
Journal of Complexity 27 (2011) 55–67

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Optimal learning rates for least squares regularized
regression with unbounded sampling✩

Cheng Wang a, Ding-Xuan Zhou b,∗

a College of Mathematical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
b Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 26 April 2010
Accepted 28 September 2010
Available online 14 October 2010

Keywords:
Learning theory
Least squares regression
Regularization in reproducing kernel
Hilbert spaces

Covering number

a b s t r a c t

A standard assumption in theoretical study of learning algorithms
for regression is uniform boundedness of output sample values.
This excludes the common case with Gaussian noise. In this paper
we investigate the learning algorithm for regression generated
by the least squares regularization scheme in reproducing kernel
Hilbert spaceswithout the assumption of uniform boundedness for
sampling. By imposing some incremental conditions on moments
of the output variable, we derive learning rates in terms of
regularity of the regression function and capacity of the hypothesis
space. The novelty of our analysis is a new covering number
argument for bounding the sample error.
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1. Introduction

Learning algorithms produce approximations of functions from samples. Efficiency of algorithms
relies on models relating the approximated functions on a metric space X and samples in Y = R.
Here we take a model with a Borel probability measure ρ on Z := X × Y . We assume that a sample
z = {(xi, yi)}mi=1 ⊂ Zm is drawn independently from ρ and the approximated function is the regression
function of ρ defined by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X . (1.1)
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Here ρ(·|x) is the conditional distribution of ρ at x ∈ X . One measurement for the efficiency of a
learning algorithm is the distance between the approximant produced by the algorithm and fρ in the
space L2ρX with norm ‖f ‖L2ρX

= (

X |f (x)|2dρX )

1/2 where ρX is the marginal distribution of ρ on X .
In this paper we consider a learning algorithm generated by a least squares regularization scheme

in a reproducing kernel Hilbert space (RKHS). Let K : X ×X → R be a bounded, symmetric, and positive
semi-definite function. The RKHSHK associatedwith the kernel K is the completion of the linear span
of functions {Kx := K(x, ·), x ∈ X} with the inner product given by ⟨Kx, Ky⟩HK = ⟨Kx, Ky⟩K = K(x, y).
Then the learning algorithm for the regression problem is given by the regularization scheme

fz = fz,λ = arg min
f∈HK


1
m

m−
i=1

(f (xi) − yi)2 + λ‖f ‖2
K


, (1.2)

where λ > 0 is a regularization parameter which may depend on the sample size λ = λ(m) with
limm→∞ λ(m) = 0.

There has been a large learning theory literature on error analysis for learning algorithm (1.2); see
e.g. [4,17,13,6,2,5,11]. Most obtained error bounds are presented under the standard assumption that
|y| ≤ M almost surely for some constantM > 0, i.e., ρ(·|x) is supported on [−M,M] for almost every
x ∈ X . This standard assumption is abandoned in [2]. There the authors consider a general setting
satisfying the condition∫

Y


exp


−

|y − fH (x)|2

M


−

|y − fH (x)|
M

− 1

dρ(y|x) ≤

Σ2

2M2
(1.3)

for ρX -almost every x ∈ X and some constantsM, Σ > 0, where fH is the orthogonal projection of fρ
onto the closure of HK in L2ρX . Bounds for the error ‖fz − fρ‖L2ρX

are established under the assumption
that fH actually lies in HK . How to relax the assumption fH ∈ HK in the error analysis with |y| ≤ M
is investigated in [11,5].

The main purpose of this paper is to conduct error analysis in another general setting satisfying
the following moment hypothesis concerning unbounded outputs.
Moment hypothesis: There exist constantsM > 0 and C > 0 such that∫

Y
|y|ℓdρ(y|x) ≤ Cℓ!Mℓ

∀ℓ ∈ N, x ∈ X . (1.4)

Remark 1. The moment hypothesis is a natural generalization of condition (1.3) to cases without the
restriction fH ∈ HK or fH ∈ L∞(X). In fact, they are equivalent (with different constants) in the case
fH ∈ L∞(X). To see this, we notice from the Taylor expansion that the left-hand side of (1.3) equals

∞−
ℓ=2


Y |y − fH (x)|ℓdρ(y|x)

ℓ!Mℓ
.

Then hypothesis (1.4) implies condition (1.3) with M replaced by 3M + 2‖fH‖∞. Conversely, when
(1.3) is valid, we know that for 2 ≤ ℓ ∈ N,


Y |y − fH (x)|ℓdρ(y|x) ≤ Σ2ℓ!Mℓ−2/2. Hence (1.4) holds

true with C =
Σ2

2M2 + 1 andM replaced by max{2‖fH‖∞, 2M}.

A simple computation verifies (1.4) for Gaussian noise.

Example 1. Let B > 0 and B0 > 0. If for each x ∈ X , |fρ(x)| ≤ B and the condition distribution ρ(·|x) is
a normal distribution with variance σ 2

x bounded by B0, then (1.4) is satisfied withM = max{
√
2B0, B}

and C = 4.

To show some ideas of our error analysis, we first state learning rates of (1.2) in the special case
when fρ ∈ HK and K is C∞ on X ⊂ Rn.
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Theorem 1. Under the moment hypothesis and fρ ∈ HK , if X ⊂ Rn and K is C∞ on X × X, then for any
0 < ϵ < 1 and 0 < δ < 1, by taking λ = mϵ−1, with confidence 1 − δ, we have

‖fz − fρ‖
2
L2ρX

≤ C̃ϵmϵ−1

log

4
δ

 4
ϵ +2

,

where C̃ϵ is a constant independent of m or δ.

Theorem 1 is a corollary of our main result presented in the next section.

2. Main result

Ourmain result is about learning rates of (1.2) stated under conditions on the approximation ability
of HK with respect to fρ and capacity of HK .

The approximation ability of the hypothesis spaceHK with respect to fρ in the space L2ρX is reflected
by approximation error.

Definition 1. The approximation error of the triple (HK , fρ, ρX ) is defined as

D(λ) = min
f∈HK

{‖f − fρ‖
2
L2ρX

+ λ‖f ‖2
K }, λ > 0. (2.1)

We shall assume that for some 0 < β ≤ 1 and Cβ > 0,

D(λ) ≤ Cβλβ
∀λ > 0. (2.2)

Remark 2. Our analysis applieswhen fρ is replaced by fH whichwould implyD(λ) → 0 as λ → 0. So
(2.2) is a natural assumption. Note [9] that D(λ) = o(λ) would imply fρ ≡ 0. So β = 1 in (2.2) is the
best we can expect. This case is equivalent to fρ ∈ HK when HK is dense in L2ρX . See [9]. Assumption
(2.2) with 0 < β < 1 can be characterized in terms of interpolation spaces [7].

For a general kernel on a general metric space X , we need the capacity of HK to quantitatively
understand influence of the complexity of the hypothesis space to learning ability of algorithm (1.2).
Here we use covering numbers to measure the capacity.

Definition 2. For a subset F of a metric space and η > 0, the covering number N (F , η) is defined
to be the minimal integer ℓ such that there exist ℓ disks with radius η covering F .

We shall use this notion for balls BR = {f ∈ HK : ‖f ‖K ≤ R} as subsets of L∞(X).

Definition 3. We say HK has polynomial complexity exponent s > 0 if for some constant C0 > 0,

logN (B1, η) ≤ C0


1
η

s

, ∀η > 0. (2.3)

Remark 3. When X is a bounded domain in Rn and K ∈ Cτ (X × X), it is known [18] that (2.3) holds
true with s =

2n
τ
. In particular, if K ∈ C∞(X ×X), condition (2.3) is valid for an arbitrarily small s > 0.

It would be interesting to extend this covering number bound to unbounded input spaces X . Some
ideas from [19] might help.

Now we can state our general result on learning rates for algorithm (1.2).

Theorem 2. Assume the moment hypothesis (1.4) and condition (2.2) with 0 < β ≤ 1. If HK has
polynomial complexity exponent s > 0 and0 < ϵ <

β

s+1 , then by taking λ = m
ϵ
β

−
1

s+1 , for any0 < δ < 1,
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with confidence 1 − δ, we have

‖fz − fρ‖
2
L2ρX

≤ C̃ϵmϵ−
β

s+1


log

4
δ

 β(1+β)
(s+1)ϵ +2

,

where C̃ϵ is a constant depending on ϵ but not on m or δ.

Theorem 2 establishes learning rates for unbounded sampling processes satisfying the moment
hypothesis, which generalizes results in the classical case of uniformly bounded outputs (e.g. [13]).
In addition, we do not require the sample size m to be sufficiently large, a restriction imposed as
m ≥ mδ,ϵ in [13].

Theorem 2 provides a confidence-based estimate for the least squares error of the learning
algorithm. The dependence of the estimate on the confidence (variance) is in the form of log(4/δ)
which is mild.

Theorem 2 will be proved in Section 5 and the constant C̃ϵ will be given explicitly. The proof is
mainly based on our novel approach to handle unbounded sampling with a new covering number
argument which will be presented in Section 4. Note that when β = 1 and s is small enough, the
learning rate stated in Theorem 2 can be arbitrarily close to 1, hence is optimal [2,11,5,3].

To illustrate Theorem2,we consider the example ofHK being a Sobolev spaceHτ (X)which consists
of functions on X ⊂ Rn with all derivatives of order up to n

2 < τ ∈ N lying in L2(X). TakeHK = Hτ (X).
Then (2.3) holds true with s =

2n
τ
. If ρX is the uniform measure and fρ ∈ Hr(X) for some 0 < r < τ ,

then we know [7] that condition (2.2) is valid with β =
r
τ
. So the conclusion in the following example

is a corollary of Theorem 2.

Example 2. Let X be a bounded domain in Rn and ρX be the uniform measure. Assume the moment
hypothesis (1.4). If HK = Hτ (X) with n

2 < τ ∈ N, fρ ∈ Hr(X) for some 0 < r < τ , and 0 < ϵ < r
2n+τ

,

then by taking λ = m
τϵ
r −

τ
2n+τ , for any 0 < δ < 1, with confidence 1 − δ, we have

‖fz − fρ‖
2
L2ρX

≤ C̃ϵmϵ− r
2n+τ


log

4
δ

 r(r+τ)
τ (2n+τ)ϵ

+2

.

Now let us describe two kinds of approaches for error analysis of algorithm (1.2) and compare our
learning rates with those in the literature.

The first family of approaches aims at bounding

sup
f∈Fλ


∫
Z
(f (x) − y)2dρ −

1
m

m−
i=1

(f (xi) − yi)2
 (2.4)

with a properly chosen function class Fλ and then applying some uniform law of large numbers.
Such an approach leads to capacity dependent error bounds for various learning algorithms stated in
terms of various quantities measuring capacity of HK such as VC-dimension, Vγ -dimension, covering
number, and empirical covering number (e.g. [5,10,14]).

A typical optimal learning rate stated in terms of covering numbers can be found in [13]. It asserts
under the conditions of Theorem 1 that for 0 < ϵ < 1 andm ≥ mδ,ϵ , with confidence 1 − δ, we have
‖fz − fρ‖

2
L2ρX

≤ C̃(log 2
δ
)mϵ−1. A minor improvement of our Theorem 1 is to determine the restriction

m ≥ mδ,ϵ specifically in addition to our main contribution of removing the uniform boundedness
assumption of |y| ≤ M .

Another typical optimal learning rate is stated in terms of conditions on eigenvalues {λi} of the
integral operator LK ,ρX : L2ρX → L2ρX defined by

LK ,ρX f (x) =

∫
X
K(x, u)f (u)dρX (u), x ∈ X, f ∈ L2ρX .
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When the eigenvalues satisfy a1i−b
≤ λi ≤ a2i−b for all i ∈ N, some 1 < b < ∞ and 0 < a1, a2 < ∞,

under the assumption fH ∈ HK , it was proved in [2] that with confidence 1 − δ, E(fz) − E(fH ) ≤

C̃(log 6
δ
)2m−

b
b+1 , where E(f ) is the generalization error defined for f : X → R as

E(f ) =

∫
Z
(f (x) − y)2dρ.

In the special case of fρ ∈ HK and b ≥
1
ϵ
−1, the optimal learning rate O(mϵ−1) is achieved though the

eigenvalue condition is difficult to check. Optimal learning rates are also discussed in [5] for algorithm
(1.2) with the penalty ‖f ‖q

K for some 0 < q < 1 where the condition fH ∈ HK is replaced by
the uniform boundedness of the eigenvectors of LK ,ρX or more generally by the norm comparison
assumption

‖f ‖∞ ≤ C‖f ‖s′
K‖f ‖1−s′

L2ρX
∀f ∈ HK (2.5)

with some constants C > 0 and 0 ≤ s′ ≤ 1. In [11] the lower bound condition for the eigenvalues in
[2] is removed and the restriction fH ∈ HK is replaced by approximation error condition (2.2) with
0 < β ≤ 1. When (HK , ρX ) satisfies (2.5) with s′ =

1
b , it was shown in [11] that when |y| ≤ M , with

confidence 1 − δ, ‖πM(fz) − fρ‖
2
L2ρX

≤ C̃(log 3
δ
)m−

bβ
bβ+1 , where πM(f ) is the projection operator [3,13]

defined by

πM(f )(x) =

M, if f (x) > M,
f (x), if − M ≤ f (x) ≤ M,
−M, if f (x) < −M.

This general result yields optimal learning rate in the special case β = 1. The upper bound condition
for the eigenvalues and the norm comparison assumption (2.5) used in [2,11,5] can be easily verified
in some common situations [9], and they have the advantage of applying to bounded input spaces X . It
would be interesting to combine advantages ofmethods from [2,11,5] and our approach. In particular,
the following two questions would lead to further study on error analysis:

1. Is it possible to have some criteria for checking the eigenvalue condition and (2.5) for general
marginal distributions ρX which could be used to prove Theorem 1?

2. Can we extend the covering number approach to unbounded input spaces which can be used to
recover results in [11]?

The second family of approaches for error analysis of the least squares algorithm (1.2) is to make
full use of the linear nature of the algorithm for bounding the error between fz and fλ. In [17], a leave-
one-out technique was used to obtain

E(‖fz − fρ‖
2
L2ρX

) ≤ D


λ

2


+


E(fρ) + D


λ

2

 
4κ2

mλ
+


2κ2

mλ

2


,

where κ = supx∈X
√
K(x, x). When fρ ∈ HK and E(fρ) > 0, the learning rate would be ‖fz − fρ‖

2
L2ρX

≤

C
δ
( 1
m )

1
2 with confidence 1 − δ, corresponding to the choice λ =

1
√
m .

In [4], a functional analysis approach was employed to show that ‖fz − fρ‖
2
L2ρX

≤ C( 1
m log 2

δ
)
2
5

with confidence 1 − δ when fρ =

X K(·, u)g(u)dρX (u) for some g ∈ L2ρX . An integral operator

approach was applied in [6] to prove that under the same condition, with confidence 1 − δ, there
holds ‖fz − fρ‖

2
L2ρX

≤ C(log 4
δ
)2m−

2
3 .
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3. Error decomposition

The error analysis of algorithm (1.2) will be conducted by an error decomposition procedure. The
idea of error decomposition has been used in the analysis of regularization schemes [15,3,13,14,8,16].
But the previous approaches for bounding (2.4) cannot be applied here because of the unboundedness
of the sampling outputs. We shall adjust the error decomposition technique by bounding the outputs
with confidence and then applying a novel covering number argument for a finite set of functions
(an η-net) instead of the ball BR (an infinite set of functions). The detailed procedure is described in
Section 4.

Observe that the regression function fρ is a minimizer of the generalization error E(f ) and actually
we have

‖f − fρ‖
2
L2ρX

= E(f ) − E(fρ). (3.1)

If we define the empirical error Ez(f ) as

Ez(f ) =
1
m

m−
i=1

(f (xi) − yi)2,

then the following error decomposition follows from the relation Ez(fz) + λ‖fz‖2
K ≤ Ez(fλ) + λ‖fλ‖2

K ,
as shown in [13].

Lemma 1. Let fλ be a minimizer of (2.1). Then

E(fz) − E(fρ) + λ‖fz‖2
K ≤ S1(z) + S2(z) + D(λ), (3.2)

where

S1(z) = (E(fz) − E(fρ)) − (Ez(fz) − Ez(fρ)),

S2(z) = (Ez(fλ) − Ez(fρ)) − (E(fλ) − E(fρ)).

With decomposition (3.2), the error ‖fz − fρ‖
2
L2ρX

= E(fz) − E(fρ) can be bounded by estimating

the two quantities S1(z) and S2(z). While the second quantity can be easily analyzed by applying
probability inequalities to the random variable (fλ(x)− y)2 − (fρ(x)− y)2 on the space (Z, ρ), the first
quantity S1(z) is the main task of error analysis for algorithm (1.2): though S1(z) can be expressed as
Z ξ1(z)dρ −

1
m

∑m
i=1 ξ1(zi) with ξ1(z) = (fz(x) − y)2 − (fρ(x) − y)2, the major challenge is that ξ1 is

not a single random variable and it depends on the sample z itself. Our approach to tackle S1(z) is a
novel covering number argument presented in Section 4.

Our error analysis relies on the following probability inequality for random variables without
uniform boundedness [1].

Lemma 2. Let X1, X2, . . . , Xm be independent random variables with EXi = 0. If for some constants
M, v > 0, the bound E|Xi|

ℓ
≤

1
2ℓ!M

ℓ−2v holds for every 2 ≤ ℓ ∈ N, then

Prob


m−
i=1

Xi ≥ ε


≤ exp


−

ε2

2
(mv + Mε)−1


∀ε > 0.

In our setting we apply Lemma 2 to random variables Xi = Eg − g(zi) for a function g on Z where
zi = (xi, yi) and Eg =


Z g(z)dρ.

Lemma 3. DenoteEzg =
1
m

∑m
i=1 g(zi) for ameasurable function g on Z. If for someM, v > 0, the bound

E|g − Eg|ℓ ≤
1
2ℓ!M

ℓ−2v holds for 2 ≤ ℓ ∈ N, then there holds

Probz∈Zm{Eg − Ezg ≥ ε} ≤ exp

−

mε2

2(v + Mε)


∀ε > 0.

In particular, the second quantity S2(z) in (3.2) can be bounded easily.
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Lemma 4. Under the moment hypothesis, with confidence at least 1 −
δ
2 , we have

S2(z) ≤
240{(κ + 1)2D(λ)/λ + 2(C + 1)2M2

}

m
log

2
δ

+ 18D(λ).

Proof. Consider the function g on the space (Z, ρ) given with z = (x, y) by g(z) = (fρ(x) − y)2 −

(fλ(x) − y)2. It satisfies for 2 ≤ ℓ ∈ N

|g(z)|ℓ = |fρ(x) − fλ(x)|ℓ|fρ(x) + fλ(x) − 2y|ℓ

≤ 3ℓ(|fλ(x)|ℓ + |fρ(x)|ℓ + 2ℓ
|y|ℓ)2ℓ−2(|fλ(x)|ℓ−2

+ |fρ(x)|ℓ−2)|fλ(x) − fρ(x)|2.

The moment hypothesis yields for almost every x ∈ X that∫
Y
|y|ℓdρ(y|x) ≤ Cℓ!Mℓ

and

|fρ(x)| =

∫
Y
ydρ(y|x)

 ≤ CM.

The reproducing property of HK means

⟨f , Kx⟩K = f (x), ∀x ∈ X, f ∈ HK . (3.3)

It follows that

|f (x)| ≤ κ‖f ‖K ∀f ∈ HK , x ∈ X . (3.4)

Note that D(λ) = E(fλ) − E(fρ) + λ‖fλ‖2
K implies ‖fλ‖K ≤

√
D(λ)/λ. So |fλ(x)| ≤ κ

√
D(λ)/λ for

each x ∈ X . Hence

E|g|ℓ =

∫
X

∫
Y
|g(z)|ℓdρ(y|x)dρX (x) ≤ 3ℓ

{κℓ(D(λ)/λ)ℓ/2 + CℓMℓ
+ 2ℓCℓ!Mℓ

}

× 2ℓ−2
{κℓ−2(D(λ)/λ)(ℓ−2)/2

+ Cℓ−2Mℓ−2
}

∫
X
|fλ(x) − fρ(x)|2dρX (x)

≤ ℓ!6ℓ
{(κ + 1)2D(λ)/λ + 2(C + 1)2M2

}
ℓ−1D(λ).

It follows that

E|g − Eg|ℓ ≤ 2ℓ+1E|g|ℓ ≤ 2ℓ+1ℓ!6ℓ
{(κ + 1)2D(λ)/λ + 2(C + 1)2M2

}
ℓ−1D(λ).

Denote M1,λ = 12{(κ + 1)2D(λ)/λ + 2(C + 1)2M2
} and v1,λ = 242M1,λD(λ). We find that

E|g − Eg|ℓ ≤
1
2
ℓ!Mℓ−2

1,λ v1,λ.

Then we apply Lemma 3 and see that for any ε > 0,

Probz∈Zm{Eg − Ezg ≥ ε} ≤ exp

−

mε2

2(v1,λ + M1,λε)


.

Consider the quadratic equation by setting the probability on the right-hand side to be δ
2 . The positive

solution is

ε =
1
m


M1,λ log

2
δ

+


M2

1,λ log2
2
δ

+ 2mv1,λ log
2
δ



≤
1
m


2M1,λ log

2
δ

+ 24


2mM1,λ log

2
δ
D(λ)


≤

20M1,λ

m
log

2
δ

+ 18D(λ).
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Then with confidence at least 1 −
δ
2 , we have

Eg − Ezg ≤
20M1,λ

m
log

2
δ

+ 18D(λ).

So our desired bound follows from the identity Eg − Ezg = S2(z) since Eg = −(E(fλ) − E(fρ)) and
Ezg = −(Ez(fλ) − Ez(fρ)). �

4. Novelty dealing with unboundedness

In this section we present our novelty in the error analysis to deal with the error term S1(z) in
(3.2) for algorithm (1.2) before proving Theorem 2 in the next section. Though S1(z) can be written
as


ξ1(z)dρ −

1
m

∑m
i=1 ξ1(zi) with ξ1(z) = (fz(x) − y)2 − (fρ(x) − y)2, the function ξ1 is not really a

random variable: the function fz also depends on the sample z. Wewould follow the covering number
approach in [13] to handle this term. However, the lack of uniform boundedness for sample function
values causes serious difficulty and the approach in [13] of estimating quantity (2.4) is not applicable
directly: to estimate (2.4), we would have to bound |Ez(f ) − Ez(fj)|, which would lead to bounding
1
m

∑m
i=1 |yi| for every f ∈ Fλ. We shall deal with the difficulty in three steps. Our key point is to use a

new novel covering number argument.

4.1. Bounding sample values with confidence

The first step in our approach is to bound y with confidence.

Proposition 1. Under the moment hypothesis there is a subset Zδ of Zm with measure at least 1−
δ
4 such

that

1
m

m−
i=1

|yi| ≤ Mδ := CM + 4M(1 +
√
2C)

log(4/δ)
√
m

∀z ∈ Zδ.

Proof. Let g be the function on Z given by g(z) = −|y|. Then for 2 ≤ ℓ ∈ N, we have

E|g − Eg|ℓ ≤ 2ℓ+1E|y|ℓ ≤ 2ℓ+1Cℓ!Mℓ
≤

1
2
ℓ!(2M)ℓ−2C(4M)2.

So we can apply Lemma 3 to obtain for ε > 0,

Probz∈Zm{Eg − Ezg ≥ ε} ≤ exp

−

mε2

2(C(4M)2 + 2Mε)


.

Setting the right-hand side to be δ
4 and bounding the solution to the corresponding quadratic

equation, we know that with confidence at least 1 −
δ
4 , there holds

Eg − Ezg ≤
4M
m

log
4
δ
{1 +

√
2Cm}.

Note that −Ezg =
1
m

∑m
i=1 |yi| and −Eg = E|y| ≤ CM . Then with confidence 1 −

δ
4 , we have

1
m

m−
i=1

|yi| ≤ CM + 4M(1 +
√
2C)

log(4/δ)
√
m

= Mδ.

This means that there is a subset Zδ of Zm with measure at least 1 −
δ
4 , such that for every z ∈ Zδ , we

have 1
m

∑m
i=1 |yi| ≤ Mδ . This proves Proposition 1. �
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4.2. Bounding error difference for a finite function set

The second step in our approach is to bound the error difference [E(f ) − E(fρ)] − [Ez(f ) − Ez(fρ)]
for a finite set of functions. For this purpose, we need the following lemma which is a corollary of
Lemma 3 by taking ε as

√
ε
√

ε + |Eg|.

Lemma 5. Let g be a measurable function on Z. If for some M, cv > 0, the bound E|g − Eg|ℓ ≤
1
2ℓ!M

ℓ−2cv|Eg| holds for 2 ≤ ℓ ∈ N, then

Probz∈Zm{Eg − Ezg ≥
√

ε


ε + |Eg|} ≤ exp

−

mε

2(cv + M)


∀ε > 0.

In the following lemma, {fj}N
j=1 is a fixed set of functions which will be chosen as an η-net of the

set BR in our error analysis conducted in Lemma 7.

Lemma 6. Let 0 < δ < 1, R ≥ M and {fj}N
j=1 be a set of functions in BR. Then there exists a subset Z ′

δ of
Zm with measure at least 1 −

δ
4 such that

E(fj) − E(fρ) − [Ez(fj) − Ez(fρ)] ≤ εm,δ,N ,R +
1
2
{E(fj) − E(fρ)} ∀j ∈ {1, . . . , N }, z ∈ Z ′

δ,

where

εm,δ,N ,R = 520(κ + C + 2(C + 1))2
R2

m
log(4N /δ).

Proof. Fix j ∈ {1, . . . , N }. Let g be the function on Z defined by g(z) = (fj(x) − y)2 − (fρ(x) − y)2. By
the moment hypothesis, for 2 ≤ ℓ ∈ N, we have

E|g − Eg|ℓ ≤ 2ℓ+1E|g|ℓ = 2ℓ+1E{|fj(x) − fρ(x)|ℓ · |fj(x) + fρ(x) − 2y|ℓ}

≤ 22ℓ+1E{|fj(x) − fρ(x)|2(κR + CM)ℓ−2((κR + CM)ℓ + 2ℓ
|y|ℓ)}

≤ 22ℓ+1(κR + CM)ℓ−2((κR + CM)ℓ + 2ℓCℓ!Mℓ)

∫
X
|fj(x) − fρ(x)|2dρX .

But

X |fj(x) − fρ(x)|2dρX = E(fj) − E(fρ) = Eg = |Eg|. So we know that

E|g − Eg|ℓ ≤
1
2
ℓ!Mℓ−2

3,R v3,R|Eg|

withM3,R = 4(κ + C + 2(C + 1))2R2 and v3,R = 43M3,R. The constants are independent of j. Thus we
can apply Lemma 5 and get

Probz∈Zm


E(fj) − E(fρ) − (Ez(fj) − Ez(fρ))

ε + E(fj) − E(fρ)
≥

√
ε


≤ exp


−

mε

2(v3,R + M3,R)


.

Now we take all these events with j ∈ {1, . . . , N } and see that

Probz∈Zm


max
1≤j≤N

E(fj) − E(fρ) − (Ez(fj) − Ez(fρ))
ε + E(fj) − E(fρ)

≥
√

ε


≤ N exp


−

mε

2(v3,R + M3,R)


.

Setting the right-hand side to be δ
4 , we choose

ε =
2(v3,R + M3,R)

m
log(4N /δ) ≤ 520(κ + C + 2(C + 1))2

R2

m
log(4N /δ) = εm,δ,N ,R.
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Then we conclude that with confidence at least 1 −
δ
4 , there holds

E(fj) − E(fρ) − [Ez(fj) − Ez(fρ)] ≤
√

εm,δ,N ,R


εm,δ,N ,R + E(fj) − E(fρ)

≤ εm,δ,N ,R +
1
2
{E(fj) − E(fρ)} ∀j ∈ {1, . . . , N }.

This proves our statements. �

4.3. A new covering number argument

Now we can describe our new covering number argument. It is based on the observation that fz is
only one function (though it changeswith the sample z) and can be very close to one of the functions in
the net {fj}N

j=1. Hencewe can bound S1(z)with a single (but varying) function fj instead of the quantity
supf∈Fλ

|E(f ) − Ez(f )| in (2.4) concerning the whole function set Fλ.
Denote

W (R) = {z ∈ Zm
: ‖fz‖K ≤ R}.

Lemma 7. Let 0 < δ < 1 and R ≥ M. Take Zδ in Proposition 1 and Z ′

δ in Lemma 6. Then for every
z ∈ Zδ


Z ′

δ


W (R) we have

[E(fz) − E(fρ)] − [Ez(fz) − Ez(fρ)] ≤ C1R2m−
1

2(s+1) log
4
δ

+
1
2
{E(fz) − E(fρ)},

where C1 is the constant given by

C1 = 6κ + 6C + 8(1 +
√
2C)/M + 520(κ + C + 2(C + 1))2(C0 + 1).

Proof. Let z ∈ Zδ


Z ′

δ


W (Rδ). It satisfies 1

m

∑m
i=1 |yi| ≤ Mδ . Moreover,

E(fj) − E(fρ) − [Ez(fj) − Ez(fρ)] ≤ εm,δ,N ,R +
1
2
{E(fj) − E(fρ)}, ∀j ∈ {1, . . . , N }.

Let η = Rm−
1

s+1 and {fj}N
j=1 with N = N (BR, η) be an η-net of the set BR meaning that for any

f ∈ BR, there exists some j ∈ {1, . . . , N } such that ‖f − fj‖∞ ≤ η. Since z ∈ W (R), we know that
fz ∈ BR and there is some jz ∈ {1, . . . , N } such that ‖fz − fjz‖∞ ≤ η. Then

|E(fz) − E(fjz)| =

∫
Z
[fz(x) − fjz(x)][fz(x) + fjz(x) − 2y]dρ


≤ η

∫
Z
(|fz(x)| + |fjz(x)| + 2|y|)dρ ≤ η(2κR + 2E|y|) ≤ 2η(κR + CM).

From the bound 1
m

∑m
i=1 |yi| ≤ Mδ , we find

|Ez(fz) − Ez(fjz)| =

 1m
m−
i=1

[fz(xi) − fjz(xi)][fz(xi) + fjz(xi) − 2yi]


≤ η

1
m

m−
i=1

(|fz(xi)| + |fjz(xi)| + 2|yi|) ≤ 2η(κR + Mδ).

The above two bounds together with Lemma 6 tell us that

[E(fz) − E(fρ)] − [Ez(fz) − Ez(fρ)]

= [E(fz) − E(fjz)] + {[E(fjz) − E(fρ)] − [Ez(fjz) − Ez(fρ)]} + [Ez(fjz) − Ez(fz)]

≤ 2η(2κR + CM + Mδ) + εm,δ,N ,R +
1
2
{E(fjz) − E(fρ)}.
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But |E(fz) − E(fjz)| ≤ 2η(κR + CM). So the above expression is bounded by

2η(3κR + 2CM + Mδ) + εm,δ,N ,R +
1
2
{E(fz) − E(fρ)}.

By the covering number condition (2.3), εm,δ,N ,R can be bounded as

εm,δ,N ,R ≤ 520(κ + C + 2(C + 1))2
R2

m
(log(4/δ) + C0(R/η)s)

≤
520(κ + C + 2(C + 1))2C0R2+s

m
η−s

+
520(κ + C + 2(C + 1))2

m
log

4
δ
R2.

Putting the choice of η and the expression ofMδ , we see that

[E(fz) − E(fρ)] − [Ez(fz) − Ez(fρ)] ≤
1
2
{E(fz) − E(fρ)} + {6κ + 6C + 8(1 +

√
2C)/M

+ 520(κ + C + 2(C + 1))2(C0 + 1)}R2m−
1

s+1 log
4
δ
.

This proves our statement. �

Combining Lemmas 4 and 7, we get from (3.2) the following bound for E(fz) − E(fρ) + λ‖fz‖2
K .

Proposition 2. Let 0 < δ < 1 and R ≥ M. There exists a subset VR of Zm with measure at most δ such
that for every z ∈ W (R) \ VR,

E(fz) − E(fρ) + λ‖fz‖2
K ≤ 38D(λ) + 2[C1 + 322(C + 1)2]R2m−

1
s+1 log

4
δ

+
480(κ + 1)2D(λ)

λm
log

2
δ
.

5. Deriving error bounds by iteration

We use an iteration technique [12,13,9] to derive our error bounds.

Proof of Theorem 2. From the bound for ‖fz‖K obtained in Proposition 2, we see that for R ≥ M and
z ∈ W (R) \ VR, we have ‖fz‖K ≤ am,δR + bm,δ , where

am,δ =


2[C1 + 322(C + 1)2]

1
√

λ
m−

1
2(s+1)


log(4/δ)

and

bm,δ =

38D(λ)/λ +


480(κ + 1)2D(λ)

λ2m
log(2/δ) + M.

It tells us thatW (R) ⊆ W (am,δR + bm,δ)


VR.
Let us first derive a rough bound for ‖fz‖K . From the definition of fz, we see that

Ez(fz) + λ‖fz‖2
K ≤ Ez(0) + λ‖0‖2

K =
1
m

m−
i=1

y2i .

It implies that

λ‖fz‖2
K ≤

1
m

m−
i=1

{y2i − (fz(xi) − yi)2} =
1
m

m−
i=1

{fz(xi)[2yi − fz(xi)]}

=
1
m

m−
i=1

{fz(xi)2yi} −
1
m

m−
i=1

{fz(xi)2} ≤
2
m

m−
i=1

{fz(xi)yi} ≤
2
m

m−
i=1

yiκ‖fz‖K .
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It follows that ‖fz‖K ≤
2κ
mλ

∑m
i=1 yi and we see from Proposition 1 that for z ∈ Zδ ,

‖fz‖K ≤
2κMδ

λ
.

It means that Zδ ⊆ W (R(0)
δ ) where R(0)

δ =
2κMδ

λ
+ M . Define a sequence {R(j)

δ }
∞

j=0 by

R(j+1)
δ = am,δR

(j)
δ + bm,δ.

We know that

W (R(0)
δ ) ⊆ W (R(1)

δ )


VR(0)
δ

⊆ · · · ⊆ W (R(J)
δ )

 
J−1
j=0

VR(j)
δ


.

Since each set VR(j)
δ

has measure at most δ, the set W (R(J)
δ ) has measure at least 1 − (J + 1)δ.

By the definition of the sequence {R(j)
δ }, R(J)

δ = aJm,δR
(0)
δ +bm,δ

∑J−1
i=0 aim,δ . Nowwe take λ = m2ϵ− 1

s+1

with 0 < ϵ < 1
2(s+1) . Then

am,δ ≤ C2m−ϵ

log(4/δ),

where C2 =


2[C1 + 322(C + 1)2]. Putting D(λ) ≤ Cβλβ into bm,δ , we see

bm,δ ≤ {

38Cβ + (κ + 1)


480Cβ + M}m

β−1
2 (2ϵ− 1

s+1 )

log(2/δ).

Thus with C3 =

38Cβ + (κ + 1)


480Cβ + M , we have

R(J)
δ ≤ C J

2


log

4
δ

 J
2 +1

M[2κ(C + (1 + 2
√
2C)) + 1]m

1
s+1 −(J+2)ϵ

+ C3m
(β−1)ϵ+ 1−β

2(s+1)

log(2/δ)J max{1, (C2m−ϵ


log(4/δ))J−1

}.

Choose Jϵ to be the smallest integer satisfying Jϵ ≥
1+β

2ϵ(s+1) − 2. Then Jϵ ≤
1+β

2ϵ(s+1) − 1 ≤
1

ϵ(s+1) − 1
and

R(Jϵ )
δ ≤


M[2κ(C + (1 + 2

√
2C)) + 1]C Jϵ

2


log

4
δ

 Jϵ
2 +1

+ C3JϵC
Jϵ−1
2 (log(4/δ))

Jϵ
2


m

1−β
2(s+1)

≤ C4
1

ϵ(s + 1)
C

1
ϵ(s+1)
2 (log(4/δ))

Jϵ
2 +1m

1−β
2(s+1) ,

where

C4 = M(2κ(C + (1 + 2
√
2C)) + 1) + C3.

Since the set W (R(Jϵ )
δ ) has measure at least 1 − (Jϵ + 1)δ, applying Proposition 2 with R = R(Jϵ )

δ , we
conclude that with confidence at least 1 − (Jϵ + 2)δ,

E(fz) − E(fρ) ≤ 38Cβm2βϵ−
β

s+1 + 2(C1 + 322(C + 1)2)C2
4


1

ϵ(s + 1)

2

× C
2

ϵ(s+1)
2 m−

β
s+1 (log(4/δ))Jϵ+3

+ 480(κ + 1)2Cβm−1+ 1−β
s+1 −2ϵ(1−β) log

2
δ
.

By settingδ = (Jϵ + 2)δ andϵ = 2βϵ, we know that with confidence at least 1 −δ,
E(fz) − E(fρ) ≤

C5ϵ2
C

4βϵ(s+1)
2 mϵ− β

s+1


log(4/δ) + log


2ϵ(s + 1)

+ 1
 β(1+β)ϵ(s+1) +2

,
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where

C5 = 38Cβ + 2(C1 + 322(C + 1)2)C2
4


2

s + 1

2

+ 480(κ + 1)2Cβ .

This proves the conclusion of Theorem 2 by taking

Cϵ =
C5

ϵ2
C

4β
ϵ(s+1)
2


1 + log


2

ϵ(s + 1)
+ 1

 β(1+β)
ϵ(s+1) +2

to be a constant independent ofm or δ. �

When K is C∞ we know from [18,19] that (2.3) holds for any s > 0. Take β = 1 and s =
ϵ

1−ϵ
when

0 < ϵ < 1
2 in Theorem 2. We know that by taking λ = m2ϵ−1, for any 0 < δ < 1, with confidence

1 − δ, we have

‖fz − fρ‖
2
L2ρX

≤ C̃ϵm2ϵ−1

log

4
δ

 2
ϵ +2

.

This verifies Theorem 1 by scaling 2ϵ to ϵ.
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