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Abstract: This paper presents a new class of outer approxima- 
tion methods for solving general convex programs. The meth- 
ods solve at each iteration a subproblem whose constraints 
contain the feasible set of the original problem. Moreover, the 
methods employ quadratic objective functions in the subprob- 
lems by adding a simple quadratic term to the objective func- 
tion of the original problem, while other outer approximation 
methods usually use the original objective function itself 
throughout the iterations. By this modification, convergence of 
the methods can be proved under mild conditions. Further- 
more, it is shown that generalized versions of the cut construc- 
tion schemes in Kelley-Cheney-Goldstein's cutting plane 
method and Veinott's supporting hyperplane method can be 
incorporated with the present methods and a cut generated at 
each iteration need not be retained in the succeeding iterations. 

Keywords: Outer approximation algorithm, cutting plane, con- 
vex program, subgradient. 

1. Introduction 

The class of outer approximation methods is 
one of the fundamental tools for solving general, 
i.e. nonsmooth, convex optimization problems. The 
basic idea of earlier methods such as Kelley-Che- 
ney-Goldstein 's  cutting plane method [1,4] and 
Veinott's supporting hyperplane method [11] is 
quite simple. Specifically, one successively gener- 
ates a halfspace called a cut containing the con- 
straint set of the problem and solves linear pro- 
gramming subproblems whose constraints are de- 
fined as the intersection of the previously gener- 
ated halfspaces. This procedure is very attractive 
especially to the practitioner since it is easy to 
understand and to code a computer program. 

From a computational viewpoint, however, there 

is a serious drawback with these methods. That is, 
the size of the subproblems becomes too large very 
quickly, because cuts generated at each iteration 
must be cumulatively retained in the constraints of 
the subproblems. In [2], Eaves and Zangwill de- 
velop some procedures which permit deleting old 
cuts from the subproblem without spoiling the 
convergence property. Their work is not only in- 
teresting theoretically but also helpful in improv- 
ing practicability of the earlier methods. However, 
the difficulty does not seem to be completely 
resolved, since it does not give any bound on the 
size of the subproblems and hence the number of 
retained cuts could still be large. 

The purpose of this paper is to present a new 
class of outer approximation methods and to prove 
its convergence. These methods differ from others 
mainly in constructing objective functions of the 
subproblems. To put it concretely, the present 
methods employ quadratic objective functions ob- 
tained by adding a simple quadratic term to the 
objective function of the original problem, while 
other outer approximation methods use the origi- 
nal objective function itself throughout the itera- 
tions. By this modification, it can be shown that a 
cut generated at each iteration need not be re- 
tained in the succeeding iterations. This means 
that, theoretically, one only needs to solve sub- 
problems with a single inequality constraint to 
obtain convergence, though it might be meritori- 
ous to retain some old cuts in order to improve the 
speed of convergence. 

In the next section, we state the method in a 
somewhat general setting and prove its conver- 
gence under certain conditions on constraints of 
subproblems. In Section 3, we show that such 
conditions are met by commonly used outer ap- 
proximation schemes like in [1,4,11], and hence the 
present method has enough flexibility in designing 
computational algorithms. In Section 4, computa- 
tional results are reported. 
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2. Basic algorithm and its convergence 

In this section, we consider the problem 

maximize cx, (P) 
subject to x ~ S, 

where cx denotes the inner product of the n-vec- 
tors c and x, and S is a nonempty closed convex 
set in R". Throughout this paper, any vector is 
treated as either a row vector or a column vector, 
depending on the situation, but the distinction 
should always be clear from the context in which 
they are used. 

As is well known [5, p. 306; 12, p. 302], any 
problem of maximizing a concave function over a 
convex set can be transformed without loss of 
generality into that of maximizing a linear func- 
tion over a convex set by introducing an addi- 
tional variable. Therefore, we can consider any 
convex program as a problem with a linear objec- 
tive function. In fact, almost all of the existing 
outer approximation algorithms are designed to 
solve problems of this type. Hereafter, we assume 
the compactness of the feasible set S. This as- 
sumption will be needed to ensure the existence of 
an optimal solution of (P) and the boundedness of 
sequences generated by the algorithm. 

The basic outer approximation algorithm for 
(P) is stated as follows: 

Basic algorithm. 
Step O. Let ( t k }  be a sequence of positive 

numbers. Select a starting point x ~ and set k = 1. 
Step 1. Construct a closed convex set T k such 

that S c T k. 
Step 2. Solve the subproblem 

1 
maximize cx - ~-~-~kllx - xkll 2, (SPk) 

subject to x ~ Tk, 

where II" II denotes the Euclidean norm in R", and 
let the (unique) optimal solution of this subprob- 
lem be x k+l. 

Step 3. If  x k+l = x k, terminate; otherwise, in- 
crease k by one and return to Step 1. 

Namely, x k+l is geometrically the point which is 
closest to the point x k +  tkc in the set T k. Obvi- 
ously, such a point always exists and is unique by 
closedness and convexity of T k. 

Let us define the distance from a point x to a 
nonempty closed set A c R n by 

dis t [x ,A]  = minllx - zll. 
z E A  

We shall impose the following conditions on the 
choice of parameters t k and the construction of the 
sets Tk: 

Condition C1. 

lim t k = 0 and ~. t k = + oo. 
k ~ o o  k ~ l  

Condition C2. There exists a positive number x 
(>/1) such that 

dist[ x k, S ] ~ x dist[ x k, Tk] 

for all k. 
Condition C1 is satisfied, for example, by t k = 

1 / j  for k i < ~ k < k j +  ~, where (k j}  is an infinite 
sequence of integers such that k~ = 1 and k j+ 1 > kj. 
This type of parameter  selection rule is also used 
in the subgradient algorithm [8] for nonsmooth 
optimization problems. Condition C2 is slightly 
stronger than that used in [2] in the definition of a 
cut map in terms of a separator. However, it 
should be mentioned that this condition is not 
very restrictive as we shall see in the next section. 

Lemma 2.1. Let S and T be convex sets such that 
S c T, and x be an arbitrary point in R n. l f y  is the 
point in T closest to x, then the following inequalities 
hold: 

IlY - zll 2 ~< IIx - zll 2 - I lY  - xll z Vz ~ S 

and 

dist[y,  S] 2 ~< dist[x,  S] 2 - I lY  - xll 2. 

The proof  of this lemma is found in [3] (see also 
[9]). 

The main result of this section is now stated as 
follows: 

It  should be noted that problem (SPk) is equiva- 
lent to the problem 

minimize I]x - ( x  k + tkC)]l 2 

subject to x ~ T k. 

Theorem 2.2. Let  the Conditions C1 and C2 be 
satisfied. Then the basic algorithm either terminates 
at an optimal solution o f  (P) or generates an infinite 
sequence {x k } any of  whose limit points is an 
optimal solution of  (P). 
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Proof. The algorithm terminates only if x k+~ = x k 

for some k. Since the latter implies X k ~  T k, x k 

must belong to S by Condition C2. Moreover, 
since x k is the optimal solution of (SPa), it should 
also satisfy the following optimality condition for 
(SPk) :  

Substituting x = x k in the above inequality and 
taking account of the fact that S c Tk, we obtain 

c ( z - x * ) < O  V z ~ S .  

But this also implies that x k is an optimal solution 
to problem (P). 

We suppose now that an infinite sequence { x k ) 

is generated. First, we prove that any limit point of 
this sequence belongs to S by showing that for any 
8 > 0 there exists an integer/7 such that 

dist[x k, S] < 8 Vk >//~. (2.1) 

For each k, let 2 k denote the closest point to x k in 
T k. Then, by Lemma 2.1 and Condition C2, for 
any k, 

dist[2 k, S] 2 ~< dist[x k, S] 2 -  []2 k -  xkl[ 2 

= dist[x k, S ] 2 - d i s t [ x  k, Tk] 2 

~< (1 - ~-2) dist[x k, S]2, 

namely, 

dist[2 k, S] ~< (V/~-5~ 2 - 1 / ~ )  dist[x k, S].  (2.2) 

On the other hand, since x k+~ is the closest 
point to x k + tkC in T k, it follows from the nonex- 
pansiveness of projection operators that 

I1~ k - x k + l l l  < II xk  - ( x  k + tkC)ll 

= tkllCl[. (2.3) 

It is also easily verified that 

dist[x k+~,S]~<dist[~ k , S ] + l l  ~k -xk+ l l l .  (2.4) 

Thus, by (2.2), (2.3) and (2.4), we obtain for all k 

dist[ x k+' , S ] ~< (gc~-a _ 1 / ~ )  dist[ x k, S ]  

+ tkllCll. (2.5) 

Let us define a positive integer k o by 

k 0 = min( k I t,llcll < e8/2, Vl >~ k ), (2.6) 

where ¢ is a positive number small enough to 
satisfy 

*' ~ 1 / ~ + ¢ < 1 .  (2.7) 

Note that k 0 is well defined by Condition C1. 
Since (2.1) is obviously satisfied if dist[x*, S] ~< 

8 / 2  for all k > k 0, we assume that dist[x k', S] > 
8 / 2  for some k I >t k 0. Then there must exist an 
integer k 2 > k 1 such that dist[x k2, S] ~< 8/2, be- 
cause (2.5) and (2.6) imply 

dist[x *+l, S] ~< a dist[x k, S] (2.8) 

for any k such that dist[x k, S] > 8 / 2  and k > k 0, 
where a is defined by (2.7). Now it is not difficult 
to see that 

dist[x k, S] ~< 8 V k  >- k 2. 

Indeed, if we suppose dist[x k', S]~< 8 < 
dist[x k3+1, S] for s o m e  k 3 >~ k2 ,  then by (2.8) we 
must have dist[x k,, S] ~< 8 / 2 .  However, since 

dist[x k~+', S] ~< dist[x k~ + tkC, S]  

~< dist[x k', S] + tk,llCll 

8/2  + c 8 / 2 =  (1 + c ) 8 / 2  < 8, 

we have a contradiction. Thus, (2.1) is proved. 
Next, we show that there exists a subsequence 

{ x k' ) whose limit point is optimal to (P). Suppose 
to the contrary that, for some k4 and c > 0, the 
following inequalities hold: 

cx k ~ f * - ¢  V k  >lk4 ,  (2.9) 

where f* & rain{ cx I x ~ S ). Let us choose any 
optimum x*, i.e. cx* = f *  and x* ~ S. Since x k+l 

is the closest point to x k + tkC in T k and x* ~ S c 
Tk, it follows from Lemma 2.1 that 

}IX k + l  --  X*II2 ~ 

IIx k + tkC - x*ll  2 - I I x  k + tkC -- x k + l l l 2  

= l l x  k -  x*ll 2-1Ix k -  xk+l[12 + 2tkC(X k+l -- X*) 

< II x k  - x*ll  2 - 2tk , .  (2.10) 

By adding the above inequalities from k = k 4 to 
k 4 + l, we have 

k4+l 

IIx k ' + l -  x*ll  z < Ilx k" - x*ll  2 - 2c ~ t k. 
k=k4 

However, by Condition C1, the right-hand side of 
the last inequality becomes arbitrarily small as l 
increases. This is impossible because the left-hand 
side is bounded from below by zero. This con- 
tradiction implies that (2.9) is not true and that 
there must exist a subsequence (x  k,} such that 
l imi~occx  k, =f* .  Moreover, since any limit point 
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of { x* } belongs to S as shown earlier, it also 
follows that there exists a subsequence of i x* } 
which converges to an opt imum of (P). 

Finally, we prove that the limit of any conver- 
gent subsequence is an optimum. In order to ob- 
tain contradiction, suppose that there exists a sub- 
sequence which converges to a nonoptimal point, 
say x' .  Then cx' < f * ,  because x ' ~  S. Further- 
more, since there exists another subsequence con- 
verging to an opt imum and since it is easily seen 
that limk~oo[Ix k+l - x k l l = 0 ,  there must be an 
index j such that 

cx J+l < f *  (2.11a) 

and 

dist[x j+l ,  S*] > dist[x j, S*], (2.11b) 

where S* is the set of optimal solutions to (P). 
However, by Lemma 2.1, 

IIx J+l  -zl12~ 
<~ I[X j + tiC -- Zl l  2 - -  [IX j + t i c  --  xJ+ll l2  

- - I lx  j -  zll 2 - I I  x j ÷ a  - xJ[I 2 + 2 t j c ( x  s+l  - z )  

for any z ~ S. Now let z j be the closest point to x j 
in the set S* and substitute z - - z  j in the last 
inequality. Then we get 

dist[x j+l ,  S*] z ~< dist[x j, S*] 2 _ iix s+l - xJl[ 2 

+ 2t jc(x  j+l - zS). 

But, since czJ = f * ,  the last inequality contradicts 
(2.11). Therefore, the limit of any convergent sub- 
sequence of ( x  k } must be optimal to (P). This 
completes the proof. [] 

3. Procedures for convex inequality constraints 

In this section, we focus our attention on the 
problem 

maximize cx, (P) 
subject to g ( x ) < O  and x ~ X ,  

where g:  R ~ --* R is a convex function and X is a 
compact  convex subset of R". It is emphasized 
that the function g is not necessarily differentiable 
everywhere. Therefore, there is no loss of general- 
ity in assuming that the problem contains only one 
inequality constraint, because any constraint of 
the form 

g~(x)<~O, i ~ I ,  x ~ X ,  

where each gi is convex, can be converted into 

g ( x ) ~ 0  and x ~ X  

by defining g by g ( x ) = s u p ( g , ( x ) [ i ~ I ) .  It is 
also noted that problem (P) is usually formulated 
in such a way that the set X possesses a simple 
structure like X = ( x [ a < ~ x ~ < b )  or X = i x [ A x  
~<b}. 

In what follows, we denote the feasible set of 
(P) by 

g= (x Xlg(x) o} 
and assume that problem (P) satisfies the Slater's 
condition: 

3a ~ Xsuch  that g(a )  < 0. (3.1) 

Recall that, for any e >/0, a vector "r ~ R" is 
called an e-subgradient of g at x [10, p. 219] if 

g ( z ) > ~ g ( x ) + y ( z - x ) - c  V z ~ a " .  

The set of all e-subgradients of g at x is denoted by 
O,g(x). Clearly, O,~g(x) c O,~g(x) if 0 ~< e 1 ~< e 2, 
and Oog(x ) coincides with the set of subgradients 
at x and is simply denoted by Og(x). 

Lemma 3.1. For any x ~ R n and any ~ >1 0, O,g(x) 
is a bounded set. Furthermore, for any bounded 
sequence I ek } of nonnegative numbers and any 
sequence i x*}  such that xk ~ X, there exists an 
L > 0 such that 

IIY*II~L V'/*~O,,g(x*). 

Proof. The set of c-subgradients is characterized by 
the following relation [10, p. 220]: 

O,g(x)  = { V ~ R ~ ] g * ( 7 ) - V x < ~ , - g ( x ) ) ,  

where g* : R" --, ( -  o¢, + o0] is the convex con- 
jugate of g [10, p. 104]. Since the conjugate of the 
function h, defined by h (v )  -- g*(v)  - Vx, is given 
by h * ( y ) = g ( y  + x)  and hence is finite every- 
where, it follows from [10, Cor. 14.2.2] that the set 
O,g(x) is bounded. 

In order to prove the last half of Lemma 3.1, let 
us suppose to the contrary that there exists a 
sequence ( ' t*} such that "r* ~i)~,g(x*) and 
lim sup,~oo II'rkll = + oO. By the compactness of 
X, we can assume without loss of generality that 
i x* } converges to a point x ~ X and, taking a 
subsequence if necessary, we can suppose that 
lim,~oollV*[I = + o0. Let e = supic , [k ---- 1, 2 . . . .  ), 
which is finite by our assumption. Then we have 
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yk E 8,g(xk) for all k. However, since a,g( .) is a 

continuous point-to-set mapping [6], a,g( x) must 
be an unbounded set. This is a contradiction and 

the proof is complete. 0 

We now present our first algorithm for solving 
problem (P). This algorithm is regarded as a gener- 

alization of the one proposed in [3], though the 
latter deals with problems having multiple inequal- 

ity constraints. 

Algorithm 3.2. 
Step 0. Let /i be any number such that 0 < /? < 1, 

{ t, } be a sequence of positive numbers satisfying 

Condition Cl, and { sk } be an arbitrary sequence 
of nonnegative integers. Select a starting point 

x1 E X and set k = 1. 

Step 1. Find a yk E atkg(xk), where ek is any 
number such that 

i 

O(ck<pg(xk) ifg(xk)>O, 

0 < ek otherwise. 

Step 2. Solve the subproblem 

maximize cx - &]]x - xkJ]‘, (SPl> 
k 

subjectto g(x’)+y’(x-x’)<c,, 

i=k,k-l,..., k-s,, 

XEX 

and let the optimal solution be xk+‘. 
Step 3. If xk+’ = xk, stop; otherwise, increase k 

by one and return to Step 1. 

Each subproblem is a quadratic program whose 
objective function contains a very simple quadratic 
term, provided the set X is a convex polyhedron 
expressed in terms of a system of linear equalities 
and inequalities. It should also be noted that the 

procedure of generating the constraints is a gener- 
alization of that used in the Kelley-Cheney-Gold- 
stein’s cutting plane algorithm [1,4], where ek = 0, 
i.e. yk E ag(xk), for each k. The use of such 
approximate cutting planes is also suggested by 
Parikh [7] for problems of minimizing a convex 
function over a convex set. 

However, the most remarkable difference be- 
tween the cutting plane algorithm and the present 
one lies, of course, in the size of the subproblem to 
be solved at each iteration. More specifically, the 
number of constraints of subproblems (SP;) can 

be bounded in the present algorithm by choosing a 
bounded sequence { sk }, while this is not neces- 

sarily the case for the ordinary cutting plane algo- 

rithms. In fact, this noncumulative nature is the 

most attractive feature of our algorithm. 

Lemma 3.3. There exists an M > 0 such that 

dist[x,g]<Mg(x) Vx@g,x~X. 

Proof. Fix a point a E X satisfying Slater’s condi- 
tion (3.1) and let x E X be an arbitrary point such 
that x @ R Define the pointy by 

Y = (g(x)a - g(a)x)/(g(x) -g(a)). 

(Note that g(u) < 0 and g(x) > 0.) Then by the 
convexity of g and X, we have g(y) Q 0 and y E X, 

i.e. y E c Hence, 

dist[x, ~1 Q I]x -YII 

d-4 
= g(x) _ g(a) IIx - 4. (3.2) 

Since the compactness of X implies the existence 
of an m > 0 such that 

]\X-a]]<m VXEX 

and since 

g(x) -s(a) ’ -s(a) ’ 09 

it follows from (3.2) that 

dist[x, S] < Mg(x), 

with M= -m/g(a)> 0. 0 

Theorem 3.4. Algorithm 3.2 either terminates at an 

optimal solution of (P) or generates an infinite se- 

quence any of whose limit points is an optimal 

solution of(F). 

Proof. According to the notation of Section 2, we 
denote the feasible set of (SP:) by 

Tk’= {xEXIg(x’)+y’(x-x’)<c,, 

i=k,k-1 ,...,k-Sk} 

=HinHL_,n ..-f~Hi_~~, 

where H,’ are the subsets of X defined by 

H,‘= {x~X(g(x’)+y’(x-x’)<c,}. 

Then it is easy to see from the definition of 
l -subgradients that SC Ti for any k. Thus, in view 
of Theorem 2.2, we only need to show that there 
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exists a K such that 

dist[x k, S ]  < x dist[x k, Tk 1] (3.3) 

for all k. However, since T; c H2, we have 

dist[ x k, T;]  >i dist[ x k, H~]. 

Therefore, in order to prove (3.3), it suffices to 
show that 

dist[x k, S ]  ~< x dist[x k, H~] (3.4) 

holds for each k such that x k ~ ~ (Note that (3.3) 
trivially holds if x k ~ ~ since S c Hkl.) 

Suppose that x k ~ ~ i.e. g ( x  k) > 0. Then, since 
~k <~ f ig (xk )  and 0 ~< fl < 1, it is not difficult to see 
that x k does not belong to Hk ~. This implies that 
the closest point to x k in H2, which we denote by 
yk, satisfies the equality 

g(  xk  ) + yk ( yk  -- Xk ) = , k . 

Thus it follows from c k ~< f lg(x  k) that 

( 1  - - x 

~< Ilrklllly k - xkll 

= Ilrkll dist[x k, H2].  

So, by Lemma 3.3, 

M 
dist[x ~, S] ~< 1---~]l~, [I dist[ x~, Hk ~] (3.5) 

for some M > 0. Since X is compact, the convex 
function g is bounded on X, so that the sequence 
{ ~ )  is also bounded. Thus, from Lemma 3.1, 
there exists an L > 0 such that 

II~,~ll~<Z Vk. (3.6) 

Combining (3.5) and (3.6), we finally obtain 

dist[ x ~, S]  ~< x dist[ x ~, Hk~], 

where ¢ = L M / ( 1  - fl). This shows that (3.4) holds 
and the proof is complete. [] 

It is worth noting that the convergence of Algo- 
rithm 3.2 is still valid if constraints of subproblem 
(SP2) are replaced by 

g ( x i ) ' q - ' ~ k ( x - - x i ) < ~ i ,  i E l k  L ) (k  } a n d x ~ X ,  

where 1 k is an arbitrary subset of (1, 2 , . . . ,  k - 1 }. 
This follows from the observation that only the 
constraint g ( x  ~) + ~,k(x - x k) <~ c k plays a crucial 
role and the presence of any other constraints is 
not essential in the proof of Theorem 3.4. 

We next propose another algorithm which con- 
structs deeper cuts by searching points closer to 
the constraint set S. 

Algorithm 3.5. 
Step O. Choose any numbers fl and 2, such that 

0 ~< fl < 1 and 0 < 2~ < 1, respectively. Let a ~ X be 
a point satisfying the Slater's condition (3.1), let 
( t  k } be a sequence of positive numbers satisfying 
Condition C1 and let (s  k ) be an arbitrary se- 
quence of nonnegative integers. Select a starting 
point x ~ ~ X and set k = 1. 

Step 1. If g(xk )>O,  then go to Step 2; other- 
wise, set .~  -- x k and go to Step 3. 

Step 2. Let 14 be the smallest positive integer 1 
such that 

g(Xta + (1 - ~,t)xk) > 0 

and put ~k = XIk and ~k = Xk a + (1 -- Xk)x k. 
Step 3. Find a .~k~ 3,,g(~k), where c k is any 

number such that 

{ O<~ ,k <~g(3c k ) - f l x k ( 1  + X k ) - l g ( a )  

if g (x  k) > 0, (3.7) 

0 ~< c k otherwise. 

Step 4. Solve the subproblem 

1 
maximize c x - ~ - ~ k [ l x -  xkll 2, (SPff) 

subject to g ( M )  + ~ i (x  - Yc') <~ "i, 

i = k , k - 1  . . . . .  k - s ~ ,  
X ~ g ,  

and let the optimal solution be x k÷l. 
Step 5. If x k+l = x k, stop; otherwise, increase k 

by one and return to Step 1. 

The above constraint generation scheme is re- 
garded as an implementable version of the one in 
Veinott's supporting hyperplane method [11]. In 
fact, Veinott's method generates a hyperplane at 
every iteration using information obtained from a 
point at which the line segment joining x k and a 
intersects the boundary of the set S. However, this 
procedure is ideal in the sense that it generally 
requires an infinite number of operations to find 
such a point. On the other hand, in the present 
algorithm, the point jk  can always be determined 
in a finite number of operations. 
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Lemma 3.6. There exists a constant o > 0 such that 

, i f ( x *  - 2 *)  > /o l l?* l l l lx  * - 2'11 (3 .8 )  

for  all k. 

Proof. First note that (3.8) trivially holds for any k 
such that x k E S, because x k ~ S implies x k = 2 k. 
So, in what follows, we assume x k e~ S, i.e. g ( x  k) 
> 0 .  

Since 2 k = Xka + (1 -- Xk)X k and, by the defini- 
tion of (-subgradients, g(a)  >1 g ( 2  k) + f k ( a  - 2 k) 
- % ,  we have 

~ k ( x k - - 2 k ) ~ ) ~ k ( g ( 2 k ) - - g ( a ) - - % } .  (3.9) 

From (3.7), this inequality yields 

f ~ ( x * -  2 ' )  >~ 

>~ --Xk(1 + Xk) - ' {1  +(1  -- f l ) a  k } g ( a )  > O. 

So, in order to prove Lemma 3.6, it suffices to 
show that 

lim inf "~k(Xk-- 2k) > O. (3.10) 
k~oo  II-~*llllx k -  2kll 

Now suppose that there exists a subsequence (x  k, ) 
such that 

lim f k ' ( X k ' - -  2k') = O. 

i ~  ~ II,ff,llll xk,  - 2"11 

Since X is compact and 0 < X k ~< X, the sequence 
{% } is bounded by (3.7), and hence, by Lemma 
3.1[ {.~k,} is bounded also. So we can assume 
without loss of generality that the sequences { x k~ }, 
{2~-, ), (.~k, }, (Xk,) and ( % )  all converge to their 
respective limits x °, 2 °, ~)°,'X o and %. Then it is 
easily seen that f o ~ O ,  og(2O ) and % < ~ g ( x ° )  - 
flXo(1 + ho) - lg (a ) .  Thus by the definition of (- 
subgradients, we have 

g(  a ) >_- g(  2 ° ) + ~° ( a - 2 0 ) - , o  

~ ° ( a  - 2 °) + 13Xo(1 + X o ) - ' g ( a ) ,  

namely, 

" ~ ° ( 2 ° - a ) > ~ -  1 l + X  o g ( a ) > O .  (3.11) 

However, since x k - 2 k = Xk(1 -- Xk)-~(a -- 2~), 
(3.10) implies 

~* , (x* , -  2 . , )  , ? , ( a -  ~ ~, ) 
lim = lim = 0, 

i - .  ~ II-ff,llll x*,  - 2',11 i~oo  II'~*'lllla - 2"11 

which in turn implies 

lim "yk'(a - 2 " )  = "~°(a - 2 °) = 0 
i~oo 

by the boundedness of (.~k,} and {2k'}. This 
contradicts (3.11). [] 

Theorem 3.7. Algorithm 3.5. either terminates at an 
optimal solution of  (P) or generates an infinite se- 
quence any of  whose limit points is an optimal 
solution of  (P). 

Proof. Let us denote the feasible set of (SP~) by 

r~= {x~Xlg(~')+-~'(x-2')~.,, 
i = k , k - 1  . . . . .  k - - S k }  

= Hff r3 H2_ , (3 " . ~ H~_s~ , 

where H, 2 are the subsets of X defined by 

/-/,.2= { x ~  X l g ( 2 ' ) +  f ' ( x -  2')<~ ( , } .  

Clearly, S c  T, 2 c H 2 for all k. Therefore, just as 
in the proof of Theorem 3.4, the present theorem 
is proved if we show the existence of a constant 

> 0 satisfying the inequality 

dist[x k, S ]  ~< x dist[x k, H,  z ] (3.12) 

for each k such that x k e~ S. 
Suppose x k ~ S, i.e. g ( x  k ) > 0, and consider the 

problem 

minimize ½1Ix - Xkll 2, 

subject to g ( 2 * ) + ' ~ k ( x - 2 k ) < ~ % .  (3.13) 

If we denote the optimal solution of (3.13) by z k, 
then we have 

IIz * - x*ll ~ dist[x k, H,z], (3.14) 

because the feasible set of (3.13) is contained in 
the set Hd. Moreover, since (3.9) and (3.7) imply 

g(~k)  + ,~ (x* - ~ )  - , ,  

>_. (1 + x ,  )(  g ( ~ *  ) - ,~ ) - X ~ g ( a )  

>/ - ( 1  - f l ) X k g ( a  ) > 0, (3.15) 

the inequality constraint in (3.13) is necessarily 
active at z k. Thus, from the Kuhn-Tucker  condi- 
tions for (3.13), z k is explicitly expressed as 

z* = x* -11~*11-~{ g ( 2 * )  + ~ * ( x  ~ - 2* )  - ,~ } ~ .  

Substituting this into (3.14) and taking account of 
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(3.15), we obtain 

dist[ x k, H 2 ] >i 

> II-~kll-t{ g ( ~ k ) + ' ~ k ( x k -  ~ k ) -  % }. (3.16) 

Since it is not  difficult to see from (3.7) and (3.9) 
that  

g ( ~ k ) _ %  >~ -- f l{1 + ( 1  -- f l ) X  k } - ' g k ( x k -  YC k) 

>. _ B g k ( x k  _ ,k), 

we have the inequali ty 

g(.~k) + 5,k ( xk  _ .;ck ) _ ,j, >_. (1 -- fl ) ~'k ( Xk -- Yck ). 

(3.17) 

Hence,  using (3.16) and (3.17) and applying 
Lemma  3.6, we get 

d i s t [x  k, Hff] >/[l'~k[I-'(1 -- f l ) ' ~ k ( x k  - ~ k )  

>I (1 - f l ) o l l x  k - ~kl[. (3.18) 

Let v k = ( X k / X ) a  + (1 - ( X k / X ) ) x  k. Then, by the 
construct ion of ~'k, g ( v k )  <~ 0, i.e. v k ~  S, so that 
[Ix I' - vk[[ >~ dist[x k, ,.~]. But since v k - x k = 
X-I(.~ k - xk),  we get 

[[~k _ xk[i >~ X dis t [x  k, S ] .  (3.19) 

Combining (3.18) and (3.19), we finally obtain the 
desired inequali ty (3.12) with x = [ o X ( 1 -  f l ) ] - l .  
This completes the proof. [] 

We have shown that the proposed algorithms 
do not  require the approximat ion of the constraint  

set to be strictly cumulative. It is noted, however, 
that the present modification does not improve the 
rate of convergence of the original algorithms the- 
oretically. This may  be observed from the compu- 
tational results, presented in the next section, which 
exhibit the diminishing efficiency of additional 
cuts in later stages of iterations. 

4. Computational results 

We have implemented Algorithms 3.2 and 3.5 
described in the previous section to solve the fol- 
lowing small test problem: 

maximize cx,  (4.1) 

subject to 

g ( x )  = m a x ( g l ( x ) ,  g z ( x ) ,  g3 (x )  } ~ O, 

x ~ X =  ( x ~ n S [ O < ~ x i < ~ 5 ,  i = 1 , . . . , 5 } ,  

where 

cx = 7x I + 7x 2 + 7x 3 + 6 x  4 + 6x 5 , 

S a ( X )  = x ,  ~ + x~ + 2 x ,  ~ + x4 ~ 

- } - x  I - -  X 2 - -  X 4 "q- X 5 - -  5 ,  

g z ( x )  = 2x  2 + 2x2 2 + x 2 + 2x 2 

+ 2 x  2 4- x 3 + 5X 4 + X 5 -- 16, 

g 3 ( x )  = 3x  2 + x 2 + 2 x  2 + x 2 

"{" X 1 -- X 3 -- X 4 -- 8. 

Table 1 

Iteration Algorithm 3.2 Algorithm 3.5 

cx k IIx k - x*ll cx k 

KCG algorithm 

II xk - x*lt NFUN cx j' IIx k - x*ll 

1 165.00000 8.94427 
2 101.20377 5.90938 
3 85.68508 4.49072 
4 79.04270 3.70954 
5 58.91937 2.34705 
6 37.35069 1.62628 
7 37.51909 1.03778 
8 33.55543 0.84137 
9 32.88895 0.56031 

10 32.91948 0.42046 
15 32.99353 0.08308 
20 32.99888 0.03031 
30 32.99992 0.00818 
40 32.99999 0.00330 
50 33.00068 0.01152 
60 32.99995 0.00668 

165.00000 
48.44000 
35.65141 
33.17567 
33.15836 
33.15035 
33.59944 
33.02578 
33.03109 
33.00301 
32.99998 
33.00000 
32.99975 
32.99998 
33.00000 
33.00000 

8.94427 1 165.00000 8.94427 
4.25206 3 103.50000 7.01783 
1.24912 6 101.12613 6.43677 
1.04959 14 92.48786 6.28025 
0.55111 27 71.55762 4.99214 
0.34071 46 68.58803 4.04427 
0.18661 65 68.54307 2.81441 
0.08372 83 62.37854 2.65672 
0.05727 112 50.00979 3.50724 
0.03405 143 48.03216 2.71343 
0.00555 386 38.88152 1.70923 
0.00201 737 35.45111 0.96926 
0.01273 1033 34.11547 0.35309 
0.00429 1569 34.58001 0.98743 
0.00208 1891 33.31064 0.44212 
0.00115 1974 33.41396 1.32024 
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The optimal solution of this problem is x * =  
(1,1,1,1,1) with optimal value f*  = 33. 

For both algorithms, the point (5,5,5,5,5) was 
chosen as the starting point, the parameters t k 

were set equal to 1 / k  for all k, exact subgradients 
were used to generate constraints, i.e., Ck = 0 and 
fl = 0, and the most recently generated five cuts 
were retained in the subproblems, i.e., s k = 5. Fur- 
thermore, for Algorithm 3.5, the point (0,0,0,0,0) 
was selected as point a satisfying Slater's condition 
and the parameter X was set at 0.8. 

Computations were performed on a FACOM 
M-200 computer at Kyoto University. The results 
are summarized in Table 1, where N F U N  in the 
column 'Algorithm 3.5' designates the total num- 
ber of function calls to evaluate the value of g and 
its subgradient up to the indicated iteration. Of 
course, for Algorithm 3.2, N F U N  coincides with 
the number of iterations, so is ommited from the 
table. It is observed from the table that near 
optimal solutions could be obtained in a relatively 
small number of iterations for both algorithms. 
After approaching the optimal solution to some 
degree, however, the convergence was slow as the 
generated points tended to fluctuate around the 
optimal solution. It is noted that generated se- 
quences are not necessarily monotonic with re- 
spect to both the function value and the distance 

to the optimal solution. Moreover, it is possible 
that points are generated which are infeasible but 
have objective values less than f*.  

Comparing Algorithm 3.5 with Algorithm 3.2, 
the former converged faster than the latter espe- 
cially during early iterations. As for the total num- 
ber of function evaluations, however, the latter 
was apparently more efficient than the former. 
Thus, in practice, it may be worthwhile to use a 
modified version of Algorithm 3.2 which employs 
the cut generation scheme of Algorithm 3.5 only at 
some early iterations. 

In order to evaluate the proposed algorithms 
further, the same test problem was solved by the 
Kelley-Cheney-Goldstein (KCG) cutting plane 
algorithm. As the original KCG algorithm was 
expected to encounter computational difficulties 
due to the rapid increase of constraints of the 
subproblems, we decided to retain only a fixed 
number of most recently generated constraints in 
each subproblem and to drop all other old con- 
straints. By doing so, the monotonicity property of 
the algorithm is lost and the convergence is no 
longer guaranteed in theory. However, when the 
number of the retained constraints was ten, it 
appeared that the generated sequence was converg- 
ing, although it was not monotonic. The behavior 
of the modified KCG algorithm is also shown in 

Table 2 

Iteration Algorithm 3.2 Algorithm 3.5 

cx k IIx k - x*ll cx k 

KCG algorithm 

II x k  - x*ll NFUN cx k I[x k - x'll 

1 243270.0 63.63961 243270.0 
2 678813.0 544.52906 539083.2 
3 490828.8 372.68174 174801.8 
4 409939.0 296.78978 94873.1 
5 348909.7 231.35430 85678.3 
6 276463.1 165.65203 76453.8 
7 248214.8 140.37221 53954.6 
8 207233.4 100,04105 43517.4 
9 193923.8 92,39707 41212.9 

10 169673.8 68.10812 40265.6 
20 118149.7 33,70981 60153.5 
30 57359.0 15.39333 46374.3 
40 38222.0 7.00633 31699.3 
50 29678.0 4.85211 28440.8 

100 26734.5 3.18294 26066.3 
200 24883.4 1.54641 25853.4 
300 24537.0 0.81298 24606.3 
400 24464.0 0.58558 24462.1 
500 24431.3 0.50167 24454.5 

63.63961 1 
543.42477 3 
277.80036 5 
118.26225 7 

80.69773 9 
77,55629 11 
62,13399 13 
32,58802 15 
20,09855 18 
18.77762 21 
36.68110 52 
24.18243 93 
10.04953 146 

4.55354 207 
3.01205 651 
1.63492 1896 
0.95492 3386 
0.61235 5095 
0.61340 6976 

243270.0 63.63961 
720966.5 703.66098 
703233.4 694.57910 
682620.2 695.05448 
670478.0 685.47566 
664779.9 677.54278 
663958.9 673.45669 
663006.7 662.55112 
662320.6 675.37713 
660841.4 666.68603 
619797.0 624.33628 
599607.3 576.42765 
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Table 1. Of course, up to the tenth iteration, the 
generated sequence should be identical with the 
one generated by the original KCG algorithm. It 
can be observed that the convergence of the KCG 
algorithm was considerably slower than that of 
Algorithms 3.2 and 3.5 even in earlier iterations. 
Computational times to perform 60 iterations were: 
about 2 seconds for the KCG algorithm, about 2 
seconds for Algorithm 3.2, and about 3 seconds 
for Algorithm 3.5. 

We have also solved a larger problem of a type 
similar to problem (4.1). The problem contains 
fifty variables and the function g is defined as the 
maximum of fifty convex quadratic functions. The 
optimal value of this problem is 24327. We have 
applied Algorithms 3.2 and 3.5, with t k = 1/k and 
s~ = 10 for all k, to solve this problem. The results 
are summarized in Table 2. This table also pre- 
sents the initial thirty iterations of the KCG algo- 
rithm applied to the same problem. In view of 
Table 2, we may notice that the observations made 
for problem (4.1) hold for this larger problem as 
well. 
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