et al.,

1996). Particles were picked with SIGNATURE (Chen and Grigorieff,

2007) followed by visual inspection. Data were processed with SPIDER

(Frank et al., 1996). Initially 31,600 particles from 15 micrographs were

aligned using as a reference a truncated version of the complete Pol II

structure (Armache et al., 2005) filtered at 20 Å resolution. As a control

for reference bias, the clamp, foot, and Rpb4/7 (except the Rpb7 tip

domain) were deleted from the Pol II structure. During early refinement,

density for the clamp, foot, and Pol I-specific parts appeared, indicat-

ing the process was bias free. When Rpb4/7 was included in the refer-

ence structure, the density for A14/43 was much smaller already after

the first round of refinement, and when the C-terminal domain of Rpb9

was removed from the reference, density for the corresponding A12.2

domain reappeared at the same location.

Particles were sorted iteratively into two subsets according to differ-

ent clamp conformations (Cramer et al., 2001; Penczek et al., 2006).

Sorting resulted in 19,130 particles with a defined closed clamp con-

formation (class I) and 12,546 particles with apparently different

open clamp conformations (class II) with 3D reconstructions at a reso-

lution of about 17 Å. After addition of more particles and further sorting

and refinement, the class I dataset comprised 46,056 particles and led

to a reconstruction at 11.9 Å resolution (FSC = 0.5). Refinement of the

class II volume to higher resolution was impaired. Amplitudes were

corrected by Fourier filtering.

For cryo-EM structure determination of Pol I 6A49/34.5, data pro-

cessing was carried out as for the complete Pol I and was again bias

free. Twenty-one thousand particles of high defocus values (>3 mm)

were aligned with SPIDER using the same reference. Only spurious

density fragments were observed in the region assigned to the two

dissociated subunits. After convergent cycles of particle sorting
r Inc.



(Penczek et al., 2006), the remaining 12,000 particles were back-

projected, resulting in a 25 Å density.

Modeling of the Pol I Core

Rpb4/7 was removed from the Pol II structure (Armache et al., 2005),

and the five common subunits were retained. For subunits Rpb1,

Rpb2, Rpb3, Rpb9, and Rpb11, sequence alignments with their Pol I

homologs were obtained with CLUSTAL W (Thompson et al., 1994)

and were used for initial homology modeling. Side chains in these

four Pol II subunits were kept when identical in the homologs and

otherwise replaced by the most common rotamer of the counterpart

residues. Regions in Pol II subunits that were not present in Pol I sub-

units were deleted. The resulting ten-subunit model was inspected

residue by residue and showed meaningful internal contacts in most

regions. Several regions, however, showed disallowed contacts, indi-

cating misalignment of the corresponding sequence stretches. Manual

realignment of these weakly conserved stretches (Figure S1) led to

a model with good internal packing.

A14/43 Preparation

The genes for A14 and A43 were cloned sequentially into vector

pET28b (Novagen), resulting in a thrombin-cleavable N-terminal

hexahistidine tag on A14. A ribosomal binding site was introduced

before A43 to enable bicistronic expression. The deletion construct

A14653–776113–137/436173–2096252–326 (A14/436loop) was generated

by PCR overlap extension (Higuchi et al., 1988). Only regions that

were proteolytically sensitive and/or not predicted to form secondary

structure elements were deleted. A14/436loop was expressed for

18 hr at 18�C in E. coli BL21 (DE3) RIL cells (Stratagene) in 4 L of LB

medium (Maniatis et al., 1982). Cells were harvested by centrifugation,

resuspended in 100 ml buffer A (100 mM NaCl, 20 mM Tris pH 8.0,

10 mM b-mercaptoethanol, 1 mM protease inhibitor mix: 1 mM

PMSF, 1 mM benzamidine, 200 mM pepstatin, and 60 mM leupeptin)

and lysed by sonication. After centrifugation, the supernatant was

loaded onto a 3 ml Ni-NTA column equilibrated with buffer A. After

washing, proteins were eluted with buffer A containing 100 mM imid-

azole. Eluted fractions were diluted 3-fold with buffer A lacking NaCl

and incubated with thrombin (1 U protease/1 mg protein) for 16 hr at

4�C. A Mono Q 10/10 GL anion exchange column was equilibrated

with buffer B (100 mM NaCl, 20 mM Tris pH 8.0, 5 mM DTT), and pro-

teins were eluted with a linear gradient from 100 mM to 1 M NaCl. A14/

43 eluted at 220 mM NaCl. After concentration, the sample was

applied to a Superose 12 HR 10/300 gel filtration column (GE Health-

care) equilibrated with buffer B. Pooled peak fractions were concen-

trated to 10 mg/mL.

A14/43 Crystal Structure Determination

Crystals of A14/436loop were grown at 20�C in hanging drops, using

22% PEG 3350 and 240 mM potassium acetate as reservoir solution.

Crystals were harvested in reservoir solution, cryo-protected by step-

wise transfer to reservoir solution containing 7%–20% PEG 400, and

flash cooled by plunging into liquid nitrogen. Selenomethionine-la-

beled protein was prepared as described (Budisa et al., 1995; Meinhart

et al., 2003) and crystallized at 20�C with the use of microseeding and

a reservoir solution of 18% PEG 3350 and 350 mM potassium acetate.

Crystals reached a size of 250 mm 3 120 mm 3 80 mm and were cryo-

preserved as above. A SAD experiment was performed at the Swiss

Light Source (Table S1). Data were processed with XDS (Kabsch,

1993). Programs SHELXD/HKL2MAP (Pape and Schneider, 2004;

Schneider and Sheldrick, 2002) detected nine selenium sites, which

stemmed from three A14/436loop complexes in the asymmetric

unit. SHARP (de La Fortelle and Bricogne, 1997) was used for refining

heavy-atom positions, SAD phasing, and density modification. The

model was built with COOT (Emsley and Cowtan, 2004) and refined

with CNS (Brunger et al., 1998) to a free R factor of 28.3% (Table

S1). Ninety-eight and a half percent of the residues fall in allowed
Cell 1
and additionally allowed regions of the Ramachandran plot, and no

residues fall in disallowed regions (Laskowski et al., 1993).

Preparation of A49/34.5

The genes for A49 and A34.5 were cloned sequentially into vector

pET28b (Novagen), introducing a C-terminal hexahistidine tag on

A49 and a second ribosomal binding site for bicistronic expression.

The two subunits were coexpressed for 18 hr at 18�C in E. coli BL21

(DE3) RIL cells (Stratagene) in 4 L of Luria broth medium. Cells were

harvested by centrifugation, resuspended in 100 ml buffer C

(300 mM NaCl, 50 mM Tris pH 7.5, 10 mM b-mercaptoethanol, and

1 mM protease inhibitor mix), and lysed by sonication. After centrifuga-

tion the supernatant was loaded onto a 3 ml Ni-NTA column equili-

brated with buffer C. The column was washed stepwise with 15 ml

of buffer C containing 1 M NaCl and 15 ml of buffer C containing

30 mM imidazole. The A49/34.5 heterodimer was eluted with buffer

C containing 100 mM imidazole. Eluted fractions were diluted 3-fold

with 50 mM Tris pH 7.5 and 10 mM b-mercaptoethanol. A MonoS cat-

ion exchange column was equilibrated with buffer D (100 mM NaCl,

50 mM Tris pH 7.5, 5 mM DTT), and proteins were eluted with a linear

gradient of 18 column volumes from 100 mM to 1 M NaCl. A49/34.5

eluted at 280 mM NaCl. The sample was applied to a Superose

12 HR 10/300 gel filtration column (GE Healthcare) equilibrated with

buffer D. Pooled peak fractions were concentrated to 10 mg/mL.

A49/34.5 Structure Prediction

The sequences of A49 and A34.5 were submitted to HHpred (Soding

et al., 2005). As the hit with the highest score, HHpred predicted sim-

ilarity of the A49 N-terminal residues 52–102 to the N-terminal residues

99–150 of human RAP74 (p value = 0.0023). For A34.5 the hit with the

third highest score was a similarity between the A34.5 residues 50–65

and residues 15–30 of human RAP30 (p value = 0.0003). Inspection of

the predicted secondary structure elements in A49 and A34.5 revealed

a similar arrangement of strands as in the RAP74/RAP30 dimerization

module crystal structure (Gaiser et al., 2000) (PDB 1F3U) except that

strands b4 and b5 were apparently lacking in A49, and no secondary

structure corresponding to strands b6 and b7 of RAP30 was predicted

in A34.5. The few residues conserved between A49 and RAP74 and

between A34.5 and RAP30 generally lie within the hydrophobic heter-

odimer interface (Figure S6).

Yeast Genetic Manipulations and 6AU Phenotyping

To disrupt the gene for A34.5, His5+ from S. pombe (complementing

HIS4 from S. cerevisiae) was amplified from pFA6a-HiS4MX6 (Long-

tine et al., 1998) using PCR. S. cerevisiae strain GPY2 was transformed

by the LiAc method, and positive clones were selected using –his

plates and verified by colony PCR. For testing elongation activity,

GPY2 and GPY26RPA34, both harboring the pRS416 plasmid, were

spotted on SDC plates lacking uracil and containing 60 mg/ml 6AU.

Growth was monitored after 2 to 3 days at 30�C. To generate a C-ter-

minal deletion in RPA12 (6G79-N125), the gene was deleted in GPY2

as above, but using KanMX instead of His5+ as genetic marker. The

resulting strain GPY2 (rpa12::KanMX) was transformed with a plasmid

(pRS413-RPA12[1–78]) coding for residues 1–78 in A12.2. Transform-

ants (rpa12::KanMX(pRS413-RPA12[1–78]) were selected on SD

plates –his and screened by colony PCR. A positive clone (Pol I

A12.26C) was grown to an optical density of �3 in SDC medium

lacking histidine, using a 20 L fermenter.

Preparation of Pol I Variants

Pol I 6A49/34.5 was prepared by dialyzing Pol I-containing fractions

after cation-exchange chromatography overnight against 2 M urea,

50 mM ammonium sulfate, 1 mM magnesium chloride, 20 mM HEPES

at pH 7.8, 10% glycerol, and 5 mM DTT. A49/34.5 was separated from

Pol I 6A49/34.5 by subsequent anion-exchange chromatography, ap-

plying a gradient from 50 mM to 1 M ammonium sulfate (Mono Q 5/50

GL, GE Healthcare). Pol I 6A49/34.5 eluted at 250 mM ammonium
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sulfate and was further purified by size-exclusion chromatography

(Superose 6 HR10/300) with buffer E (100 mM ammonium sulfate,

1 mM MgCl2, 20 mM HEPES at pH 7.8, 5% glycerol, 5 mM DTT).

Pooled fractions were concentrated to 0.5 mg/ml. Pol I variant

A12.26C was purified as the complete Pol I, except that gel filtration

was omitted and was concentrated to 0.5 mg/ml in buffer E.

RNA Extension Assays

Four picomoles of polymerase was incubated for 30 min at 20�C with

2 pmol of a preannealed minimal nucleic-acid scaffold (template DNA:

30-GCTCAGCCTGGTCCGCATGTGTCAGTC-50; nontemplate DNA:

50-CACACAGTCAG-30; RNA: 50-FAM-UGCAUAAAGACCAGGC-30). For

RNA elongation, complexes were incubated in the presence of 1 mM

NTPs at 28�C for 20 min in transcription buffer (60 mM ammonium sul-

fate, 20 mM HEPES at pH 7.6, 8 mM magnesium sulfate, 10 mM zinc

chloride, 10% glycerol, and 10 mM DTT). Reactions were stopped by

addition of an equal volume 23 loading buffer (8 M urea, 23 TBE)

and incubation for 5 min at 95�C. The FAM-labeled RNA extension

products were separated by denaturing gel electrophoresis (0.5 pmol

RNA per lane, 0.4 mm 15%–20% polyacrylamide gels containing

8 M urea, 50�C–55�C) and visualized with a Typhoon 9400 phosphoim-

ager (GE Healthcare). For RNA extension assays with a complementary

bubble (Kireeva et al., 2000), 6 pmol Pol I or Pol I 6A49/34.5 were in-

cubated for 15 min at 20�C with 3 pmol of a preannealed template

DNA-RNA scaffold (template DNA: 30-TGCGCACCACGCTTACT

GGTCCGTTCGCCTGTCCTCGACCA-50; RNA: 50-FAM-UGCAUUUCG

ACCAGG C-30), followed by incubation with a 5-fold molar excess of

nontemplate DNA (15 pmol; 50-TTTTTACGCGTGGTGCGAATGACC

AGGCAAGCGGACAGGAGCTGGT-30 ) for 15 min at 25�C. Complexes

were incubated in the presence of 1 mM NTPs at 28�C for 1 and 5 min

in transcription buffer. Reactions were stopped and analyzed by gel

electrophoresis as above.

RNA Cleavage Assays

Complexes of polymerase variants were formed in transcription buffer

with a nucleic-acid scaffold that comprised an RNA with a 6-FAM fluo-

rescent label at its 50 end and a three-nucleotide noncomplementary

overhang at its 30 end (template DNA: 30-TTACTGGTCCTTTTTCATGA

ACTCGA-50; nontemplate DNA: 50-TAAGTACTTGAGCT-30; RNA: 50-F

AM-UGCAUUUCGACCAGGACGU-30, overhanging nucleotides under-

lined). Samples were incubated in transcription buffer up to 30 min at

28�C, and reaction products were analyzed as above.

Figure Preparation

Figures were prepared with CHIMERA (Pettersen et al., 2004) and

PYMOL (DeLano Scientific).

Supplemental Data

Supplemental Data include six figures, one table, and Supplemental

References and can be found with this article online at http://www.

cell.com/cgi/content/full/131/7/1260/DC1/.
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