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a b s t r a c t

Background: Studies on the associations between persistent organic pollutants (POPs) and smoking ac-
cording to gender and smoking amount (cigarettes/day) are limited, and the results regarding the
relationship between POPs and smoking are not completely consistent across studies.
Objectives: The smoking rate in Korea is one of the highest among the Organization for Economic
Cooperation and Development (OECD) countries. We investigated the association between serum con-
centrations of POPs and cigarette smoking in Koreans by smoking status (never-smoker/ever-smoker)
and smoking amount (cigarettes/day) according to gender.
Methods: Serum concentrations of 32 polychlorinated biphenyls (PCBs) and 19 organochlorine pesticides
(OCPs) were measured in 401 participants (232 men and 169 women) who received health examinations
during the Korean Cancer Prevention Study-II. We compared POP levels in ever-smokers and never-
smokers and conducted multivariate logistic regression analyses to identify associations between POPs
and smoking.
Results: Among women, the concentrations of PCB 156, PCB 167, and PCB 180 were significantly higher in
ever-smokers than in never-smokers. After adjustments for age, body mass index, gamma-glutamyl
transpeptidase, and alcohol intake, serum PCB 157 concentration was positively associated with male
ever-smokers (OR 2.26; 95% CI, 1.01e5.04). In addition, trans-nonachlordane in OCPs as well as PCBs was
significantly positively related with female ever-smokers (OR 3.21; 95% CI, 1.04e9.86). We found that
subjects who smoked fewer than 15 cigarettes/day had a higher risk of having high POP concentrations
than never-smokers.
Conclusions: These results indicate that smoking may be associated with human serum POPs levels.
© 2016 Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Persistent organic pollutants (POPs), including polychlorinated
biphenyls (PCBs) and organochlorine pesticides (OCPs), are chem-
ical substances that persist in the environment and accumulate in
adipose tissue.1,2 Many studies have suggested that POPs may in-
crease health risks.2 Therefore, to decrease the risks of high body
burden, many countries are trying to eliminate or restrict POPs
through legal regulations. Bioaccumulation through the food chain
and intake of food are known asmajor exposure factors for POPs.3e5
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However, it has been reported that smoking may also affect POP
concentrations.6

Some scientists have studied the influence of smoking on POP
levels in humans, but the results have been inconsistent.7e10 In a
study based on samples of Swedish males, CB-153, and p,p0-DDE
was correlated with smoking when 2000 and 2004 data were
pooled.10 Also, Fierens et al. reported that serum dioxin levels in
male smokers were higher than in male non-smokers, while serum
dioxin concentrations of female smokers were lower than female
non-smokers.7 In a review study, it was reported that seven studies
published between 1980 and 1995 reported that smoking was not
associated with levels of organochlorines, while five studies pub-
lished in a similar period (1985e1994) reported that smoking was
correlated with concentrations of organochlorine residues.8 In
addition, another review study suggested that the associations
logical Association. This is an open access article under the CC BY-NC-ND license
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between POPs and smoking were different by district.9 Further-
more, in an epidemiologic study based on samples of male Inuit in
Greenland, smoking was an important determinant of POP bio-
accumulation.11 In a epidemiologic study using NHANES data,
smoking increased the mortality of subjects with high serum POP
levels. However, Jain and Wang found that the levels of poly-
chlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans
(PCDD/PCDF) were significantly lower in smokers than in
nonsmokers.12

In studies of populations in East-Asian countries, it has been
reported that PCDD/F levels were higher in nonsmokers and pas-
sive smokers than in active smokers among Taiwanese13 and that
maternal smoking history was associated with a decrease of POP
concentrations among Japanese.14 Despite the fact that Korea has
banned most OCPs since 1969, several OCPs were still detected in
Korean human samples. In addition, the level of OCPs was higher
than has been reported in several other countries.15

The smoking rate of Korean men was the highest among the
OECD countries in 2012. In addition, the smoking rate of Korean
women was the lowest among the OECD countries in 2012 but has
been increasing continuously.16 Therefore, it is necessary to deter-
mine the accumulation of POPs by smoking amount in Koreans. To
our knowledge, a study on the associations of POPs and smoking
aimed at the Korean population has not yet been conducted. Also,
studies analyzing the associations between POPs and smoking ac-
cording to gender and smoking amount are scarce.

The purpose of this study was to investigate the associations
between serum concentrations of POPs and cigarette smoking
among Koreans by smoking status and smoking amount according
to gender.
2. Materials and methods

2.1. Study population

The study population was selected from the Korean Cancer
Prevention Study-II (KCPS-II). KCPS-II included 270,514 individuals
Fig. 1. Flow chart for selection of the study population. KCPS, Korean Cancer Prevent
who visited 21 health examination centers in the Seoul and
Gyeonggi districts of Korea from April 1994 to December 2013. In
the process of health examination, a researcher who was educated
about Institutional Review Board (IRB) requirements explained the
KCPS-II and received a signed written consent form from partici-
pants. In total, 159,844 participants provided a signed written
consent form.17,18 Of these,1,050 subjects with anthropometric data
(height, weight, and body mass index [BMI]), blood test informa-
tion (total cholesterol, high-density lipoprotein cholesterol [HDL-
C], triglyceride, and gamma-glutamyl transpeptidase), self-
reported questionnaire information (age, smoking status, smok-
ing amount, and alcohol intake) obtained during the health ex-
amination and POPs values obtained during 2013e2014 were
eligible.17,18 We excluded 601 participants with prostate cancer,
breast cancer, or stroke, 44 participants who were missing body
mass index (BMI) values or smoking status, and 4 participants who
had outlying values for OCPs (�1,000 ng/g lipid). Thus, the final
study subjects consisted of 401 participants (232 men and 169
women) aged 21e73 years who had health examination from 2001
to 2011 (Fig. 1).

This study was approved by Yonsei University Health System,
Severance Hospital, Institutional Review Board (Approval Number
4-2013-0119).
2.2. Measurements

In the collected blood samples, total-cholesterol, high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein choles-
terol (LDL-C), triglyceride, and gamma-glutamyl transpeptidase
weremeasured.Weight and height weremeasured in light clothing
after the participants removed their shoes.18

Information on cigarette smoking (smoking status and smoking
amount [cigarettes/day and packs/year]) and alcohol intake was
obtained from self-reported questionnaires. Packs/year was calcu-
lated as smoking amount (cigarettes/day) divided by 20 (cigarettes/
pack) and multiplied by smoking period.19
ion Study; POPs, persistent organic pollutants; OCPs, organochlorine pesticides.
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Serum POPs were measured in 0.5e1 mL samples of peripheral
venous blood from each participant collected at the health exam-
ination after 12 h of fasting. Serum samples were stored at �70 �C
and analyzed after thawing and homogenization. We measured 33
PCBs and 19 OCPs as individual chemicals and used analytical
methods for POPs used in previous research.20

Internal standard materials for refinement were added to the
sample, stirred for 15e20 s, and left for 15 min. The mixture was
then added to 1 mL ultrapurewater and stirred. To remove air, 2 mL
formic acid was added and stirred. After air was released for 30min,
ultrapure water was added again. To analyze the amount of POPs in
0.5e1 mL of human blood, a solid-phase extraction method was
used to simultaneously pretreat PCBs and OCPs. For efficient
extraction of all organic materials except for soluble materials, and
to remove C18 cartridge and fats, an NH2 cartridge was used. In the
extracted solvent, the sample was refined with Silica-gel (1 g) and
Florisil (0.5 g) cartridge to remove interfering substances, using 50%
DCM/n-Hexane 16 mL as the elution solvent. Because the refine-
ment efficiency or recovery factor differs by the amount of elution
solvent used, the adequate amount of elution solvent was deter-
mined through a fraction test. After that, the elution solution was
collected in a glass tube and condensed to below 1 mL using a ni-
trogen concentrator at temperatures below 35 �C and pressure of
8e10 psi. Internal standard materials were added using a syringe
and included nitrogen gases condensed to roughly 50e100 mL. A gas
chromatograph (6890 Series; Agilent, Palo Alto, CA, USA) and high
resolution mass spectrometry (JMS-800D; Jeol, Tokyo, Japan) were
used for analyses.

To ensure reliable results, we performed a base experiment by
repeatedly measuring the same pool of serum every batch (20
samples) whenever the samples were analyzed. In addition, we
confirmed the coefficient of variation (CV) for each chemical and
identified the linearity of the calibration-curve. The same method
of validation (n ¼ 20) was used in two independent laboratories to
verify the suitability of the analysismethod. The detection limit was
calculated by spiking using 2e5 times the expected detection limit
and then multiplied by 3.143 (t-value, a ¼ 99%), the standard de-
viation derived from seven repetitions. The detection limit was
0.04e0.15 ng/g lipid for PCBs and 0.25e0.94 ng/g lipid for OCPs.

We selected 10 PCBs (PCB 52, PCB 101, PCB 105, PCB 118, PCB
138, PCB 153, PCB 156, PCB 157, PCB 167, and PCB 180) and 6 OCPs
(b-hexachlorocyclohexane, p,p0-dichlorophenyldichloroethylene,
cis-heptachlor epoxide, trans-nonachlordane, p,p0-dichlor-
odiphenyltrichloroethane, and p,p0-dichlorodiphenyldichloro-
ethane), which have 70% or above detection rate according to a
preceding study.21

This study used lipid-adjusted POP concentrations (ng/g lipid)
for analyses based on previous epidemiologic studies.22 Total lipids
were calculated using a formula described in previous studies23,24:
total lipid (mg/dL) ¼ 2.27 � total cholesterol þ triglyceridesþ62.3.

2.3. Statistical analyses

Smoking status consisted of never-smoker, ex-smoker, and
current smoker. Participants that had stopped smoking were clas-
sified as ex-smokers, while those that were smokers during the
study period were classified as current smokers. We combined ex-
smokers and current smokers in the ever-smoker group and clas-
sified smoking status as never-smoker and ever-smoker for com-
parison. In addition, we stratified subjects by gender in accordance
with a previous study showing that the association between dioxin
body burden and tobacco smoking is different for men and
women.7

The general characteristics of subjects are presented as means
and standard deviations. Student's t-test and Chi-square test were
used for comparison between never-smokers and ever-smokers by
sex. In women, only 8 subjects of 18 ever-smokers had available
information on smoking amount (cigarettes/day); therefore, we
only analyzed the relationship between POPs and smoking amount
in men. The smoking amount for men was divided into two groups
(<15 cigarettes/day and �15 cigarettes/day) according to the me-
dian value. We categorized POP as high or low using a threshold of
75% for logistic regression analyses. Cut-off levels of high or low
POPs are presented in eTable 1.

Humans are concurrently exposed to various POP chemicals, not
just a single POP. Therefore, we classified POPs as dioxin-like PCBs
that interact with AhR (mono-ortho-substituted planar PCB and
congeners 105, 118, 156, 157, and 167), and non-dioxin-like PCBs
(congeners 52, 101, 138, 153, and 180)25 according to their toxico-
logical and chemical properties. We also summed the concentra-
tions of dioxin-like PCBs, non-dioxin-like PCBs, total PCBs, and
OCPs to calculate the concentration of the POPs mixture and
examined the relationship between the POPs (sum of dioxin-like
PCBs, sum of non-dioxin-like PCBs, total PCBs, and total OCPs) in
each analysis.

The POP concentrations did not satisfy a normal distribution, so
a non-parametric test was used. The Mann-Whitney U test was
used for comparison of never-smokers and ever-smokers. Also,
multivariable logistic regression analyses were conducted to
demonstrate the associations between POPs, smoking status, and
smoking amount. For logistic regression analyses, factors that
potentially affect POP levels, such as age, BMI, gamma-glutamyl
transpeptidase, and alcohol intake, were adjusted. Statistical sig-
nificance was considered as a p-value <0.05, and all statistical an-
alyses were performed with SAS 9.2 (SAS Institute, Cary, NC, USA).

3. Results

3.1. Study subjects characteristics according to cigarette smoking
status

General characteristics according to the cigarette smoking sta-
tus are shown in Table 1. Comparing ever-smokers with never-
smokers of both sexes, ever-smokers tended to be younger and
had lower total cholesterol but higher gamma-glutamyl trans-
peptidase and alcohol intake than never-smokers. Among men,
ever-smokers were likely to have higher BMI and triglyceride than
never-smokers, in contrast to women. Statistically significant dif-
ferences in the general characteristics between never-smokers and
ever-smokers were found only for alcohol consumption in males.

3.2. POP levels according to the smoking status

Table 2 indicates the median concentrations of serum POPs ac-
cording to cigarette smoking status. Among women, the concen-
trations of PCB 156, PCB 167, and PCB 180 were significantly higher
in ever-smokers than in never-smokers. Moreover, the sum of
dioxin-like PCBs, the sum of non-dioxin-like PCBs, and the total
amount of PCBs showed the same trend. However, a difference was
not observed in OCP levels by smoking status. Among men, higher
POP concentrations for ever-smokers compared with never-
smokers were observed in PCB 105, PCB 167, PCB 101, PCB 153,
and PCB 180, but these were not statistically significant.

3.3. POP levels and smoking status and smoking amount

Table 3 shows the results of logistic regression analyses for high
POPs (�75%) by smoking status and smoking amount. Among men,
the adjusted odds ratio for a high concentration of PCB 157was 2.26
for ever-smokers (95% CI, 1.01e5.04) and 4.31 for subjects in the



Table 1
General characteristics according to cigarette smoking status.

Men (n ¼ 232) Women (n ¼ 169)

Never-smoker (n ¼ 60) Ever-smoker (n ¼ 172) p-value Never-smoker (n ¼ 151) Ever-smoker (n ¼ 18) p-value

Age, years 43.2 (10.33) 40.87 (8.92) 0.0957e 39.32 (10.84) 35.28 (7.52) 0.1265e

Body mass index, kg/m2 23.86 (3.09) 24.27 (2.65) 0.3273e 21.78 (2.83) 21.35 (3.3) 0.5553e

Total-cholesterol, mg/dL 199.05 (32.24) 193.34 (36.74) 0.2867e 174.67 (33.91) 170.56 (30.1) 0.6235e

HDL cholesterol, mg/dLa 49.98 (7.99) 48.82 (8.65) 0.3632e 57.15 (9.6) 55.25 (10.53) 0.4326e

LDL cholesterol, mg/dLb 122.25 (30.65) 115.88 (29.59) 0.1568e 99.19 (31.53) 100.38 (26.86) 0.8783e

Triglyceride, mg/dL 142.58 (70.56) 162.27 (182.02) 0.4154e 97.97 (59.44) 81.28 (44.12) 0.2505e

GGT, mg/dL 41.82 (44.54) 45.48 (39.14) 0.5476e 18.68 (18.28) 19.33 (16.05) 0.8841e

Cigarettes/dayc e 16.33 (6.53) e e 7.13 (5.25) e

Pack/yearsd e 14.23 (10.16) e e 3.8 (3.34) e

Alcohol, n (%) 47 (78.33) 154 (89.53) 0.0353f 78 (51.66) 10 (55.56) 0.7539f

GGT, gamma-glutamyl transpeptidase; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
a 4 missing male ever-smokers and 2 missing female never-smokers.
b 1 missing male ever-smoker and 2 missing female never-smokers.
c 38 missing male ever-smokers, 10 missing female ever-smokers.
d 46 missing male ever-smokers, 10 missing female ever-smokers.
e Student's t-test was used.
f Chi-square test was used.
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group that smoked <15 cigarettes/day (95% CI, 1.48e12.50)
compared with never-smokers. In addition, PCB 153, PCB 180, the
sum of non-dioxin-like PCBs, and total PCBs were more likely to be
higher in the <15 cigarettes/day group. In women, trans-non-
achlordane as well as PCBs (PCB 118, PCB 156, PCB 157, PCB 167, PCB
180, and total PCBs) showed statistically significantly higher odds of
having high concentrations. When we analyzed the influence of
confounding variables on all subjects, age was the most influential
variable on the associations of POPs and smoking status (followed
by alcohol consumption and GGT) (eTable 3).

4. Discussion

This study demonstrated that serum POP concentrations were
positively associated with smoking status and smoking amount in
members of the Korean general population who had health
Table 2
Serum median (interquartile range) concentrations of persistent organic pollutants acco

Men

Never-smokers (n ¼ 60) Ever-smokers (n ¼ 172)

DL-PCBs, ng/g lipid
PCB 105 0.55 (0.20e1.04) 0.60 (0.20e0.95)
PCB 118 2.93 (1.99e5.00) 2.93 (1.76e4.53)
PCB 156 0.96 (0.62e1.81) 0.92 (0.62e1.66)
PCB 157 0.34 (0.18e0.45) 0.31 (0.14e0.51)
PCB 167 0.54 (0.39e0.85) 0.55 (0.34e0.82)
Sum of DL-PCBs 5.53 (3.68e8.99) 5.34 (3.28e8.45)

Non DL-PCBs, ng/g lipid
PCB 52 2.47 (1.10e4.67) 2.47 (1.40e3.75)
PCB 101 1.16 (0.84e2.06) 1.23 (0.83e2.04)
PCB 138 5.55 (4.06e7.43) 5.49 (3.54e8.74)
PCB 153 12.02 (8.63e20.26) 12.36 (6.75e24.77)
PCB 180 8.55 (5.49e14.47) 8.79 (4.61e19.35)

Sum of non DL-PCBs 32.85 (22.56e50.81) 32.01 (19.47e60.70)
Total PCBs 38.47 (26.36e61.88) 37.04 (22.36e70.01)
OCPs, ng/g lipid
b-HCH 12.36 (7.86e17.66) 11.53 (7.94e18.27)
p,p0-DDE 99.91 (70.76e161.29) 94.11 (58.40e154.67)
cis-heptachlor epoxide 1.85 (0.90e3.49) 1.71 (0.87e3.44)
trans-nonachlordane 4.20 (2.50e6.44) 3.53 (2.13e6.48)
p,p0-DDD 2.07 (0.86e3.72) 1.70 (0.78e3.46)
p,p0-DDT 10.17 (6.99e14.10) 10.11 (6.19e15.73)

Total OCPs 132.56 (90.76e213.56) 123.10 (78.53e198.65)

DL-PCBs, dioxin-like polychlorinated biphenyls; OCPs, organochlorine pesticides; b-HC
DDD, p,p0-dichlorodiphenyldichloroethane; p,p0-DDT, p,p0-dichlorodiphenyltrichloroetha

a Mann-Whitney U test was used.
examinations. Among women, the levels of PCBs and trans-non-
achlordane were significantly higher in ever-smokers than in
never-smokers, while male ever-smokers were significantly asso-
ciated with only PCB 157, which is a dioxin-like PCB.

These results are partially consistent with those of some pre-
vious studies. In a study conducted among Norwegian women,
smoking was significantly associated with higher levels of PCBs,
p,p0-DDE, and b-HCH in breast milk.3 Some studies in Greenland
populations reported that cigarette smokers had higher levels of
POPs.26e28 Also, a previous small study of a German population
(n¼ 80) showed that children born to smoking mothers had higher
POP concentrations than children of nonsmoking families.29

On the other hand, some researchers have reported negative
associations between POPs and smoking.30,31 In a short report
evaluating the relationship between tobacco smoking and dioxin
accumulation in Belgium, serum dioxin and coplanar PCBs were
rding to cigarette smoking status.

Women

p-valuea Never-smokers (n ¼ 151) Ever-smokers (n ¼ 18) p-valuea

0.7003 0.61 (0.2e0.94) 0.81 (0.57e1.48) 0.0614
0.3879 2.80 (2.08e4.76) 3.58 (2.59e7.10) 0.0878
0.7477 0.87 (0.55e1.63) 1.44 (0.91e3.00) 0.0039
0.9570 0.32 (0.15e0.54) 0.50 (0.27e0.96) 0.0930
0.4568 0.54 (0.38e0.86) 0.78 (0.57e1.61) 0.0124
0.4072 5.10 (3.47e9.02) 7.49 (5.04e13.22) 0.0159

0.9243 2.50 (1.50e3.96) 2.56 (1.54e3.35) 0.9756
0.7308 1.18 (0.83e1.85) 1.12 (0.89e2.05) 0.9594
0.9111 5.00 (3.23e8.48) 6.35 (3.29e9.94) 0.3445
0.9421 10.24 (6.56e20.15) 14.64 (9.42e32.42) 0.0534
0.8442 6.95 (4.46e15.36) 15.89 (8.29e42.24) 0.0088
0.9448 26.53 (20.19e48.80) 36.17 (27.80e81.15) 0.0325
0.8442 32.14 (24.26e56.57) 43.58 (31.79e90.97) 0.0272

0.6737 17.23 (12.86e26.32) 21.64 (16.76e26.66) 0.1673
0.4066 100.73 (59.15e165.26) 100.66 (67.28e223.45) 0.5803
0.8729 1.72 (1.00e3.13) 2.40 (1.70e3.09) 0.1376
0.2953 2.93 (1.99e5.26) 3.57 (2.94e5.71) 0.1219
0.2880 1.30 (0.28e2.57) 1.83 (0.71e3.85) 0.1688
0.9599 7.73 (5.33e11.14) 7.43 (6.09e15.94) 0.4771
0.3770 128.18 (87.39e219.39) 132.56 (100.14e286.25) 0.4311

H, b-hexachlorocyclohexane; p,p0-DDE, p,p0-dichlorophenyldichloroethylene; p,p0-
ne.



Table 3
Adjusted odds ratios (95% confidence intervals)a of high levels of persistent organic pollutantsb according to smoking factors.

Men Women

Never-smoker
(n ¼ 60)

Ever-smoker
(n ¼ 172)

<15 cigarettes/day
(n ¼ 37)

�15 cigarettes/day
(n ¼ 97)

Never-smoker
(n ¼ 151)

Ever-smoker
(n ¼ 18)

DL-PCBs, ng/g lipid
PCB 105 1.00 0.94 (0.47, 1.91) 1.87 (0.71, 4.92) 0.60 (0.27, 1.37) 1.00 2.75 (0.95, 7.97)
PCB 118 1.00 0.81 (0.40, 1.62) 1.30 (0.48, 3.51) 0.57 (0.25, 1.27) 1.00 2.96 (1.00, 8.71)
PCB 156 1.00 1.09 (0.53, 2.25) 1.92 (0.70, 5.22) 0.82 (0.36, 1.86) 1.00 3.52 (1.19, 10.42)
PCB 157 1.00 2.26 (1.01, 5.04) 4.31 (1.48, 12.50) 1.74 (0.70, 4.29) 1.00 3.52 (1.17, 10.55)
PCB 167 1.00 0.99 (0.49, 2.00) 2.13 (0.82, 5.51) 0.61 (0.27, 1.39) 1.00 3.53 (1.22, 10.21)

Sum of DL-PCBs 1.00 1.06 (0.52, 2.19) 1.63 (0.58, 4.53) 0.82 (0.36, 1.85) 1.00 2.70 (0.92, 7.89)
Non DL-PCBs, ng/g lipid
PCB 52 1.00 0.68 (0.33, 1.37) 0.71 (0.26, 1.97) 0.47 (0.20, 1.08) 1.00 0.77 (0.24, 2.55)
PCB 101 1.00 1.12 (0.55, 2.28) 1.35 (0.51, 3.57) 1.02 (0.47, 2.23) 1.00 1.08 (0.36, 3.29)
PCB 138 1.00 1.69 (0.79, 3.61) 2.49 (0.88, 7.01) 1.30 (0.55, 3.03) 1.00 1.25 (0.40, 3.89)
PCB 153 1.00 1.84 (0.83, 4.10) 2.98 (1.03, 8.66) 1.30 (0.54, 3.13) 1.00 2.98 (0.99, 8.96)
PCB 180 1.00 1.69 (0.76, 3.76) 3.60 (1.25, 10.36) 0.97 (0.40, 2.37) 1.00 5.49 (1.80, 16.76)

Sum of non DL-PCBs 1.00 2.19 (0.96, 4.99) 3.52 (1.18, 10.50) 1.36 (0.55, 3.37) 1.00 2.73 (0.92, 8.09)
Total PCBs 1.00 1.90 (0.85, 4.23) 3.16 (1.08, 9.19) 1.13 (0.46, 2.75) 1.00 3.98 (1.34, 11.88)
OCPs, ng/g lipid
b-HCH 1.00 1.17 (0.56, 2.44) 1.44 (0.51, 4.08) 1.02 (0.45, 2.31) 1.00 1.37 (0.43, 4.37)
p,p0-DDE 1.00 1.04 (0.50, 2.15) 1.96 (0.73, 5.29) 0.81 (0.36, 1.85) 1.00 1.52 (0.47, 4.91)
cis-heptachlor epoxide 1.00 0.94 (0.46, 1.90) 1.28 (0.48, 3.46) 0.77 (0.35, 1.70) 1.00 1.69 (0.49, 5.86)
trans-nonachlordane 1.00 1.28 (0.59, 2.79) 1.54 (0.50, 4.74) 1.18 (0.50, 2.78) 1.00 3.21 (1.04, 9.86)
p,p0-DDD 1.00 0.78 (0.40, 1.53) 0.75 (0.27, 2.05) 0.81 (0.38, 1.71) 1.00 1.83 (0.62, 5.43)
p,p0-DDT 1.00 1.54 (0.73, 3.26) 1.76 (0.64, 4.89) 1.45 (0.64, 3.26) 1.00 2.53 (0.86, 7.40)

Total OCPs 1.00 1.04 (0.50, 2.16) 1.73 (0.63, 4.76) 0.86 (0.38, 1.96) 1.00 1.67 (0.51, 5.44)

DL-PCBs, dioxin-like polychlorinated biphenyls; OCPs, organochlorine pesticides; b-HCH, b-hexachlorocyclohexane; p,p0-DDE, p,p0-dichlorophenyldichloroethylene; p,p0-
DDD, p,p0-dichlorodiphenyldichloroethane; p,p0-DDT, p,p0-dichlorodiphenyltrichloroethane.

a Adjusted for age, body mass index, gamma-glutamyl transpeptidase, and alcohol intake.
b High levels of persistent organic pollutants were �quartile 3 of each chemical.
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lower in current female smokers but higher in current male
smokers than in never-smokers.7 This inconsistency has also been
observed in some other studies.8e10 While Greenland male resi-
dents were positively correlated with OCPs and plasma cotinine
(ng/mL) in one study,11 statistically significant associations with
OCPs and male ever-smokers were not apparent. In the present
study, we only found significant positive associations between PCBs
and male ever-smokers, while no association was observed in
women.

Increased POP concentrations may be associated with enzymes
of the p-450 cytochrome oxidase system, including CYP1A1,
CYP1A2, and phenobarbital-CYP, which metabolize POPs, nicotine,
and nicotine's breakdown products. POPs affect the expression of
these enzymes and may cause competitive and feedback re-
actions.11,32,33 Constituents from cigarette smoke, such as Cd and
CO, influence the activity of the enzymes, and Cd from cigarettes
was reported to stimulate PCB uptake in quail.27,34

In our study, the risk of high POP concentrations was lower in
the group that smoked �15 cigarettes/day than in the <15 ciga-
rettes/day group (Table 3). Although the difference was not statis-
tically significant, the lower risk of high POP concentrations in
heavy smokers (who smoked more than 15 cigarettes/day) may be
due to the strong stimulation of dioxin biotransformation by
polycyclic aromatic hydrocarbons (PAHs) or other chemicals in
cigarette smoke.7 Some studies indicated that the compounds
contained in cigarette smoke have affinity for aryl hydrocarbon
receptors (AhR) and could be potent inducers of cytochrome P450
enzymes.7,35,36 POPs undergo enzymatic hydroxylation, which in-
volves several cytochrome P-450 enzymes to varying extents, and
the POPs bind to the AhR to upregulate the activity of CYP1A.37

Additionally, CYP2B enzymes metabolize ortho-substituted PCB,
including mono-ortho PCB. Upregulation of these enzymes causes
receptor binding that results in an increase in the distribution of
POPs to the liver from the central compartment.12,38 In addition, a
certain amount of smoking may affect metabolism of POPs in the
body, and the metabolic ability of POPs by smoking may differ by
individual. To date, obvious causes of inconsistency in the associ-
ations between POPs and smoking amount were not revealed. In
women, more strong positive associations between POPs and
smoking were shown than in men. This gender difference may be
due to the low metabolic ability of POPs in women compared to
men.

In this study, age, alcohol consumption, and GGT influenced the
association between POPs and smoking (eTable 3). This could be
because age may be one of the major factors of POPs accumula-
tion.24 Also, alcohol consumption and GGT levels are related to liver
function, so they may affect POPs metabolism.

We propose that cigarette smoking leads to the bioaccumulation
of POPs through the action of cytochrome P-450, one of the hepatic
microsomal enzymes. However, as smoking frequency increases,
cytochrome P-450 may trigger some metabolizing action by the
POPs. These interactions between POPs and smoking should be
further studied through a large-scale cohort study and through
animal experiment.

Our study has the following strengths. First, we measured POPs
concentrations in human samples directly within the Korean pop-
ulation rather than using a survey to collect exposure data. Second,
we analyzed the relation between serum POPs and smoking using
smoking amount (cigarettes/day) as well as smoking status ac-
cording to gender. Third, 32 PCBs and 19 OCPs were analyzed, and
associations were observed between a variety of POPs and smoking.
Fourth, not only single materials but also POP mixtures were used
for analyses. This method was meaningful, as humans are exposed
to many POP materials simultaneously.

On the other hand, there are some limitations in our study. First,
due to the nature of cross-sectional studies, it is difficult to describe
the cause of the relationship between POPs and smoking. Second,
we could not evaluate female smokers with smoking amount
because of the limited sample size. Third, self-reported smoking
habits may not be accurate, so further studies need to include
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biological biomarkers, such as cotinine, in order to represent more
exact information about smoking habits. Finally, there may be po-
tential discrepancies in the timing of POPs measurements. Further
study to clarify inconsistencies in the relations between POPs and
smoking amount and gender is needed.

5. Conclusion

Our results suggest that POP concentrations may be higher in
smokers than in never-smokers and that smoking is probably a
confounding variable in studies of POPs. Additional in vivo and
in vitro experimental studies, as well as larger prospective studies
in humans, would help to elucidate the relationship between POPs
and smoking.
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