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Let K be a finite extension of Qp , let L/K be a finite abelian Galois
extension of odd degree and let OL be the valuation ring of L.
We define AL/K to be the unique fractional OL -ideal with square
equal to the inverse different of L/K . For p an odd prime and L/Qp

contained in certain cyclotomic extensions, Erez has described
integral normal bases for AL/Qp that are self-dual with respect to
the trace form. Assuming K/Qp to be unramified we generate odd
abelian weakly ramified extensions of K using Lubin–Tate formal
groups. We then use Dwork’s exponential power series to explicitly
construct self-dual integral normal bases for the square-root of the
inverse different in these extensions.
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1. Introduction

Let K be a finite extension of Qp and let OK be the valuation ring of K with unique maximal
ideal PK and residue field k. We let L/K be a finite Galois extension of odd degree with Galois group
G and let OL be the integral closure of OK in L. From [12, IV §2, Proposition 4], this means that the
different, DL/K , of L/K will have an even valuation, and so we define AL/K to be the unique fractional
ideal such that

AL/K = D
−1/2
L/K .
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supervision of M.J. Taylor.

E-mail address: erikjarl.pickett@epfl.ch.
0022-314X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2009.02.012

https://core.ac.uk/display/81973252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:erikjarl.pickett@epfl.ch
http://dx.doi.org/10.1016/j.jnt.2009.02.012


1774 E.J. Pickett / Journal of Number Theory 129 (2009) 1773–1785
We let T L/K : L × L → K be the symmetric non-degenerate K -bilinear form associated to the trace
map (i.e., T L/K (x, y) = TrL/K (xy)) which is G-invariant in the sense that T L/K (g(x), g(y)) = T L/K (x, y)

for all g in G .
In [1] Bayer-Fluckiger and Lenstra prove that for an odd extension of fields, L/K , of characteristic

not equal to 2, then (L, T L/K ) and (K G, l) are isometric as K -forms, where l : K G × K G → K is the
bilinear extension of l(g,h) = δg,h for g,h ∈ G . This is equivalent to the existence of a self-dual normal
basis generator for L, i.e., an x ∈ L such that L = K G.x and T L/K (g(x),h(x)) = δg,h .

If M ⊂ K G is a free OK G-lattice, and is self-dual with respect to the restriction of l to OK G , then
Fainsilber and Morales have proved that if |G| is odd, then (M, l) ∼= (OK G, l) (see [6, Corollary 4.7]).
The square-root of the inverse different, AL/K , is a Galois module that is self-dual with respect to the
trace form. From [4, Theorem 1], we know that AL/K is a free OK G-module if and only if L/K is at
most weakly ramified, i.e., if the second ramification group is trivial. We know that if [L : K ] is odd,
then (L, T L/K ) ∼= (K G, l). Therefore, if [L : K ] is odd, (AL/K , T L/K ) is isometric to (OK G, l) if and only if
L/K is at most weakly ramified. Equivalently, there exists a self-dual integral normal basis generator
for AL/K if and only if L/K is weakly ramified.

We remark that this problem has not been solved in the global setting. Erez and Morales show
in [5] that, for an odd tame abelian extension of Q, a self-dual integral normal basis does exist for
the square-root of the inverse different. However, in [13], Vinatier gives an example of a non-abelian
tamely ramified extension, N/Q, where such a basis for AN/Q does not exist.

We now assume K is a finite unramified extension of Qp of degree d. We fix a uniformising
parameter, π , and let q = pd = |k|. We define Kπ,n to be the unique field obtained by adjoining to
K the [πn]-division points of a Lubin–Tate formal group associated to π . We note that Kπ,n/K is a
totally ramified abelian extension of degree qn−1(q − 1). In Section 2 we choose π = p and prove that
the pth roots of unity are contained in the field K p,1, therefore any abelian extension of exponent p
above K p,1 will be a Kummer extension.

Let γ p−1 = −p. In [2, §5], Dwork introduces the exponential power series,

Eγ (X) = exp
(
γ X − γ X p)

,

where the right-hand side is to be thought of as the power series expansion of the exponential
function. In [10] Lang presents a proof that Eγ (X)|X=η converges p-adically if v p(η) � 0 and also
that Eγ (X)|X=1 is equal to a primitive pth root of unity. In Section 3 we use Dwork’s power series to

construct a set {e0, . . . , ed−1} ⊂ K p,1 such that K p,2 = K p,1(e1/p
0 , . . . , e1/p

d−1). In Section 3 we use these
elements to obtain very explicit constructions of self-dual integral normal basis generators for AM/K
where M/K is any Galois extension of degree p contained in K p,2.

When K = Qp and π = p the nth Lubin–Tate extensions are the cyclotomic extensions obtained
by adjoining pnth roots of unity to K . Hence the study of the Lubin–Tate extensions, K p,n , can be
thought of as a generalisation of cyclotomy theory. In [3] Erez studies a weakly ramified p-extension
of Q contained in the cyclotomic field Q(ζp2 ) where ζp2 is a p2th root of unity. He constructs a
self-dual normal basis for the square-root of the inverse different of this extension. It turns out that
the weakly ramified extension studied by Erez is, in fact, a special case of the extensions studied
in Section 3 and the self-dual normal basis generator that he constructs is the corresponding basis
generator we have generated using Dwork’s power series, so this work generalises results in [3].

2. Kummer generators

The construction of abelian Galois extensions of local fields using Lubin–Tate formal groups is
standard in local class field theory. For a detailed account see, for example, [9] or [11]. We include a
brief overview for the convenience of the reader and to fix some notation.

Let K be a finite extension of Qp , contained in a fixed algebraic closure K̄ . Let π be a uniformising
parameter for OK and let q = |OK /PK | be the cardinality of the residue field. We let f (X) ∈ XOK � X �
be such that

f (X) ≡ π X mod deg 2, and f (X) ≡ Xq mod π.
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We now let F f (X, Y ) ∈ OK � X, Y � be the unique formal group which admits f as an endomorphism.
This means F f ( f (X), f (Y )) = f (F f (X, Y )) and that F f (X, Y ) satisfies some identities that correspond
to the usual group axioms, see [11, §3.2] for full details. For a ∈ OK , there exists a unique formal
power series, [a] f (X) ∈ XOK � X �, that commutes with f such that [a] f (X) ≡ aX mod deg 2. We can
use the formal group, F f , and the formal power series, [a] f , to define an OK -module structure on
Pc

K̄
= ⋃

L PL , where the union is taken over all finite Galois extensions L/K where L ⊆ K̄ . We are
going to look at the πn-torsion points of this module. We let E f ,n = {x ∈ Pc

K̄
: [πn] f (x) = 0} and

Kπ,n = K (E f ,n). We remark that the set E f ,n depends on the choice of the polynomial f but due to
a property of the formal group (see [11, §3.3, Proposition 4]), Kπ,n depends only on the uniformising
parameter π . The extensions Kπ,n/K are totally ramified abelian extensions. If we let K = Qp we can
let π = p and f (X) = (X + 1)p − 1. We then see that K p,n = Qp(ζpn ) where ζpn is a primitive pnth
root of unity.

We now let K be an unramified extension of Qp of degree d. We note that q = pd and that we
can take π = p. We can then let f (X) = Xq + p X and note that K p,1 = K (β) where βq−1 = −p. If we
let γ = β(q−1)/(p−1) then γ p−1 = −p and K (γ ) ⊆ K p,1. From now on we will let K (γ ) = K ′ . We will
use Dwork’s exponential power series to construct Kummer generators for K p,2 over K p,1.

Definition 1. Let γ p−1 = −p. We define Dwork’s exponential power series as

Eγ (X) = exp
(
γ X − γ X p)

,

where the right-hand side is to be thought of as the power series expansion of the exponential
function.

From [10, Chapter 14 §2], we know that Eγ (X)|X=x converges p-adically when v p(x) � 0 and that
Eγ (X) ≡ 1 + γ X mod γ 2. We know then that Eγ (X)|X=1 	= 1. We now raise Dwork’s power series to
the power p and see

exp
(
γ X − γ X p)p = exp

(
p
(
γ X − γ X p))

= exp
(
γ p X − γ p X p)

= exp(γ p X)exp
(−γ p X p)

.

As exp(pγ X)|X=x converges when v p(x) � 0 we can evaluate both sides at X = 1 and see
(exp(γ X − γ X p)p)|X=1 = exp(γ p X)|X=1 exp(−γ p X p)|X=1 = 1. Therefore, Eγ (X)|X=1 is equal to a
primitive pth root of unity. This implies that K ′ = K (γ ) = K (ζp).

Let ζq−1 be a primitive (q − 1)th root of unity. From [8, Theorem 25], we know K is uniquely
defined and is equal to Qp(ζq−1). From [8, Theorem 23] we then know that OK = Zp[ζq−1]. We now
define {ai: 0 � i � d − 1} to be a Zp-basis for OK where a0 = 1 and each ai is a (q − 1)th root of

unity. We also define ei = Eγ (X)|X=ai and let K2 = K p,1(e1/p
0 , e1/p

1 , . . . , e1/p
d−1). We will now show that

K2 = K p,2.

Lemma 2. NK2/K (K∗
2) = 〈π〉 × (1 + P2

K ) for some uniformising parameter, π of OK .

Proof. As Eγ (X) ≡ 1 + γ X mod γ 2 we see that ei ≡ 1 + γ ai mod γ 2. We define E to be the set

E = 〈ei: 0 � i � d − 1〉(O×
K (γ )

)p/(
O

×
K (γ )

)p

with multiplicative group structure. We have an isomorphism of groups E −→ (PK )/(pPK ), using the
additive group structure of (PK )/(pPK ), which sends ei to ai . We remark that here pPK = P2

K . From
our selection of the set {ai: 0 � i � d − 1} as a basis for OK we know that the ei must be linearly
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independent (multiplicatively) over Fp . Therefore, we know that Gal(K2/K p,1) must be isomorphic

to
∏d

i=1 C p . From standard theory (see [11, §3]), we know Gal(K p,2/K p,1) ∼= PK /P2
K , which is also

isomorphic to
∏d

i=1 C p . Therefore, Gal(K2/K ) ∼= Gal(K p,2/K ) ∼= Cq−1×∏d
i=1 C p .

The extensions K2/K and K p,2/K are both finite abelian extensions of local fields. By the Artin
symbol, (see [14, Appendix, Theorem 7]), we know that

K ×/NK p,2/K
(

K ×
p,2

) ∼= Gal(K p,2/K ) and K ×/NK2/K
(

K×
2

) ∼= Gal(K2/K ),

and so

K ×/NK p,2/K
(

K ×
p,2

) ∼= K ×/NK2/K
(

K×
2

)
.

From [9, Proposition 5.16] we know that NK p,2/K (K ×
p,2) = 〈p〉 × (1 + P2

K ). As K × is an abelian group

we must then have NK2/K (K×
2 ) ∼= 〈p〉 × (1 + P2

K ).
It is straightforward to check that K2/K is totally ramified. Therefore, from [7, IV §3], we know

that K ×/NK2/K (K×
2 ) = O

×
K /NK2/K (O×

K2
) (∼= Cq−1×∏d

i=1 C p ). The group O
×
K

∼= Cq−1×(1 +PK ), so we
know that

(1 + PK )/NK2/K
(
O

×
K2

) ∼=
d∏

i=1

C p .

As K/Qp is unramified and p > 2, the logarithmic power series gives us an isomorphism of groups,

log: 1 + PK ∼= PK (∼= ⊕d−1
i=0 Zp), using the multiplicative structure of 1 + PK and the additive struc-

ture of PK , see [7, Chapter IV, Example 1.4] for full details. The maximal p-elementary abelian
quotient of

⊕d
i=1 Zp is given by

⊕d
i=1 Zp/

⊕d
i=1 pZp ∼= ∏d

i=1 C p and the unique subgroup that gives

this quotient is
⊕d

i=1 pZp . We then have PK /pPK ∼= ∏d
i=1 C p and using the logarithmic isomorphism

we see (1 +PK )/(1 + PK )p ∼= ∏d
i=1 C p . This means that (1 + PK )p is the unique subgroup of 1 + PK

that gives the maximal p-elementary abelian quotient. As above we have (1 + PK )p = 1 + P2
K and

therefore,

NK2/K
(
O

×
K2

) = 1 + P2
K .

Let Π be a uniformising parameter for K2. As K2/K is totally ramified, NK2/K (Π) = π must be a
uniformising parameter of K . Since NK2/K (K×

2 ) is a group under multiplication we know that 〈π〉
must be a subgroup. We have already seen that (1 + P2

K ) is a subgroup, so as NK2/K (K×
2 ) is abelian,

we must have

〈π〉×(
1 + P2

K

) ⊆ NK2/K
(

K×
2

)
.

The subgroups 〈π〉×(1 + P2
K ) and NK2/K (K×

2 ) both have the same finite index in K × , therefore we
must have equality. �

To prove the next lemma we will use some properties of the pth Hilbert pairing for a field that
contains the pth roots of unity. For full definitions and proofs see [7, Chapter IV]. We include the
properties we will need for the convenience of the reader.

Definition 3. Let L be a field of characteristic 0 with fixed separable algebraic closure L̄ and let μp be
the group of pth roots of unity in L̄. Let μp ⊆ L. We define the pth Hilbert symbol of L as
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( , )p,L : L××L× −→ μp,

(a,b) �−→ (AL(a))(b1/p)

b1/p
,

where AL : L× −→ Gal(Lab/L) is the Artin map of L (see [9, Chapter 6, §3] for details).

In [7, Chapter IV, Proposition 5.1] it is proved that if L′/L is a finite Galois extension of local fields,
then the Hilbert symbol satisfies the following conditions.

(1) (a,b)p,L = 1 if and only if a ∈ NL(b1/p)/L(L(b1/p)×), and (a,b)p,L = 1 if and only if b ∈
NL(a1/p)/L(L(a1/p)×),

(2) (a,b)p,L′ = (NL′/L(a),b)p,L for a ∈ L′× and b ∈ L× ,
(3) (a,1 − a)p,L = 1 for all 1 	= a ∈ L× ,
(4) (a,b)p,L = (b,a)−1

p,L .

Lemma 4.

p ∈ NK2/K
(

K∗
2

)
.

Proof. First we show that (ei, ζp − 1)p,K ′ = 1 for all 0 � i � d − 1.
Recall that K ′ = K (ζp) and consider the field extension K ′/Qp(ζp). This is an unramified extension

of degree d. As ζp −1 ∈ Qp(ζp), we can use property 2 of the Hilbert symbol to show (ei, ζp −1)p,K ′ =
(NK ′/Qp(ζp)(ei), ζp − 1)p,Qp(ζp). Recall that ei = Eγ (X)|X=ai where the set {ai: 0 � i � p − 1} forms a

basis for OK over Zp , all the ai are (pd −1)th roots of unity and a0 = 1. The action of the Galois group
Gal(K/Qp) on each ai (which will be the same as the action of Gal(K ′/Qp(ζp)) will be generated by
the Frobenius element,

φK/Qp : ai �→ ap
i .

We know that Eγ (X)|X=x converges when v p(x) � 0. As apk

i ∈ O
×
K , we have that Eγ (X)|

X=apk

i

con-

verges for all k ∈ Z. Therefore Eγ (X pk
)|X=ai must converge and

φk
K/Qp

(ei) = Eγ

(
X pk )∣∣

X=ai
,

where φk
K/Qp

is the Frobenius element, φK/Qp , applied k times. We can now make the following

derivation.

NK ′/Qp(ζp)(ei) =
∏

g∈Gal(K ′/Qp(ζp))

g(ei) =
d−1∏
k=0

φk
K/Qp

(ei)

=
d−1∏
k=0

Eγ

(
X pk )∣∣

X=ai
=

d−1∏
k=0

exp
(
γ X pk − γ X pk+1)∣∣

X=ai

= exp
((

γ X − γ X p) + (
γ X p − γ X p2) + · · · + (

γ X pd−1 − X pd))∣∣
X=ai

= exp
(
γ X − γ X pd)∣∣

X=ai
.

We now consider raising to the power p and see
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exp
(
γ X − γ X pd)p = exp

(
p
(
γ X − γ X pd))

= exp
(

pγ X − pγ X pd)
= exp(pγ X)exp

(−pγ X pd )
.

The power series exp(pγ X)|X=x will converge when v p(x) � 0 so we can evaluate at X = ai and
see, (NK ′/Qp(ζp)(ei))

p = 1. Therefore NK ′/Qp(ζp)(ei) is a pth root of unity for all 0 � i � d − 1. If
NK ′/Qp(ζp)(ei) = 1 then (NK ′/Qp(ζp)(ei),1 − ζp)p,Qp(ζp) = (1,1 − ζp)p,Qp(ζp) = 1, so we now assume
NK ′/Qp(ζp)(ei) is a primitive pth root of unity. From property 3 of the Hilbert symbol we know that

(ζp,1 − ζp)p,Qp(ζp) = 1. We know that for 1 � k � p − 1, then Qp(ζp)(ζ
1/p
p ) = Qp(ζp)(ζ

k/p
p ), and

so from property 1 of the Hilbert symbol we know that (ζ k
p ,1 − ζp)p,Qp(ζp) = 1. This means that

(ei,1 − ζp)p,K ′ = 1 for all 0 � i � d − 1. We now let ξi ∈ K ′(e1/p
i ) be such that N

K ′(e1/p
i )/K ′ (ξi) = 1 − ζp .

As p is odd, N
K ′(e1/p

i )/K ′ (−ξi) = ζp − 1, and therefore

(ei, ζp − 1)p,K ′ = 1

for all 0 � i � d − 1.
Next we show that ζp − 1 ∈ NK2/K ′ (K×

2 ). We have just shown that ζp − 1 ∈ N
K ′(e1/p

0 )/K ′ (K ′(e1/p
0 )×).

We assume, for induction, that

ζp − 1 ∈ N
K ′(e1/p

0 ,...e1/p
j )/K ′

(
K ′(e1/p

0 , . . . e1/p
j

)×)

for some 0 � j � p − 1. Let η ∈ K ′(e1/p
0 , . . . , e1/p

j )× be such that N
K ′(e1/p

0 ,...e1/p
j )/K ′ (η) = ζp − 1. As

e j+1 ∈ K ′ we can make the following derivation:

(η, e j+1)p,K ′(e1/p
0 ,...,e1/p

j )
= (

N
K ′(e1/p

0 ,...,e1/p
j )/K ′(η), e j+1

)
p,K ′

= (ζp − 1, e j+1)p,K ′

= (e j+1, ζp − 1)−1
p,K ′ = 1.

Therefore,

η ∈ N
K ′(e1/p

0 ,...,e1/p
j+1)/K ′(e1/p

0 ,...,e1/p
j )

(
K ′(e1/p

0 , . . . , e1/p
j+1

)×)
,

and so

(ζp − 1) ∈ N
K ′(e1/p

0 ,...,e1/p
j+1)/K ′

(
K ′(e1/p

0 , . . . , e1/p
j+1

)×)
.

By induction on j we see that (ζp − 1) ∈ NK2/K ′ (K×
2 ).

Finally we note that the minimal polynomial of ζp − 1 over K is f (X) = ((X + 1)p − 1)/X . The
constant term in f (X) is equal to p and K ′ is the splitting field of f (X). Therefore, as [K ′ : K ] is even,
NK ′/K (ζp − 1) = p. The norm map is transitive, so we know that p ∈ NK2/K (K×

2 ). �
Theorem 5.

K p,2 = K p,1
(
e1/p

0 , e1/p
1 , . . . , e1/p

d−1

)
.
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Fig. 1. Abelian extensions of K .

Proof. From Lemma 2 we know that NK2/K (K×
2 ) = 〈π〉 × 1 + P2

K where π = up for some u ∈ O
×
K .

From Lemma 4 we know that p ∈ NK2/K (K×
2 ) and therefore that NK2/K (K×

2 ) = 〈p〉×1+P2
K . From [9,

Proposition 5.16], we know that NK p,2/K (K ×
p,2) = 〈p〉 × (1 + P2

K ). As K2/K and K p,2/K are both finite

abelian extensions of local fields contained in K̄ and NK p,2/K (K ×
p,2) = NK2/K (K×

2 ), from [14, Appendix,
Theorem 9], we know that K2 = K p,2. �
3. Explicit self-dual normal bases for AM/K

We begin this section by describing the intermediate fields of K p,2/K that we are going to study.
The extension K p,2/K p,1 is a totally ramified abelian extension of degree q. There will be (q − 1)/

(p − 1) intermediate fields, N j such that [K p,2 : N j] = q/p and [N j : K p,1] = p. The pth roots of unity
are contained in K p,1, so for each j, the extension N j/K p,1 will be a Kummer extension. We recall
that {ai: 0 � i � d − 1} is a Zp-basis for OK where a0 = 1 and all the ai are (q − 1)th roots of

unity. We have shown that K p,2 = K (e1/p
0 , e1/p

1 , . . . e1/p
d−1), where the ei = Eγ (X)|X=ai . Therefore each

N j = K p,1(x1/p
j ) for x j = ∏d−1

i=0 eni
i for some 0 � ni � p − 1, not all zero. We now note that for all

x = ∏d−1
i=0 eni

i as above, we have x ∈ K ′(= K (γ ) = K (ζp)). Therefore K ′(x1/p
j ) is the unique extension

of K ′ of degree p contained in N j . There is also a unique extension of K of degree p contained

in N j , we shall call this extension M j and let Gal(K ′(x1/p
j )/M j) = � j . From now on we will drop the

subscript for N j , x j , M j and � j as the following results do not depend on which x j = ∏d−1
i=0 eni

i we
pick. To clarify, we will describe these extensions in Fig. 1.

We also let Gal(K ′(x1/p)/K ′) = G , and as all the groups we are dealing with are abelian we will
use an abuse of notation and write Gal(M/K ) = G and Gal(K ′/K ) = �.
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Let AM/K = D
−1/2
M/K be the square-root of the inverse different of M/K . The aim now is to show

that (1 + Tr�(x1/p))/p is a self-dual normal basis for AM/K .
We remark that if K = Qp , then K ′ = K p,1, N1 = K p,2 = K ′(x1/p) and the only choice for x is

Eγ (X)|X=1 = ζp . In [3] Erez shows that in this case (1 + Tr�(ζ
1/p
p ))/p does indeed give a self-dual

normal basis for AM/K . So the situation we describe generalises the work in [3].
Before we proceed to the main results of this section we must make some basic calculations about

the field extensions to be studied.

Lemma 6.

v M(AM/K ) = 1 − p.

Proof. We first calculate the ramification groups of K p,2/K p,1. We recall that f (X) = Xq + p X . If we
let u ∈ μq−1 ∪ {0}(= k), clearly [u](X) = u X and [up](X) = u[p](X). Let α be a primitive [p2]-division
point for F f (X, Y ). We see that

f
([up + 1](α)

) = f
(

F
(
u[p](α),α

))
= F

(
f
(
u[p](α)

)
, f (α)

)
= F

(
u f 2(α), f (α)

)
= f (α).

Therefore [up + 1](α) is another primitive [p2]-division point and the Galois conjugates of α over
K p,1 are given by [up + 1](α) for u ∈ μq−1 ∪ {0}.

Given f (X) ∈ OK [X] such that f (X) ≡ p X mod deg 2 and f (X) ≡ Xq mod p, the standard proof
in the literature of the existence of a formal group F (X, Y ) ∈ OK � X, Y � such that F commutes with
f uses an iterative process for calculating F f . See, for example, [11, §3.5, Proposition 5] or [9, III,
Proposition 3.12]. The ith iteration calculates F (X, Y ) mod deg(i + 1) and passage to the inductive
limit gives F (X, Y ). We will use this process to calculate the first few terms of F (X, Y ).

We will let F i(X, Y ) ≡ F (X, Y ) mod deg(i + 1) and define Ei to be the ith error term, i.e., Ei =
f (F i−1(X, Y )) − F i−1( f (X), f (Y )) mod deg(i + 1). From [11, §3.5, Proposition 5] we then have

F i+1(X, Y ) = F i(X, Y ) − Ei

p(1 − pi−1)
.

F (X, Y ) is a formal group, so F 1(X, Y ) = X + Y . We then see

f
(

F 1(X, Y )
) − F 1( f (X), f (Y )

) = (X + Y )q + p(X + Y ) − (
Xq + p X + Y q + pY

)

=
q−1∑
i=1

(
q

i

)
Xi Y q−i .

So the error terms will be Ei = 0 for 2 � i � q − 1 and Eq = ∑q−1
i=1

(q
i

)
Xi Y q−i . From [11, §3.5, Proposi-

tion 5], we then get

F (X, Y ) ≡ X + Y −
∑q−1

i=1

(q
i

)
Xi Y q−i

p(1 − pq−1)
mod deg(q + 1).
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We now substitute X = α and Y = u[p](X) = u(αq + pα) into our expression for F (X, Y ) and see that

[1 + up](α) ≡ α + u
(
αq + pα

) −
∑q−1

i=1

(q
i

)
αi(u(αq + pα))q−i

p(1 − pq−1)
mod αq+1

≡ (1 + up)α +
(

u −
∑q−1

i=1 (up)q−i
(q

i

)
p(1 − pq−1)

)
αq mod αq+1.

Let Γ = Gal(K p,2/K p,1). We know that α is a uniformising parameter for OK p,2 and that p ∈ P
q(q−1)
K p,2

.
An element s ∈ Γ is in the ith ramification group (with the lower numbering), Γi , if and only
if s(α)/α ≡ 1 mod Pi

K p,2
, see [12, IV §2, Proposition 5]. We have shown that for 1 	= s ∈ Γ then

s(α)/α ≡ 1 + uαq−1 mod P
q
K p,2

. Therefore, Γ = Γi for 0 � i � (q − 1) and Γq = {1}.
To calculate the ramification groups of N/K p,1 we need to change the numbering of the rami-

fication groups of K p,2/K p,1 from lower numbering to upper numbering. From [12, IV §3] we have
Γ −1 = Γ , Γ 0 = Γ0 and Γ φ(m) = Γm where φ(m) = 1

|Γ0|
∑m

i=1 |Γi|. A straightforward calculation then
shows that the upper numbering is actually the same as the lower numbering. From [12, IV §3, Propo-
sition 14] we then know that Gal(N/K p,1) = Gal(N/K p,1)

i for 0 � i � (q − 1). and Gal(N/K p,1)
q = {1}

and switching back to the lower numbering we have Gal(N/K p,1) = Gal(N/K p,1)i for 0 � i � (q − 1).
and Gal(N/K p,1)q = {1}.

From [12, IV §2, Proposition 4], we have the formula,

v N (DN/K p,1 ) =
∑
i�0

(∣∣Gal(N/K p,1)i
∣∣ − 1

)
,

and so v N (DN/K p,2 ) = q(p − 1). The extensions N/M and K p,1/K are both totally, tamely ramified
extensions of degree q − 1, so from the formula above we know that v N (DN/M) = v K p,1 (DK p,1/K ) =
q−2. From [8, III.2.15] we know, for a separable tower of fields L′′ ⊇ L′ ⊇ L, the differents of these field
extensions are linked by the formula DL′′/L = DL′′/L′DL′/L . We therefore have v M(DM/K ) = 2(p − 1),
and so v M(AM/K ) = 1 − p. �
Remark 7. We remark that this lemma implies that M/K is weakly ramified.

We now prove a very useful result that makes finding self-dual integral normal bases much easier.

Lemma 8. Let a be an element of AL/K that is self-dual with respect to the trace form, (i.e., T L/K (g(a),h(a)) =
δg,h for all g,h ∈ G), then AL/K = OK [G].a.

Proof. Let a ∈ AL/K be as given. The square-root of the inverse different, AL/K , is a fractional OL -ideal
stable under the action of the Galois group, G , therefore OK [G].a ⊆ AL/K .

The inclusion of OK -lattices, OK [G].a ⊆ AL/K , means that AD
L/K ⊆ (OK [G].a)D where D denotes

the OK -dual taken with respect to the trace form. As AL/K = AD
L/K , we have AL/K ⊆ (OK [G].a)D . We

know that OK [G].a is OK -free on the basis {g(a): g ∈ G}, so (OK [G].a)D is OK -free on the dual
basis with respect to the trace form, which is {g(a): g ∈ G}. Therefore (OK [G].a)D = OK [G].a and
AL/K ⊆ OK [G].a, and so AL/K = OK [G].a. �

For each x = ∏d−1
i=0 eni

i with 0 � ni � p −1 not all zero, we know that there exists u ∈ O
×
K such that

x ≡ 1 + uγ mod γ 2. The element γ is a uniformising parameter for OK ′ , therefore, x ∈ O
×
K ′ and x − 1

will also be a uniformising parameter for OK ′ . Using the binomial theorem we note that (x1/p −1)p =
x − 1 + py where v K ′(x1/p)(y) � 0. Therefore v K ′(x1/p)((x1/p − 1)p) = p and v K ′(x1/p)(x1/p − 1) = 1, so
x1/p − 1 is a uniformising parameter for OK ′(x1/p) .
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Lemma 9.

1 + Tr�(x1/p)

p
∈ AM/K .

Proof. We have just shown that x1/p − 1 is a uniformising parameter for OK ′(x1/p) . As K ′(x1/p)/M is
a totally, tamely ramified extension, we know that Tr�(x1/p − 1) ∈ PM so v M(Tr�(x1/p − 1)) � 1. We
know that

Tr�

(
x1/p − 1

) = Tr�

(
x1/p) − (p − 1) = (

1 + Tr�

(
x1/p)) − p.

Therefore, v M(1+Tr�(x1/p)) � 1 and v M(
1+Tr�(x1/p)

p ) � 1− p. Since v M(AM/K ) = 1− p, we must have
1+Tr�(x1/p)

p ∈ AM/K . �
Lemma 10. Let x = ∏d−1

i=0 eni
i for some ni ∈ Z+ , and let δ ∈ � = Gal(K ′(x1/p)/M). Let δ : γ �→ χ(δ)γ with

χ(δ) ∈ μp−1 , then δ(x) = xχ(δ).

Proof. As χ(δ)p = χ(δ), for all δ ∈ � we have the following equality:

exp
(
χ(δ)γ X − χ(δ)γ X p) = exp

((
χ(δ)γ X

) + (χ(δ)γ X)p

p

)
.

As χ(δ) is a unit we know, from [10, Chapter 14, §2] that exp((χ(δ)γ X) + (χ(δ)γ X)p

p )|X=y will con-
verge when v p(y) � 0. Therefore, exp(χ(δ)γ X −χ(δ)γ X p)|X=ai will converge. We can now make the
following derivation:

(
Eγ (X)|X=ai

)χ(δ) = (
exp

(
γ X − γ X p)∣∣

X=ai

)χ(δ)

= exp
(
χ(δ)

(
γ X − γ X p))∣∣

X=ai

= exp
(
χ(δ)γ X − χ(δ)γ X p)∣∣

X=ai
.

As ai is fixed by all δ ∈ � we see that

δ
(
γ X − γ X p)∣∣

X=ai
= (

δ(γ )X − δ(γ )X p)∣∣
X=ai

= (
χ(δ)γ X − χ(δ)γ X p)∣∣

X=ai
.

As exp(χ(δ)γ X − χ(δ)γ X p)|X=ai converges we must then have

exp
(
χ(δ)γ X − χ(δ)γ X p)∣∣

X=ai
= exp

(
δ(γ )X − δ(γ )X p)∣∣

X=ai

= δ
(
exp

(
γ X − γ X p)∣∣

X=ai

)
= δ

(
Eγ (X)|X=ai

)
.

Therefore, δ(ei) = (ei)
χ(δ) for all 0 � i � (d − 1), which means δ(x) = xχ(δ) . �

Lemma 11. Let g ∈ Gal(M/K ), then

T M/K

(
1 + Tr�(x1/p)

p
, g

(
1 + Tr�(xi/p)

p

))
= δ1,g .
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Proof. First we observe that TrG(xi/p) = ∑
g∈G g(xi/p) = x1/p ∑p−1

j=0 ζ
i j
p = 0 for all p | i. The trace map

is transitive, so TrG(Tr�(xi/p)) = Tr�(TrG(xi/p)) = Tr�(0) = 0 for p | i. We make the following deriva-
tion:

TrG

((
1 + Tr�(x1/p)

p

)
g

(
1 + Tr�(x1/p)

p

))

= TrG

((
1 + Tr�(x1/p)

p

)(
1 + g(Tr�(x1/p))

p

))

= TrG

(
1 + Tr�(x1/p) + g(Tr�(x1/p)) + Tr�(x1/p)g(Tr�(x1/p))

p2

)

= TrG

(
1 + Tr�(x1/p)g(Tr�(x1/p))

p2

)

= p + TrG(Tr�(x1/p)g(Tr�(x1/p)))

p2
.

The right-hand side of this equation equals 1 if and only if TrG(Tr�(x1/p)g(Tr�(x1/p))) = (p − 1)p,
and it equals 0 if and only if TrG(Tr�(x1/p)g(Tr�(x1/p))) = −p. Therefore it is sufficient to show

TrG
(
Tr�

(
x1/p)

g
(
Tr�

(
x1/p))) =

{
(p − 1)p if g = id,

−p if g 	= id.

From Lemma 10 we know that δ(x) = xχ(δ) . This means that δ(x1/p) = ζδxχ(δ)/p for some ζδ ∈ μp .
We know that μp−1 ⊂ Z×

p so we can write χ(δ) ≡ j(δ) mod p, for some 1 � j(δ) � (p − 1) and note
that j(δ) = j(δ′) if and only if δ = δ′ . We can therefore define a set of constants {λ j(δ) ∈ OK ′ : δ ∈ �}
such that δ(x1/p) = λ j(δ)x j(δ)/p . We now define σ ∈ � to be the involution such that χ(σ ) = −1
and j(σ ) = p − 1 and note that σ(ζp) = ζ−1

p . We consider the double action of σ on x1/p . We have

σ(x1/p) = ζσ xχ(σ )/p = ζσ x−1/p , so

σ 2(x1/p) = σ(ζσ )σ
(
x−1/p)

= ζ−1
σ σ

(
x1/p)−1

= ζ−1
σ

(
ζσ x−1/p)−1

= ζ−2
σ x1/p .

As σ is an involution, x1/p = ζ−2
σ x1/p , so we have ζσ = 1. Therefore, σ(x1/p) = x−1/p = (1/x)x(p−1)/p ,

and so λp−1 = 1/x.
For g ∈ G we know that g(x1/p) = ζ i x1/p for some 0 � i � p − 1 with i = 0 when g = id. Using

this notation we make the following derivation:

TrG
(
Tr�

(
x1/p)

g
(
Tr�

(
x1/p))) = TrG

(( ∑
ξ∈�

ξ
(
x1/p))(

g

( ∑
η∈�

η
(
x1/p))))

= TrG

( ∑
ξ∈�

∑
η∈�

ξ
(
x1/p)

g
(
η
(
x1/p)))
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= TrG

( ∑
ξ∈�

∑
η∈�

ξ
(
x1/p)

ηg
(
x1/p))

as G × � is abelian

= TrG

( ∑
ξ∈�

∑
δ∈�

ξ
(
x1/p)

ξδg
(
x1/p))

where δ = ξ−1η

= TrG

( ∑
ξ∈�

ξ

( ∑
δ∈�

(
x1/p)

δg
(
x1/p)))

= TrG×�

( ∑
δ∈�

(
x1/p)

δg
(
x1/p))

=
∑
δ∈�

TrG×�

((
x1/p)

δg
(
x1/p))

=
∑
δ∈�

TrG×�

((
x1/p)

δ
(
ζ i

p

(
x1/p)))

=
∑
δ∈�

TrG×�

((
x1/p)

δ
(
x1/p)

δ
(
ζ i

p

))

=
∑
δ∈�

TrG×�

((
x1/p)(

λ j(δ)x j(δ)/p)
ζ

i j(δ)
p

)

=
p−1∑
j=1

TrG×�

((
x1/p)(

λ j x
j/p)

ζ
i j
p
)

=
p−1∑
j=1

TrG×�

((
x( j+1)/p)

λ jζ
i j
p
)
.

Now TrG×�((x( j+1)/p)λ jζ
i j
p ) = Tr�(λ jζ

i j
p (TrG(x( j+1)/p))) as λ j, ζ

i j
p ∈ K ′ and we saw above that

TrG(x( j+1)/p) = 0 apart from when j = p − 1. Using this and that fact that λp−1 = 1/x we see that

TrG
(
Tr�

(
x1/p)

g
(
Tr�

(
x1/p))) = Tr�

(
(1/x)ζ i(p−1)

p
(
TrG(x)

))
= pTr�

(
ζ−i).

Therefore,

TrG
(
Tr�

(
x1/p)

g
(
Tr�

(
x1/p))) =

{
(p − 1)p if g = id,

−p if g 	= id

as required. �
Theorem 12. For all x j = ∏d−1

i=0 eni
i with 0 � ni � p − 1 not all zero,

1 + Tr� j (x1/p
j )

p

is a self-dual normal basis generator for AM j/K .
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Proof. From Lemma 9 we know that (1 + Tr� j (x1/p
j ))/p ∈ AM/K . From Lemma 11 we know that

T M/K

(1 + Tr� j (x1/p
j )

p
, g

(1 + Tr� j (x1/p
j )

p

))
= δ1,g

for all g ∈ Gal(M/K ). Therefore, using Lemma 8 we know that (1+Tr� j (x1/p
j ))/p is a self-dual normal

basis generator for AM j/K . �
Remark 13.

(1) We remark that for every Galois extension, M ′/K , of degree p contained in K p,2 we can construct
a self-dual normal basis generator for AM′/K in this way.

(2) Let M = ∏
j M j be the compositum of the field extensions M j for all j (M is actually equal

to
∏

x j∈{ei : 0�i�d−1} Mi ). This is a weakly ramified extension of K of degree q. The product∏q−1
i=0 (1 + Tr�(e1/p

i ))/(p) is then a self-dual element in M and seems like the obvious choice
for a self-dual integral normal basis generator for AM/K . However v M(AM/K ) = 1 − q, and so∏q−1

i=0 (1 + Tr�(e1/p
i ))/(p) /∈ AM/K so generalisation up to M is not as straight forward as one

might hope.
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