DETERMINATION OF CELL MEMBRANE PERMEABILITY IN CONCENTRATED CELL ENSEMBLES

J. Alberto Ochoa, Stephen Whitaker, and Pieter Stroeve
Department of Chemical Engineering, University of California at Davis, Davis, California 95616

ABSTRACT The method of volume averaging is used to analyze the process of diffusion in concentrated cell ensembles in which significant resistance to mass transfer is caused by the cellular membrane. A general closure scheme is given that allows for direct theoretical prediction of effective diffusivities for any cellular geometry. Numerical results are presented for the classical parallelepiped arrangement used to model cellular systems, and these results are used in conjunction with experimental studies of concentrated cell ensembles to determine membrane permeabilities for solute diffusion in several cellular systems. Membrane permeabilities are compared with predictions from other models of diffusion in cellular systems.

INTRODUCTION
Diffusion of organic solutes into cells is a phenomenon fundamental to the physiological processes that occur in organs, tissues, and blood. Cell membranes can play an important role in the overall mass transfer process of organic solutes in ensembles of cells. For example, when the cell permeability is sufficiently low it provides the controlling resistance for mass transfer into cells and limits the flux of solutes into the ensemble. The correlation of the cell membrane permeability with the physical and chemical parameters of the membrane is an important area of study for physiological research (Brahm, 1983) and has important applications in the drying of cellular material (Crapiste et al., 1984). Therefore, it is important that accurate cell membrane permeability data be available. In this paper, we focus on passive diffusion in ensembles of cells and the effect of cell membranes.

A number of experimental techniques have been devised to measure the membrane permeability from mass transfer experiments. The rapid-flow technique was developed by Paganelli and Solomon (1957) and this technique was used to measure the permeability of red cell membranes to water and other small molecules (Sidell and Solomon, 1957; Barton and Brown, 1964; Vieira et al., 1970). The stopped-flow rapid-reaction apparatus was used by Sha'afi et al. (1970, 1971) to measure the kinetics of osmotic swelling. This technique is preferred for fast permeating solutes. A fast permeation measurement technique using nuclear magnetic resonance (NMR) was used by Conlon and Outhred (1972, 1978), but at present this technique is limited to water permeation (Ösberghaus et al., 1982). The above techniques require fairly sophisticated equipment and operation which may inhibit their routine usage.

Simpler techniques have been presented by Redwood et al. (1974) and Safford et al. (1978), and the former group deduced the permeabilities of dog red cell membranes from bulk diffusion measurements in packed red blood cells. The red cells were packed by centrifugation inside polyethylene tubes; radiolabeled solute was then applied to one end of the tube, and diffusion was allowed to proceed. The bulk diffusion coefficient, or effective diffusivity, in the cell ensemble was determined from the measurement of the distribution of radioactivity along the tube and the application of a one-dimensional diffusion model. The cell membrane permeability was obtained from a development (RRP model) that modeled the concentrated cell suspension as long parallelepipeds (cells) separated by an extracellular phase and packed in a rectangular array. The model was restricted to concentrated cell ensembles. Safford et al. (1978) obtained cell permeabilities for cells from the cat ventricular myocardium on the basis of bulk diffusion coefficients. These were measured by mass transfer data in a Ussing-type diffusion cell in which a thin slice of the tissue was mounted. Safford et al. (1978) developed a diffusion model of the tissue (SBB model), which was represented as long square cells forming a cubic array and separated by extracellular medium. In essence, the SBB model is based on the RRP model except that it is not restricted to concentrated cell ensembles. Furthermore, in the SBB model only square cells are considered. In both the RRP and the SBB models, data for the diffusion coefficients in the extracellular and intracellular phase, in addition to the effective diffusivity in the cell ensemble, are required to calculate the cell membrane permeability.

It is important to recognize that both models are one-dimensional in the local or point sense. This means that the point concentration is assumed to depend only on one spatial dimension. Since the geometrical structure of cellular systems is inherently three-dimensional, the one-dimen-
Comparison of modified cell ensembles treated to models. In discussing the difference between one-dimensional models and multidimensional theories, one must keep in mind that experiments are universally arranged to be one-dimensional in the volume-averaged sense. However, one-dimension, volume-averaged experiments cannot necessarily be treated with confidence by models that are one-dimensional in the point sense.

The RRP model has been extensively used to obtain cell membrane permeabilities from diffusion data in concentrated cell suspensions (Garrick and Redwood, 1977; Garrick et al., 1980, 1982; Garrick and Chinard, 1982; Osberghaus et al., 1982). Unfortunately, the reported cell membrane permeabilities are incorrect due to an algebraic error made in the RRP model, as will be discussed later.

Recently Ochoa et al. (1986) presented a general theoretical analysis of the problem of diffusion and reaction in cellular media in which membrane resistances can be important. Volume-averaged transport equations were derived and from these separate equations a one-equation model was obtained. A method of closure was developed to determine effective diffusivities on a purely theoretical basis. The method of volume averaging has several advantages over other techniques for investigating multiphase transport phenomena, and the details have been presented by Whitaker (1986). First, the volume-averaged equations contain an attractive degree of generality because they require no specific geometry for their development. In addition, the constraints that a one-equation model must satisfy are readily identified. Finally the method of volume averaging can be used, with uniform rigor, to attack all types of multiphase transport phenomena including diffusion in cellular media.

In this paper, we compare the corrected RRP model and a modified form of the SBB model with the results obtained from the method of volume averaging. The comparison indicates under what conditions the RRP and SBB models can be used with confidence. Cell permeability data obtained from diffusion experiments in concentrated cell ensembles are re-examined in terms of all three models. Finally, the application of the method of volume averaging to other cell ensemble geometries is discussed.

GLOSSARY

- \(A \) = \(A_1 \) + \(A_2 \) sum of areas (m²)
- \(A_1 \) area defined by Eq. 28 (m²)
- \(A_2 \) area defined by Eq. 27 (m²)
- \(A_0 \) dimension of parallelepiped (m)
- \(A_{\text{int}} \) interfacial area between β- and α-phases for the averaging volume (m²)
- \(b \) dimension of parallelepiped (m)
- \(C \) concentration (mol/m³)
- \(C_\beta \) point concentration in the β-phase (mol/m³)
- \(C_\alpha \) point concentration in the α-phase (mol/m³)
- \(\bar{C}_\beta \) local spatial deviation concentration for the β-phase (mol/m³)
- \(\bar{C}_\alpha \) local spatial deviation concentration for the α-phase (mol/m³)
- \(|C|\) equilibrium weighted spatial average concentration (mol/m³)
- \((C_j)^{\beta}\) intrinsic phase average concentration for the β-phase (mol/m³)
- \((C_j)^{\alpha}\) intrinsic phase average concentration for the α-phase (mol/m³)
- \(D\) diffusivity (m²/s)
- \(D_\beta\) diffusivity in the β-phase (m²/s)
- \(D_\alpha\) diffusivity in the α-phase (m²/s)
- \(D_{\text{eff}}\) effective diffusivity tensor (m²/s)
- \(D_{\text{eff}}^{\beta}\) effective diffusivity in the x-direction (m²/s)
- \(D_{\text{eff}}^{\alpha}\) effective diffusivity in the y-direction (m²/s)
- \(E_1\) activation energy (kcal/mol)
- \(F\) function that defines interfacial surfaces
- \(F(r, t), G(r, t)\) functions that specify the boundary conditions at entrances and exits for \(C_\beta \) and \(C_\alpha \) (mol/m³)
- \(f\) vector that maps \(|C| \) to \(C_\beta \) (m)
- \(f_1\) x-component of vector \(f \) (m)
- \(g\) vector that maps \(|C| \) to \(C_\alpha \) (m)
- \(g_\beta\) x-component of vector \(g \) (m)
- \(I\) unit tensor
- \(I_\beta\) unit vector in the x-direction
- \(J\) unit tensor in the y-direction
- \(K\) function defined by Safford et al. (1978)
- \(K_{\text{eq}}\) equilibrium distribution coefficient
- \(L_\beta\) dimension in parallelepiped model as shown in Fig. 3 (m)
- \(L_\alpha\) dimension in parallelepiped model as shown in Fig. 3 (m)
- \(n\) unit normal vectors
- \(n_\beta\) unit outwardly directed normal for the β-phase
- \(n_\alpha\) unit outwardly directed normal for the α-phase
- \(P\) membrane permeability (m/s)
- \(P_\beta\) end face membrane permeability (m/s)
- \(Q\) function defined by Safford et al. (1978)
- \(r\) position vector (m)
- \(t\) time (s)
- \(V_\beta\) volume of the β-phase contained within the averaging volume (m³)
- \(V_\alpha\) volume of the α-phase contained within the averaging volume (m³)
- \(W\) function defined by Eq. 33
- \(W\) width (m)
- \(x, y\) rectangular, cartesian coordinates (m)
- \(X, Y\) dimensionless, cartesian coordinates
- \(z\) function defined by Eq. 23.

Greek Symbols

- \(\alpha \) \(D_\beta / Q_\beta P \), dimensionless ratio between the permeability of the dispersed phase and the permeability of the membrane
- \(\alpha_\alpha \) \(D_\alpha / P \), ratio between the diffusivity of the dispersed phase and the permeability of the membrane (m)
- \(\gamma \) function defined by Eq. 24

764 BIOPHYSICAL JOURNAL Volume 52 1987
The governing differential equations and boundary conditions for diffusion in a two-phase medium consisting of cells suspended in a continuous extracellular phase are given by

$$\frac{\partial C_2}{\partial t} = \nabla \cdot (D_2 \nabla C_2), \text{ in } V_2$$

$$- n_{2n} \cdot D_2 \nabla C_2 = - n_{2n} \cdot D_2 \nabla C_e, \text{ at } A_{2n}$$

$$- n_{g} \cdot D_g \nabla C_g = P(C_e - K_{eq} C_g), \text{ at } A_{g}$$

$$\frac{\partial C_2}{\partial t} = \nabla \cdot (D_2 \nabla C_2), \text{ in } V_e$$

$$C_2 = F(t, r), \text{ at } A_{2n}$$

$$C_e = G(t, r), \text{ at } A_{g}$$

The cellular phase is designated as the σ-phase and the extracellular phase is the β-phase. The local point concentrations in the β- and σ-phases are denoted by C_β and C_σ, whereas the macroscopic areas of entrances and exits for the β- and σ-phases are denoted by $A_{\beta n}$ and A_σ. The interfacial area between the two phases is designated by $A_{\beta n}$ and the unit outwardly directed normal for the β-phase is represented by $n_{\beta n}$. In the flux boundary condition given by Eq. 3 P represents the membrane permeability and K_{eq} is the equilibrium distribution coefficient. It is important to note that this formulation of the diffusion problem is fully three-dimensional and thus is not limited in the manner of the RRP and SBB models.

In the method of volume averaging we associate with every point in space an averaging volume V. This volume is used to define average concentration in terms of both C_β and C_σ and in this way the spatial smoothing of Eqs. 1 and 4 is accomplished. The average of Eq. 1 is given by

$$\frac{1}{V} \int_{V} \frac{\partial C_2}{\partial t} dV = \frac{1}{V} \int_{V} \nabla \cdot (D_2 \nabla C_2) dV.$$

The important length scale constraints required in the method of volume averaging have been discussed by Carbonell and Whitaker (1984) and they are easily satisfied for the systems under consideration. The intrinsic phase average concentration is given as

$$\langle C_e \rangle^* = \frac{1}{V_e} \int_{V_e} C_e dV.$$

Use of the intrinsic phase average concentration, the spatial averaging theorem (Anderson and Jackson, 1967; Marle, 1967; Slatterly, 1967; Whitaker, 1967), and Gray's decomposition (Gray, 1975) to define the local spatial deviation concentration

$$C_e = (C_e)^* + \tilde{C}_e,$$

allows us to express Eq. 7 as

$$\frac{\partial \langle C_e \rangle^*}{\partial t} = \nabla \cdot \left(\langle \epsilon_g D_g \nabla \langle C_e \rangle^* \rangle + \frac{1}{V_e} \int_{A_{\beta n}} n_{\beta n} \tilde{C}_e dA \right)$$

$$+ \frac{1}{V} \int_{A_\sigma} n_\sigma \cdot D_\sigma \nabla C_e dA.$$

The analogous result for C_β is given by

$$\frac{\partial \langle C_\beta \rangle^*}{\partial t} = \nabla \cdot \left(\langle \epsilon_\beta D_\beta \nabla \langle C_\beta \rangle^* \rangle + \frac{1}{V_\beta} \int_{A_{\beta n}} n_{\beta n} \tilde{C}_\beta dA \right)$$

$$+ \frac{1}{V} \int_{A_\sigma} n_\sigma \cdot D_\sigma \nabla C_\beta dA.$$

The derivation of these two diffusion equations is not trivial and the details are available in an earlier work by Ochoa et al. (1986). Eqs. 10 and 11 can be combined to yield a one-equation model for diffusion in a two-phase cellular model if we invoke the principle of local mass equilibrium (Whitaker, 1986). The principle of local mass equilibrium allows the diffusion process to be characterized by a single concentration, which is the dependent variable in the one-equation model that replaces Eqs. 10 and 11. The simplification from two equations to one equation is not automatic and there are several constraints that must be satisfied for the one-equation model to be valid. These constraints are given by Ochoa et al. (1986). A key step in the development of the one-equation model is the choice of the dependent variable, which we refer to as the equilibrium weighted spatial average concentration. This concentration is defined as

$$\langle |C| \rangle = \frac{1}{K_{eq}} \langle (C_e)^* \rangle + \langle \epsilon_g (C_\beta)^* \rangle,$$

and it can be used, along with derived representation for \tilde{C}_β and \tilde{C}_e, to combine Eqs. 10 and 11 into the one-equation model given by

$$\frac{\partial |C|}{\partial t} = D_{eff} \cdot \nabla \nabla |C|.$$

The tensor $\nabla \nabla |C|$ is symmetric so that only the symmetric part of the effective (or bulk) diffusivity tensor contributes to the diffusive flux. The effective diffusivity, D_{eff}, is
conveniently expressed as
\[
\frac{\partial}{\partial \theta} (\epsilon_r K_{eq} + \epsilon_g) - (\epsilon_r \kappa + \epsilon_g) I + \frac{\tau}{V} \int_A \frac{1}{2} (\mathbf{n}_{\theta g} \mathbf{g} + \mathbf{g}_{\theta g}) \, dA \\
+ \frac{1}{V} \int_A \frac{1}{2} (\mathbf{n}_{\theta f} \mathbf{f} + \mathbf{f}_{\theta f}) \, dA.
\]
(14)
in which the diffusivity ratio \(\kappa\) is given as
\[
\kappa = \frac{D_k T_{eq}}{D_b}.
\]
(15)
The theoretical value of the effective diffusivity tensor is obtained by solving the vector functions \(\mathbf{f}\) and \(\mathbf{g}\) for the appropriate cellular medium. The general boundary value problem for \(\mathbf{f}\) and \(\mathbf{g}\) is obtained from the closure scheme and can be expressed as (Ochoa et al., 1986)
\[
\nabla^2 \mathbf{f} = 0, \text{ in } V_b
\]
(16)
\[
\mathbf{n}_{\theta g} \cdot \nabla f - \kappa \mathbf{n}_{\theta g} \cdot \nabla g + (\kappa - 1) \mathbf{n}_{\theta g}, \text{ at } A_{\theta g}
\]
(17)
\[
- \mathbf{n}_{\theta g} - \mathbf{n}_{\theta f} \cdot \nabla g - \frac{1}{\alpha_r} (g - f), \text{ at } A_{\theta f}
\]
(18)
\[
\nabla^2 \mathbf{g} = 0, \text{ in } V_b
\]
(19)
\[
\mathbf{f} = \mathbf{F}(r), \text{ at } A_{\theta g}
\]
(20)
\[
\mathbf{g} = \mathbf{G}(r), \text{ at } A_{\theta f}
\]
(21)
For diffusion in porous media, one need only solve for \(\mathbf{f}\) to obtain the effective diffusivity, and the work of Ryan et al. (1981) on isotropic systems indicates excellent agreement between theory and experiment. In addition to Eqs. 16–21 we require that the average of \(\mathbf{f}\) and \(\mathbf{g}\) be zero. Eq. 14 can yield the effective diffusivity for any medium if a solution for the vector functions \(\mathbf{f}\) and \(\mathbf{g}\) can be obtained for a specific geometry.

The parameter \(\alpha_r\) is the ratio of the extracellular diffusivity to the membrane permeability. When the membrane has no resistance to mass transport, \(P\) equals infinity and \(\alpha_r\) is zero. Under these circumstances the effective diffusivity and the boundary value problem for \(\mathbf{f}\) and \(\mathbf{g}\) reduce to the equations presented by Nozad et al. (1985). In that case the diffusion process is analogous to the process of heat conduction in a porous medium, and extensive experimental and theoretical results are presented by Nozad et al. (1985). In the specific case of circular cylinders in a square array the results of Nozad et al. (1985) are in exact agreement with the method of the “Extended Rayleigh Formulation” (Perrins et al., 1979), which is claimed to give exact results for that geometry (McKenzie and McPhedran, 1977).

It is important to recognize that Eqs. 16–21 represent an extremely complex boundary value problem because of the boundary conditions given by Eqs. 20 and 21. Use of these boundary conditions requires that the \(\mathbf{f}\) and \(\mathbf{g}\) fields be determined over the entire cellular system and if this course of action were required one would be well advised to return to Eqs. 1–6. Arguments have been put forth elsewhere (Ryan et al., 1986; Carbonell and Whitaker, 1983; Whitaker, 1986), indicating that the boundary value problem for \(\mathbf{f}\) and \(\mathbf{g}\) is really a local problem and the boundary conditions given by Eqs. 20 and 21 can be replaced with a periodicity condition given by
\[
\mathbf{f}(r + \mathbf{\xi}_i) = \mathbf{f}(r), i = 1, 2, 3
\]
(20a)
\[
\mathbf{g}(r + \mathbf{\xi}_i) = \mathbf{g}(r), i = 1, 2, 3.
\]
(21a)
Here \(\mathbf{\xi}_i\) represents the three non-unique lattice vectors that are needed to describe a spatially periodic system.

Because of computational limitations, previous theoretical studies have been restricted to very simple geometries such as those used by Ryan et al. (1981), Nozad et al. (1985), and Ochoa et al. (1986). However, it is important to note that simple geometries are not a limitation of the general theory and in Fig. 1, we have presented a spatially periodic representation of the cellular system shown in Fig. 2. This cellular system is a reconstruction of an electron micrograph of the cellular system studied by Redwood et al. (1974), which will be discussed later in the Results and Discussion section. With sufficient computing power one can determine the effective diffusivity tensor for these complex systems; however, in this work we have restricted our geometrical model to the case of a suspension of parallelepipeds separated by an extracellular phase and arranged rectangularly such as that shown in Fig. 3. It is important to keep in mind that diffusion in the system illustrated in Figs. 1 and 2 can never be represented using one-dimensional point equations; however, this is possible for the system shown in Fig. 3 provided that certain constraints on the structure of the system are satisfied.

![Figure 1](image-url)
FIGURE 1 Unit cell for spatially periodic medium of packed cells shown in Fig. 2. The figure shows red blood cells in extracellular phase. The geometric parameters \(\xi_1\) and \(\xi_2\) are 15.5 and 11.6 \(\mu\)m, respectively, as given by Redwood et al. (1974).
The RRP and SBB Models

Unlike the volume averaging approach, the RRP and SBB models are restricted to one particular geometry and they carry with them the burden of one-dimensional diffusion in the local or point sense. Redwood et al. (1974) assumed cells to be packed regularly approximating closely spaced, long parallelepipeds (squares for Safford et al., 1978) as shown in Fig. 3. The cells have a width \(w \) perpendicular to the page, where \(w \) is much greater than lengths \(a \) or \(b \). Redwood et al. (1974) derived a relation for the effective diffusivity in the x-direction, \(D_{xx} \), but a factor of two was omitted in their derivation for the effective diffusivity (see their Eqs. 1a and 2a along with Fig. 2 a). The correct effective diffusivity in the x-direction, \(D_{xx} \), is given by

\[
\frac{D_{xx} A}{D_e A_e} = \left[1 + \frac{(D_p A_b / D_e A_e)}{1 + z} \right],
\]

where

\[
z = 2 \left[\pi_0 \left(1 + \frac{D_p A_b}{D_e A_e} \right) + \frac{D_e A_e}{D_b A_b} \frac{\gamma \cosh \left(\frac{z}{2} \right)}{1} \right] \left[\frac{\gamma}{\gamma - 1} \right]^{-1}
\]

\[
\gamma = \left[2 \frac{P_0}{P_0} \pi_0 \left(1 + \frac{D_e A_e}{D_b A_b} \right) \right]^{1/2}
\]

\[
\pi_0 = \frac{P_0}{D_e}
\]

\[
A = A_e + A_b
\]

\[
A_e = a w
\]

and

\[
A_b = (b_a - b) w.
\]

The factor of two that appears in Eq. 24 was included by Safford et al. (1978) in their derivation. The permeability of the part of the cell membrane orthogonal to the diffusive flux was designated by \(P_0 \) (end face permeability of the cell membrane) to allow it to be different from \(P \) (side face permeability). However, in the application of the theory, the ratio \(P_0/P \) was taken to be equal to one (Redwood et al., 1974; Garrick and Redwood, 1977; Garrick et al., 1980, 1982; Garrick and Chinard, 1982; Osberglaus et al., 1982). In our work we have also considered a single, constant membrane permeability, but the general theory expressed by Eqs. 16–21 is not restricted in this manner.

The ratio of areas, \(A/A_e \), in Eq. 22 was given by Redwood et al. (p. 718, 1974) as

\[
\frac{A}{A_e} = \frac{\frac{\theta}{\theta_e}}{\theta_e}
\]

where \(\theta \) was called the tortuosity factor and was defined as the ratio of the extracellular diffusion length to intracellular diffusion length. Redwood et al. (1974) treated \(\theta \) as an empirical parameter, and in Garrick and Redwood (Eq. 2, 1977) it was used as an adjustable parameter to match the effective diffusivity of inulin in packed cells with the diffusivity of inulin in the extracellular phase. The value for the adjustable parameter was then used in all subsequent calculations. Garrick and Redwood (1977) state that \(\theta \) accounts for less regular packing than depicted in Fig. 3 a. Actually \(\theta \) should not be thought of as a tortuosity in the classical sense (Jackson, 1977), but rather a geometrical parameter given in terms of Fig. 3 a as

\[
\theta = \frac{\epsilon_b}{\epsilon_e} \frac{1}{\theta_e (b_a / b - 1)}.
\]

While \(\theta \) can be thought of as an adjustable parameter when
either \(\epsilon_g\), \(\kappa_s\), or \(b\) is unknown, it remains inalterably bound to the geometry illustrated in Fig. 3a and the assumed one-dimensional nature of the diffusion process. If \(\theta\) is used to account for irregular packing of the cells, it becomes an empirical parameter of uncertain reliability.

The expression for the effective diffusivity in the \(x\)-direction given by Eq. 22 is limited to small volume fractions of the extracellular phase, \(\epsilon_g\). Redwood et al. (1974) did not identify the range of \(\epsilon_g\) values where Eq. 22 is applicable. Safford et al. (1978) derived the theory for the case where \(a = b\) and \(\kappa_s = \kappa_b\), i.e., long square-ended parallelepipeds in a cubic arrangement, and their results did not have a constraint of small values \(\epsilon_g\). To compare their model to the volume-averaged model and the RRP model, we rederived their model for the parallelepipeds shown in Fig. 3. The result is

\[
\frac{D_{xx}}{D_p} = \left(\frac{\kappa_s}{\kappa_b} \right) + \frac{\kappa_s}{\kappa_b} \left(\frac{D_p (W \kappa - Q)}{\mu K - Q} \right)^{-1} \left(\frac{(\kappa_s - b)(\mu K + Q)}{\kappa_b} \right) \right)^{-1} \tag{31}
\]

where

\[
\mu = \left[2P \left(\frac{1}{D_p (\kappa_s - b)} + \frac{1}{D_p b} \right) \right]^{1/2} \tag{32}
\]

\[
W = \left(\frac{\kappa_s - b}{b} \right) \frac{D_p}{\kappa_b} \tag{33}
\]

Here \(K\) and \(Q\) are identical to the expressions given by Safford et al. (1978) except that in their paper the length scale, \(L\), is given by \(a\) in our nomenclature (see our Fig. 3). To extract the original SBB model from Eqs. 31–33, one need only use \(a = b = L\) and \(\kappa_b = \kappa_s = L + L_0\) (see their Fig. 4).

RESULTS AND DISCUSSION

The one-equation model given by Eq. 13 and the effective diffusivity given by Eq. 14 can be applied to any specified geometry. The geometry given by Fig. 3 is a spatially periodic medium, and as a consequence the \(f\) and \(g\) fields need only be solved for a representative unit cell (Whitaker, 1986). The unit cell for the parallelepipeds shown in Fig. 3a is depicted in Fig. 3b. If we are only interested in diffusion in the \(x\)-direction, the solution for \(f_s\) and \(g_s\) and its subsequent application in Eq. 14 will give the effective diffusivity in the \(x\)-direction, \(D_{xx}\). The boundary value problem for \(f_s\) and \(g_s\) for this unit cell is given in the Appendix and the computed results are used to determine \(D_{xx}^e\).

\[
D_{xx}^e = \frac{D_{xx}}{D_p} (\epsilon_s K_m + \epsilon_b) \tag{34}
\]

Figs. 4 and 5 show the variation of the dimensionless effective diffusivity as a function of the diffusivity ratio times the equilibrium distribution coefficient, \(\bar{\kappa}\), and the ratio of the dispersed phase permeability to the membrane permeability, \(\alpha_s\), for a given volume fraction of the extracellular phase, \(\epsilon_g\). The ratio of the dispersed phase permeability to the membrane permeability is given by

\[
\alpha_s = \frac{D_s}{K_p} \tag{35}
\]

The results shown in Figs. 4 and 5 have been calculated for volume fractions and geometric parameters identical to those reported by Redwood et al. (1974) and Garrick and Redwood (1977). The two limiting cases for the membrane permeability can be expressed as \(P = 0\) or \(\alpha_s = \infty\), and \(P =
∞ or $\alpha_* = 0$. For the former, the cellular system consists of impermeable cells (to the solute) suspended in the extracellular phase. This type of problem has been treated by Ryan et al. (1981) and Kim et al. (1987). For the latter case of an infinitely permeable membrane, the membrane offers no resistance to mass transfer and this problem was treated by Nozad et al. (1985).

There is a significant influence of α_* on the dimensionless effective diffusivity. As the cell membrane permeability decreases, the effective diffusivity decreases and reaches an asymptotic limit at each value of ϵ_p. The values for D_{xx}^* at $\alpha_* = \infty$ are in exact agreement with the results of Kim et al. (1987). Curves for $\alpha_* = 0$ are not shown as the computer results were not convergent for these small values of ϵ_p. For this case, the computational procedure of Nozad et al. (1985) can be used. The effective diffusivity is also dependent on the extracellular volume fraction, especially when the membrane has a low permeability.

The equilibrium distribution coefficient between the σ- and β-phases, K_{eq}, was not included in the models of Redwood and Safford and presumably for cellular media $K_{eq} = 1$. If this is not the case, the second term in Eqs. 1a and 1b of Redwood et al. (1974) must be altered to be consistent with our Eq. 3. In the work of Safford et al. (1978) the change would take place in their Eqs. III.2 and III.3. The protein concentration in the intracellular phase is usually larger than the extracellular phase. If the equilibrium distribution coefficient is near one, typical values for $\bar{\kappa}$ will be somewhat smaller than one. As a consequence we have only shown $\bar{\kappa}$ in the range of 0.1–1.0 in Figs. 4 and 5.

![Figure 6](image6.png)

Figure 6 Dimensionless effective diffusivity in the x-direction as a function of the ratio of the dispersed phase permeability for $\epsilon_p = 0.175$. Comparison of theoretical models; VA is the volume-averaged model. For other models see text. Geometric parameters are those given by Garrick and Redwood (1977).

![Figure 7](image7.png)

Figure 7 Comparison between the method of volume averaging and the RRP model.

Both D_{xx}^* and $\bar{\kappa}$ are obtained from experimental measurements and it is advantageous to replot the theoretical results in the form as shown in Fig. 6. In addition to the results from the method of volume averaging, the corrected RRP model and the modified SBB model are shown. The plot corresponds to the diffusion of tritiated water in a medium of endothelial and epithelial rabbit lung cells (Garrick and Redwood, 1977). For a measured value of D_{xx}^* the value of α_* can be obtained directly from the graph. As shown, the experimental value of D_{xx}^* was found to be 0.229 and $\bar{\kappa}$ was equal to 0.397. In that case the volume-averaged model yields α_* = 2.21. The modified SBB model gives a value that is 11.9% higher and the corrected RRP model gives a value that is 5% lower.

For values of α_* less than one, the agreement between
the method of volume averaging and the corrected RRP model is quite good; however, the reader should be warned that the original RRP model gives poor agreement with our work and its usage should be avoided. For smaller values of D^*_S, the calculated value of α_s illustrates larger differences for the three models. For example, if $D^*_S = 0.174$ the corrected RRP model predicts a value of α_s that is 7% smaller than the method of volume averaging and the SBB model predicts a value that is 21% higher. These differences are not large and they suggest that the simpler models can be used to estimate membrane permeabilities provided that α_s is less than five and that the continuous phase volume fraction is sufficiently small, i.e., $\epsilon_g \approx 0.18$. This is further illustrated in Fig. 7 where we have presented a more extensive comparison between our work and the corrected RRP model. The comparison is made with the idea that the measured values of D^*_S, ϵ_g, and κ would be used to determine the membrane permeability in terms of α_s. From those results one can see that the corrected RRP model can be used with confidence provided $\epsilon_g < 0.2$ and $\alpha_s < 2.0$. We can also see from the results in Fig. 7 that the corrected RRP model gives very poor results when $\epsilon_g > 0.3$ and $\alpha_s > 5.0$. In Fig. 8 we have compared our work with the modified SBB model and there we see generally better agreement; however, one would not want to use the modified SBB model to predict α_s when $\epsilon_g > 0.3$ and $\alpha_s > 5.0$.

In considering the comparisons shown in Figs. 6–8, one must keep in mind that all the results are based on the geometrical model shown in Fig. 3. This is a severe limitation of all of the theoretical studies, and a detailed analysis of the system illustrated in Figs. 1 and 2 using our method remains as a worthwhile objective.

The corrected RRP model is compared with the other models in Tables I and II. The tables represent experimental data from Redwood et al. (1974) and Garrick and Redwood (1977). All the geometric parameters in Tables I and II, which are consistent with Fig. 3, were obtained from values given or calculated from the published results. The corrected RRP model compares well with the volume-averaged model. Differences vary from 4% to ~10%. The corrected RRP model is particularly good at very low volume fractions of the extracellular phase. The modified SBB model varies from 1 to 18% from the volume-averaged results. Similar calculations can be done for the data reported by Garrick et al. (1980, 1982) and Garrick and Chinard (1982). Instead of giving additional comparisons for α_s, we tabulate the membrane permeabilities as calcu-

Table I

<table>
<thead>
<tr>
<th>Solute</th>
<th>Extracellular phase volume fraction ϵ_g</th>
<th>Dimensionless effective diffusivity D^*_S</th>
<th>Diffusivity ratio κ</th>
<th>VA α_s</th>
<th>Modified SBB α_s</th>
<th>Corrected RRP α_s</th>
<th>%Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritiated water (THO)</td>
<td>0.175</td>
<td>0.229</td>
<td>0.397</td>
<td>2.21</td>
<td>2.48</td>
<td>2.08</td>
<td>-5.8</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.175</td>
<td>0.289</td>
<td>0.369</td>
<td>0.846</td>
<td>0.962</td>
<td>0.793</td>
<td>-6.3</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.175</td>
<td>0.252</td>
<td>0.441</td>
<td>1.55</td>
<td>1.74</td>
<td>1.47</td>
<td>-5.5</td>
</tr>
<tr>
<td>Propanol</td>
<td>0.175</td>
<td>0.297</td>
<td>0.441</td>
<td>1.10</td>
<td>1.24</td>
<td>1.05</td>
<td>-4.7</td>
</tr>
<tr>
<td>Hexan fetal</td>
<td>0.175</td>
<td>0.588</td>
<td>0.616</td>
<td>0.108</td>
<td>0.127</td>
<td>0.0996</td>
<td>-10.3</td>
</tr>
</tbody>
</table>

*Geometric parameters given by Garrick and Redwood (1977) are: $a/b = 4$, $\xi_g/\xi_b = 3.78$, $\xi_s = 10.7 \mu m$, $a = 10.0 \mu m$, $\theta = 1.60$. Percentage difference between the volume-averaged model (VA) and the other models is indicated by %Dev.

Table II

<table>
<thead>
<tr>
<th>Solute</th>
<th>Extracellular phase volume fraction ϵ_g</th>
<th>Dimensionless effective diffusivity D^*_S</th>
<th>Diffusivity ratio κ</th>
<th>VA α_s</th>
<th>Modified SBB α_s</th>
<th>Corrected RRP α_s</th>
<th>%Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritiated water (THO)</td>
<td>0.175</td>
<td>0.229</td>
<td>0.397</td>
<td>2.21</td>
<td>2.48</td>
<td>2.08</td>
<td>-5.8</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.175</td>
<td>0.289</td>
<td>0.369</td>
<td>0.846</td>
<td>0.962</td>
<td>0.793</td>
<td>-6.3</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.175</td>
<td>0.252</td>
<td>0.441</td>
<td>1.55</td>
<td>1.74</td>
<td>1.47</td>
<td>-5.5</td>
</tr>
<tr>
<td>Propanol</td>
<td>0.175</td>
<td>0.297</td>
<td>0.441</td>
<td>1.10</td>
<td>1.24</td>
<td>1.05</td>
<td>-4.7</td>
</tr>
<tr>
<td>Hexan fetal</td>
<td>0.175</td>
<td>0.588</td>
<td>0.616</td>
<td>0.108</td>
<td>0.127</td>
<td>0.0996</td>
<td>-10.3</td>
</tr>
</tbody>
</table>

*Geometric parameters given by Garrick and Redwood (1977) are: $a/b = 4$, $\xi_g/\xi_b = 3.78$, $\xi_s = 10.7 \mu m$, $a = 10.0 \mu m$, $\theta = 1.60$. Percentage difference between the volume-averaged model (VA) and the other models is indicated by %Dev.
lated with the volume-averaged approach and compare these to values calculated in the previous articles. Tables III and IV give the results. The difference between the previously published permeabilities and those predicted by volume averaging varies from a few percent to 30%. The relative small difference is not surprising since, in the original RRP model, the factor \(\theta \) was used as an adjustable parameter and the data were calibrated to fit with data in the literature (e.g., Sha'afi et al., 1971). For the volume-averaged model no adjustable parameter appears.

Table IV reports examples of cell membrane permeabilities at different temperatures. The diffusion data are from Garrick et al. (1980, 1982), and they used Arrhenius plots to determine apparent activation energies for the diffusion of the solutes through the membrane of the dog red blood cell. Although the cell membrane permeabilities calculated with the volume-averaged model show only moderate difference with the literature values, significant differences can appear in the apparent activation energies. The values obtained for pentanol and hexanol are considerably different from those reported by Garrick et al. (1982) as is shown in Table V. It should be pointed out that the apparent activation energies have a large uncertainty associated with them because of the error in the diffusion data and the sparsity of data points used by Garrick et al. (1982).

We also attempted to calculate cell permeabilities from the diffusion data of Osberghaus et al. (1982). They studied the permeation of tritiated water and glycol in human erythrocytes. Osberghaus et al. (1982) applied the original RRP model, but unfortunately they misunderstood the geometric model. Instead of the model of long parallelepipeds, they stated that the RRP model is for cells shaped like three-dimensional bricks, and insufficient data on the geometric parameters of the parallelepiped model were given in the article for us to calculate cell permeabilities from their diffusion data.

Unlike the RRP and the SBB models, the volume-

Table III

<table>
<thead>
<tr>
<th>Solute</th>
<th>Cell membrane</th>
<th>(\alpha_a (VA))</th>
<th>(L_a)</th>
<th>(D_a)</th>
<th>Permeability, (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu m)</td>
<td>(10^{-9} m^2/s)</td>
<td>(10^{-1} m/s)</td>
<td>(Literature)</td>
<td>Ref.</td>
</tr>
<tr>
<td>THO</td>
<td>Dog RBC</td>
<td>2.06</td>
<td>8.55</td>
<td>1.06</td>
<td>6.02 (5.69)</td>
</tr>
<tr>
<td>Formamide</td>
<td>Dog RBC</td>
<td>1.41</td>
<td>8.57</td>
<td>0.694</td>
<td>0.574 (0.555)</td>
</tr>
<tr>
<td>Acetamide</td>
<td>Dog RBC</td>
<td>45.3</td>
<td>8.55</td>
<td>0.536</td>
<td>0.139 (0.119)</td>
</tr>
<tr>
<td>Propianamide</td>
<td>Dog RBC</td>
<td>29.1</td>
<td>8.55</td>
<td>0.409</td>
<td>0.164 (0.151)</td>
</tr>
<tr>
<td>THO</td>
<td>Rabbit lung</td>
<td>2.21</td>
<td>10.7</td>
<td>0.659</td>
<td>2.79 (2.93)</td>
</tr>
<tr>
<td>Methanol</td>
<td>Rabbit lung</td>
<td>0.846</td>
<td>10.7</td>
<td>0.375</td>
<td>4.14 (3.98)</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Rabbit lung</td>
<td>1.55</td>
<td>10.7</td>
<td>0.345</td>
<td>2.08 (2.19)</td>
</tr>
<tr>
<td>Propanol</td>
<td>Rabbit lung</td>
<td>1.10</td>
<td>10.7</td>
<td>0.282</td>
<td>2.40 (2.91)</td>
</tr>
<tr>
<td>Hexanol</td>
<td>Rabbit lung</td>
<td>0.108</td>
<td>10.7</td>
<td>0.181</td>
<td>15.7 (20.6)</td>
</tr>
</tbody>
</table>

*Redwood et al. (1974).

Garrick and Redwood (1977).

Table IV

<table>
<thead>
<tr>
<th>Solute</th>
<th>(T) °C</th>
<th>(\alpha_a (VA))</th>
<th>(L_a)</th>
<th>(D_a)</th>
<th>Permeability, (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu m)</td>
<td>(10^{-9} m^2/s)</td>
<td>(10^{-1} m/s)</td>
<td>(Literature)</td>
<td>Ref.</td>
</tr>
<tr>
<td>THO</td>
<td>10</td>
<td>2.92</td>
<td>8.54</td>
<td>0.854</td>
<td>3.42 (2.95)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.29</td>
<td>8.54</td>
<td>0.912</td>
<td>4.66 (4.38)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.97</td>
<td>8.54</td>
<td>1.026</td>
<td>6.10 (5.54)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1.73</td>
<td>8.54</td>
<td>1.39</td>
<td>9.41 (9.08)</td>
</tr>
<tr>
<td>Methanol</td>
<td>10</td>
<td>2.54</td>
<td>8.55</td>
<td>0.599</td>
<td>2.76 (2.50)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.66</td>
<td>8.55</td>
<td>0.698</td>
<td>4.92 (4.65)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.486</td>
<td>8.55</td>
<td>0.815</td>
<td>19.6 (17.8)</td>
</tr>
<tr>
<td>Pentanol</td>
<td>15</td>
<td>0.298</td>
<td>8.56</td>
<td>0.174</td>
<td>6.83 (7.60)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.306</td>
<td>8.56</td>
<td>0.233</td>
<td>9.05 (9.56)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.366</td>
<td>8.56</td>
<td>0.396</td>
<td>14.7 (11.6)</td>
</tr>
<tr>
<td>Hexanol</td>
<td>15</td>
<td>0.977</td>
<td>10.57</td>
<td>0.122</td>
<td>1.45 (1.51)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.626</td>
<td>10.57</td>
<td>0.240</td>
<td>4.48 (3.87)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.734</td>
<td>10.57</td>
<td>0.320</td>
<td>5.09 (4.99)</td>
</tr>
<tr>
<td>Antipyrine</td>
<td>15</td>
<td>12.15</td>
<td>8.54</td>
<td>0.164</td>
<td>0.158 (0.13)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.74</td>
<td>8.54</td>
<td>0.182</td>
<td>0.371 (0.36)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>0.993</td>
<td>8.54</td>
<td>0.258</td>
<td>3.24 (3.18)</td>
</tr>
</tbody>
</table>

*Garrick et al. (1982).

Garrick et al. (1980).

Table V

<table>
<thead>
<tr>
<th>Solute</th>
<th>(E_a) (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritiated water</td>
<td>5.4 ± 1.4</td>
</tr>
<tr>
<td>Methanol</td>
<td>12.8 ± 1.4</td>
</tr>
<tr>
<td>Pentanol</td>
<td>5.9 ± 1.3</td>
</tr>
<tr>
<td>Hexanol</td>
<td>1.4 ± 1.7</td>
</tr>
<tr>
<td>Antipyrine</td>
<td>24 ± 1.8</td>
</tr>
</tbody>
</table>
averaged model can be applied to other geometries. We have investigated the effect of staggering the cells on the effective diffusivity. Fig. 9 shows a medium of parallelepips in a fully staggered array. The term "fully staggered" refers to the maximum possible displacement of cells in one column relative to cells in a neighboring column. The problem of diffusion in a medium with staggered parallelepips using the volume-averaged approach has been studied by Kim et al. (1987). Their study involved completely impermeable parallelepips in a continuum. We have used our computational program to study the effect of staggering and the aspect ratio. The results are shown in Table VI for geometric parameters consistent with those reported by Redwood and Garrick (1977). When the aspect ratio for the cell, a/b, is greater than 2, there is no significant effect on the dimensionless effective diffusivity for either aligned or fully staggered cells. The results are true only for impermeable cells and consequently are identical for \(\alpha_e = \infty \).

One might assume that the results obtained in Table VI for the aspect ratio are also applicable to permeable cells. Fig. 10 indicates that the variation of the aspect ratio gives significant change in the \(D_{xx}^\ast \) versus \(\alpha_e \) plots when \(\alpha_e \) increases. The modified RRP and SBB models also give results similar to those predicted by the volume-averaged model shown in Fig. 10. The conclusion to be drawn from this figure is obvious, i.e., the cell membrane permeabilities are very sensitive to the geometric parameters. Likewise, if another morphology of the concentrated suspension is chosen, one would expect that the calculated membrane permeabilities may be different.

Redwood et al. (1974) have given an electron micro-

\[\begin{array}{ccc}
\text{TABLE VI} \\
\text{EFFECT OF CELL STAGGERING ON THE EFFECTIVE} \\
\text{DIMENSIONLESS DIFFUSIVITY FOR } \epsilon_g = 0.175, z = 0 \\
\hline
\text{Aspect} & \text{Aspect} & D_{xx}^\ast \\
\text{ratio} & \text{ratio} & \text{Aligned} & \text{Fully} \\
\text{a/b} (\xi_a/\xi_b) & (\xi_a/\xi_b) & \text{cells}^* & \text{staggered}^* \\
\hline
1 & 0.945 & 0.118 & 0.076 \\
2 & 1.89 & 0.119 & 0.114 \\
3 & 3.78 & 0.123 & 0.122 \\
8 & 7.56 & 0.123 & 0.122 \\
\hline
\end{array} \\
\text{The aspect ratio, } \xi_a/\xi_b, \text{ was calculated for } \epsilon_g = 0.175, \xi_a - a = 0.7 \mu m, \\
\text{and } \xi_b = 10.0 \mu m. \\
^*\text{Fig. 1.} \\
^{1*}\text{Fig. 4.}
\]

graph of packed red cells from slices of the diffusion tubes containing the cells. They suggested that upon centrifugation of the red cells in the diffusion tubes, a preferred orientation of the cells occurs in the direction of the centrifugal field, and their geometric parameters for the parallelepips model, shown in Fig. 3, were obtained from the electron micrograph. Fig. 2 shows a reconstruction of their electron micrograph with some key modifications. The modifications are that the shape of each red blood cell is depicted by a set of straight lines and the arrangement of red blood cells is such that a unit cell can be identified as

![Figure 9](image-url)
Figure 9 (a) Model of fully staggered, long parallelepips packed in a regular array. (b) Unit cell of the spatially periodic medium for the fully staggered parallelepiped model.
shown in Fig. 1. Solutions of the f and g fields for this complex unit cell can be obtained to generate the effective diffusivity tensor. We have not attempted to solve the fields for this case since it is based on a single electron micrograph. It seems reasonable that a true two-dimensional geometrical representation of packed red blood cells should be represented by a statistical average of a large number of electron micrographs. However, we do outline the procedure of specifying the boundary value problem for the unit cell given in Fig. 1. The details of the procedure are given in the Appendix.

The advantage inherent in the volume-averaged model is that if the micromorphy can be described, the method is exact and the problem reduces to the appropriate solution of the boundary value problem for f and g. The RRP and SBB models are restricted to the model of long parallelepipeds. The problem of correctly describing the microgeometries of complex heterogeneous systems has been recognized and has become an important area of research (Whitaker, 1986). An advanced understanding of transport phenomena in heterogeneous systems can only come if scientific protocols are designed that can fully describe mathematically the micromorphologies in three dimensions and when techniques like volume averaging are applied.

APPENDIX I

To set up the boundary value problem for the functions f and g, one must first choose a unit cell that represents the structure of the cellular system under consideration. This procedure specifies the boundary between the dispersed phase particles and the extracellular phase. The position of the boundary can be expressed as

$$\mathcal{F}(X, Y) = 0,$$ \hspace{1cm} (A1)

where X and Y are the local coordinates associated with the unit cell. The governing equations for f and g are given by

$$\nabla^2 g = 0, \text{ in the dispersed phase} \hspace{1cm} (A2)$$

$$\nabla^2 f = 0, \text{ in the extracellular phase.} \hspace{1cm} (A3)$$

From Eq. (A1) one can find the unit normal vectors, which are used in Eqs. (17 and 18), by the formula

$$n = \pm \left[\frac{\partial \mathcal{F}}{\partial X} \frac{\partial \mathcal{F}}{\partial Y} \right]^{1/2}. \hspace{1cm} (A4)$$

If some symmetry axis can be found for the unit cell, it is worthwhile to use this condition to develop symmetry and skew-symmetry conditions for f and g. This allows one to reduce the computational domain and avoid the use of periodicity conditions for f and g, which are given by

$$f(X \pm 1, Y) = f(X, Y), \hspace{1cm} (A5)$$

$$g(X \pm 1, Y) = g(X, Y), \hspace{1cm} (A6)$$

$$f(X, Y \pm \xi_a/\xi_b) = f(X, Y), \hspace{1cm} (A7)$$

$$g(X, Y \pm \xi_a/\xi_b) = g(X, Y). \hspace{1cm} (A8)$$

When applicable, the symmetry and skew-symmetry conditions not only reduce the computational domain, but they also give rise to a much more rapid convergence. Examples are given in Ryan et al. (1981), Nozad et al. (1985), and Ochoa (1987).

To determine \(D_{\text{app}} \) for the system shown in Fig. 3, we need only calculate \(f_0 \) and \(g_0 \). The boundary value problem for \(f_0 \) and \(g_0 \) is given by

$$\frac{\partial^2 f_0}{\partial X^2} + \frac{\partial^2 f_0}{\partial Y^2} = 0, \text{ in } V_0 \hspace{1cm} (A9)$$

$$\frac{\partial^2 g_0}{\partial X^2} + \frac{\partial^2 g_0}{\partial Y^2} = 0, \text{ in } V_0 \hspace{1cm} (A10)$$

$$\frac{\partial f_0}{\partial X} = -\frac{k}{\alpha_s} \frac{\partial g_0}{\partial X} + (\kappa - 1) at X = \pm a/2, \hspace{1cm} -b/2 \leq Y \leq b/2 \hspace{1cm} (A11a)$$

$$\frac{\partial f_0}{\partial Y} = -\frac{k}{\alpha_s} \frac{\partial g_0}{\partial Y} at Y = \pm b/2, \hspace{1cm} -a/2 \leq X \leq a/2 \hspace{1cm} (A11b)$$

$$-1 - \frac{\partial g_0}{\partial X} = \frac{1}{a_s} (g_0 - f_0) at X = \pm a/2, \hspace{1cm} -b/2 \leq Y \leq b/2 \hspace{1cm} (A12a)$$

$$-\frac{\partial g_0}{\partial Y} = \frac{1}{a_s} (g_0 - f_0) at Y = \pm b/2, \hspace{1cm} -a/2 \leq X \leq a/2. \hspace{1cm} (A12b)$$

It is sufficient to solve for one-quarter of the unit cell, and the symmetry conditions for \(f_0 \) and \(g_0 \) can be expressed as (Nozad et al., 1985)

$$\frac{\partial f_0}{\partial y} = 0 at y = 0, \xi_a/2 \hspace{1cm} (A13)$$

$$\frac{\partial g_0}{\partial y} = 0 at y = 0, \hspace{1cm} (A14)$$

and the skew-symmetry conditions as

$$f_0 = 0 at x = 0, \xi_a/2 \hspace{1cm} (A15)$$

$$g_0 = 0 at x = 0. \hspace{1cm} (A16)$$

The boundary value problem for \(f_0 \) and \(g_0 \) was solved numerically using a five-point block finite difference scheme. Because we considered problems where \(\xi_b \) was small and aspect ratios for the cell were of the order of four, it was necessary to use a much smaller grid size in the extracellular space than in the intracellular phase.

An ISML software subroutine (program LEQT1B from ISML, Inc., Houston, TX) was used as a direct solver to find the solution for the pentadiagonal system of linear equations resulting from the discretization in the full domain. Details of the discretized partial difference equations and boundary conditions are given by Ochoa (1987).

A problem arises with the interfacial boundary conditions given by Eqs. A11 and A12 at the corner point \(x = \xi_a/2 \) and \(y = \xi_b/2 \). The problem was avoided by using either Eqs. A11a and A12a or Eqs. A11b and A12b. The particular choice of the boundary conditions at the corner point was found to be unimportant when the grid size was decreased because the same effective diffusivity was then obtained (Ochoa, 1987).

This work was supported by a grant from the National Science Foundation (CBT-85 13956). J. Alberto Ochoa acknowledges support from the Consejo Nacional de Ciencia y Tecnología (CONACYT) of the Mexican Government.

Received for publication 2 September 1986 and in final form 27 July 1987.

REFERENCES

