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SUMMARY

The small intestinal epithelium is the most rapidly
self-renewing tissue of mammals. Proliferative cells
are confined to crypts, while differentiated cell types
predominantly occupy the villi. We recently demon-
strated the existence of a long-lived pool of cycling
stem cells defined by Lgr5 expression and inter-
mingled with post-mitotic Paneth cells at crypt
bottoms. We have now determined a gene signature
for these Lgr5 stem cells. One of the genes within this
stem cell signature is the Wnt target Achaete scute-
like 2 (Ascl2). Transgenic expression of the Ascl2
transcription factor throughout the intestinal epithe-
lium induces crypt hyperplasia and ectopic crypts
on villi. Induced deletion of the Ascl2 gene in adult
small intestine leads to disappearance of the Lgr5
stem cells within days. The combined results from
these gain- and loss-of-function experiments imply
that Ascl2 controls intestinal stem cell fate.

INTRODUCTION

Intestinal crypts contain stem cells and their transit-amplifying

(TA) daughter cells. Cells exiting the proliferative crypts onto

the villi terminally differentiate into enterocytes, goblet cells

and enteroendocrine cells. Paneth cells escape the crypt-villus

flow by migrating to crypt bottoms where they live for several

weeks. With the exception of stem cells and Paneth cells, the

intestinal epithelium is renewed approximately every 5 days

(Barker et al., 2008). Proliferation of epithelial crypt cells is

Wnt-dependent. Mice that are mutant for an intestine-specific

member of the Tcf transcription factor family, Tcf4/Tcf7l2, fail

to establish proliferative crypts during late gestation (Korinek

et al., 1998), while conditional deletion of b-catenin (Ireland

et al., 2004; Fevr et al., 2007) as well as transgenic expression

of the secreted Dickkopf-1 Wnt inhibitor (Pinto et al., 2003; Kuh-

nert et al., 2004) leads to disappearance of proliferative crypts in

adult mice. Moreover, malignant transformation of intestinal

epithelium is almost invariably initiated by activating Wnt

pathway mutations (Korinek et al., 1997; Morin et al., 1997).

Because of the intimate connection between Wnt signaling

and intestinal biology, we have attempted to unravel the TCF4
target gene program activated by this pathway in crypts and

colorectal tumors (van de Wetering et al., 2002; van Es et al.,

2005; van der Flier et al., 2007). Using Cre-mediated genetic

tracing, we demonstrated that Lgr5 marks long-lived, multipotent

stem cells (Barker et al., 2007), as predicted originally by Leblond

and colleagues (Cheng and Leblond, 1974a, 1974b; Bjerknes

and Cheng, 1981a, 1981b, 1999). Each crypt bottom harbours

around six of these small, cycling cells intermingled with Paneth

cells. Although Lgr5 stem cells occasionally occupy a position

directly above the Paneth cells, they are distinct from another

proposed stem cell population located at the so called +4 posi-

tion (Potten et al., 1974, 1977), since Lgr5 stem cells are not

particularly radiation-sensitive and do not retain DNA labels

(Barker et al., 2007, 2008). Bmi1 expression reportedly also

marks cells at position +4. Lineage tracing has revealed that

Bmi1+ cells mark pluripotent stem cells that replenish the epithe-

lium with similar kinetics to Lgr5 stem cells (Sangiorgi and Capec-

chi, 2008). Bmi1 and Lgr5 stem cells may be distinct or may

represent overlapping or even identical stem cell populations.

Here, we identify the Ascl2 gene as one of a few Lgr5 stem cell-

enriched genes that were not detected in the immediate daugh-

ters. Ascl2 (Mash2/HASH2) is homologous to the Drosophila

Achaete-scute complex genes (Johnson et al., 1990). Ascl2

expression in the intestinal epithelium is Wnt-dependent (San-

som et al., 2004; Jubb et al., 2006; van der Flier et al., 2007).

The Ascl2 gene encodes a basic helix-loop-helix (bHLH) tran-

scription factor with an unusually restricted expression pattern,

i.e. its expression is predominantly detected in extraembryonic

tissues (Guillemot et al., 1994) and in intestinal epithelium (see

below). Ascl2�/� embryos die from placental failure around

10.5 days post-coitum, when the spongiotrophoblasts lineage

is depleted and the number of giant cells is elevated (Guillemot

et al., 1994). Here we demonstrate an essential role for Ascl2 in

the maintenance of adult intestinal stem cells.

RESULTS

Intestinal Stem Cell Transcriptome
We sorted GFP-positive epithelial cells from isolated crypts of

Lgr5-EGFP-ires-CreERT2 mice (see Experimental Procedures).

FACS analysis distinguished a GFP-high (GFPhi) and a GFP-

low (GFPlo) population (Figure 1A), which we tentatively identified

as Lgr5 stem cells and their immediate transit-amplifying daugh-

ters, respectively. A single mouse intestine routinely yielded
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several hundred thousand GFPhi and GFPlo cells. mRNA

samples were subjected to comparative gene expression

profiling. A comprehensive list of Lgr5 stem cell genes is given

in Table S1 (available with this article online). The gene that

was most highly enriched in the GFPhi cells was, satisfactorily,

the Lgr5 gene itself. Multiple genes on the list were already iden-

tified as intestinal Wnt target genes previously (van der Flier et al.,

2007) (Table S1). While in situ hybridizations on these Wnt target

genes typically confirmed high level expression in Lgr5 stem

B
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Lgr5-EGFP
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Cells after sorting

Figure 1. Ascl2, Olfm4, and Lgr5 as Intestinal Stem

Cell Markers

(A) Confocal images of an isolated Lgr5-EGFP-ires-CreERT2

crypt (left). After treatment with trypsine, GFPhi and GFPlo cells

were identifiable upon sorting (right/middle) when compared

to wild-type crypt cells (right/top). Confocal image of healthy

sorted GFPhi cells (right/bottom).

(B) Sox9 antibody staining shows high level expression in Lgr5

stem cells and Paneth cells. TA cells directly above the Paneth

cells also express the gene, albeit at a much lower level.

(C) In situ hybridization for Ascl2 reveals an Lgr5 stem cell-

restricted expression pattern.

(D) In situ hybridization for Olfm4 reveals an Lgr5 stem cell-

restricted expression pattern.

(E) Monoclonal Ascl2 antibody stains nuclei of Lgr5 stem cells

(arrows). Neither the surrounding post-mitotic Paneth cells at

the crypt base, nor the TA cells show any positive signal.

Hematoxylin is used as a counter stain to visualize Paneth

cell granules.

(F) Cytoplasmic GFP staining in Lgr5-EGFP-ires-CreERT2

knock-in mice reveals Lgr5 stem cells (arrows). Hematoxylin

is used as a counter stain.

Scale bars represent 20 mm.

cells, TA cells directly above the Paneth cells often

also expressed these genes, albeit at a lower level.

As an example, Figure 1B shows the expression of

Sox9, a Wnt-responsive gene (Blache et al., 2004)

crucial for Paneth cell specification (Bastide et al.,

2007; Mori-Akiyama et al., 2007).

Ascl2 was one of the known Wnt target genes

(Sansom et al., 2004; Jubb et al., 2006; van der Flier

et al., 2007) and was expressed in adenomas as

expected (Figures S1A, S1D, and S1E). Its physio-

logical expression, however, was restricted to cells

at the base of crypts as revealed by in situ hybridiza-

tion (Figure 1C). In situ hybridization analysis also

identified Olfactomedin-4 (Olfm4) as a highly-

specific and robust marker for Lgr5 stem cells

(Figure 1D). Olfm4 was not expressed under the

control of Wnt, since it was absent from adenomas

(Figure S1B). Human OLFM4 is enriched in human

colon crypts (Kosinski et al., 2007). OLFM4 is

a secreted molecule originally cloned from human

myeloblasts (Zhang et al., 2002). Recently, it was

shown that Xenopus ONT1, an Olfm family member,

acts as a BMP antagonist (Inomata et al., 2008).

To study the expression pattern of Ascl2 more

precisely we generated monoclonal antibodies

against the C-terminal part of the mouse Ascl2 protein. The

mouse Ascl2 protein was detected in E10.5 spongiotrophoblasts

cell nuclei by immunohistochemistry (IHC) (Figure S1C). In the

intestine, Ascl2 was found to be expressed in slender cells

with the unique morphology and location of Lgr5 stem cells

(Figure 1E), yet was not expressed in Paneth cells or the

transit-amplifying cells. Figure 1F compares Ascl2 nuclear

staining to cytoplasmic GFP in Lgr5-EGFP-ires-CreERT2

knock-in intestine. Ascl2 was expressed by the Lgr5 stem cells
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at the crypt base as revealed by serial sectioning (Figures S1F

and S1G).

GFPhi and GFPlo cells from duodenum, ileum and colon of

Lgr5-EGFP-ires-CreERT2 mice were subjected to real-time

qPCR analysis. This confirmed that Lgr5, Ascl2, Tnfrsf19 and

Olfm4 were highly enriched in stem cells of the small intestine

(Figure S1H). Only Lgr5 and Ascl2 were enriched in the GFPhi

stem cells of the colon. Expression of Bmi1, another putative

stem cell marker, was readily detected in all fractions and was

slightly enriched in GFPhi stem cells of the small intestine, albeit

to a lesser extent than Lgr5 or Ascl2. We then tested intestines

from 4 week-old Bmi1 null animals (van der Lugt et al., 1994) for

stem cell marker gene expression. Histologically and by marker

analysis, the intestinal epithelium of these mutant mice was indis-

tinguishable from wild-type littermates (van Lohuizen and

Clevers, unpublished). Both, Ascl2 and Olfm4 were expressed

in the intestines of these animals (Figures S1I and S1J).

Consultation of adult man and mouse EST data sets using the

Unigene database (http://www.ncbi.nlm.nih.gov/sites/entrez?

db=unigene&cmd=search&term=) indicated that Ascl2 is ex-

pressed uniquely in the small intestine and colon.
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Figure 2. Intestine-Specific Ascl2 Misexpression

(A) Monoclonal Ascl2 antibody staining reveals Lgr5 stem cell-

restricted Ascl2 expression in wild-type animals.

(B) In villin-Ascl2-transgenic animals, epithelial nuclei along the

crypt-villus axis stain for Ascl2. Insert outlines the transgene

construct.

(C) H&E staining showing normal crypt-villus morphology in the

duodenum of wild-type animals.

(D) H&E staining showing aberrant epithelium morphology in

the duodenum of transgenic animals. Villi are branched and

display crypt-like pockets (arrows).

(E) H&E staining showing normal crypt-villus morphology in the

ileum of wild-type animals.

(F) H&E staining showing elongated crypts (arrow), with short,

disorganized villi in the ileal epithelium of Ascl2 transgenics.

Scale bars represent 50 mm.

Transgenic Expression of Ascl2
We generated transgenic mice expressing a mouse

Ascl2 cDNA under the control of the villin promoter

(insert in Figure 2B). This promoter drives expres-

sion throughout the intestinal epithelium and

becomes fully active during late gestation (Pinto

et al., 1999). Four independent transgenic mice

were born. Three of these showed growth retarda-

tion and were sacrificed within 2-3 weeks postna-

tally. The founder of the fourth line was healthy and

fertile, yet yielded multiple litters which contained

transgenic F1 offspring at Mendelian ratios. These

transgenic F1 individuals displayed the same

phenotype as the three other independent trans-

genic mice. This fortunate situation allowed us to

study the phenotype of the fourth transgenic line

and to confirm the observations using fixed material

from the three independent transgenic mice.

Transgenic animals were analyzed at P14 when

they were still relatively healthy, yet had already re-

placed their postnatal intervillus pockets by adult-type crypts

(Gregorieff and Clevers, 2005). Nuclear Ascl2 was observed

throughout crypt and villus epithelium (Figures 2A and 2B).

H&E histology revealed dramatic changes in the transgenic

epithelium. In the duodenum, villi were branched and displayed

crypt-like pockets (Figures 2C and 2D). In the ileum, crypts

were elongated (‘‘hyperplastic’’), while villi were short and disor-

ganized (Figures 2E and 2F). Ki67 staining revealed that prolifer-

ation in the Ascl2 transgenic intestines occurred in pockets along

the villi (Figures 3A and 3B) which also expressed the Wnt target

gene cMyc (Figures 3E and 3F). Ets2, a Wnt target gene specif-

ically expressed at the crypt base (van de Wetering et al., 2002)

and enriched in Lgr5 stem cells (Table S1) was strongly ex-

pressed in the elongated crypts and villi (Figures 3I and 3J).

The expression domains of the Olfm4 and Lgr5 genes were

expanded in the hyperplastic ileal crypts (Figures 3C, 3D, 3G,

and 3H), as was the expression domain of the Sox9 gene (Figures

3K and 3L).

In the fly, the achaete-scute gene products form heterodimers

with the Daugtherless protein (Cabrera and Alonso, 1991; Caudy

et al., 1988). In a yeast 2-hybrid assay using ASCL2 as bait on
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a human colon library, we predominantly found the nuclear

proteins E22, E2A and HEB as ASCL2-binding partners confirm-

ing previous observations (Johnson et al., 1992; Scott et al.,

2000). These three common E-proteins are the homologs of

Daughterless. E2a and Heb were expressed in crypts and

adenomas (Figures S2A and S2B). The crypt-restricted expres-

sion of these co-factors explained why the transgenic overex-

pression of Ascl2 only partially affected the villus epithelium.

Generation of a Conditional Ascl2 Allele
As Ascl2�/� animals die around E10.5 (Guillemot et al., 1994), we

generated a conditional Ascl2 allele (Figure S3A). The murine

Ascl2 gene contains three exons of which the middle exon

encodes the protein. We introduced LoxP sites into 50 UTR of

exon I and in intron II. Cre-mediated recombination should result

in a null allele. The paternal Ascl2 allele is silenced during post-

implantation development (Guillemot et al., 1995). By utilizing

the LoxP site in exon I as an allele-specific marker, we found

that both alleles of Ascl2 were expressed in the mouse intestine

(Figure S3B). We crossed the floxed animals with the Ah-Cre

mouse (Ireland et al., 2004) in which expression of Cre is driven

by the Cyp1a promoter, inducible in a number of tissues by

b-Naphtoflavone (ßNF). The resulting gene deletion in the intes-

tinal epithelium is highly efficient, includes the intestinal stem

cells and remains stable over many months (Ireland et al.,

Figure 3. Marker Analysis in the Villin-Ascl2

Intestine

Marker analysis of intestinal epithelium in wild-type

(A, C, E, G, I, and K) and Ascl2-transgenic (B, D, F,

H, J, and L) animals.

(A and B) Ki67 analysis shows aberrant (arrow),

dividing regions along the villus epithelium of

Ascl2 transgenic animals.

(C and D) In situ hybridization for the Lgr5 stem cell

marker Olfm4 shows increased signal in the hyper-

plastic ileal crypts of Ascl2 transgenics.

(E and F) The aberrant dividing regions along the

villus epithelium of Ascl2 transgenics are also posi-

tive for the crypt marker cMyc (arrow).

(G and H) In situ hybridization for stem cell marker

Lgr5 shows elevated expression in the hyper-

plastic ileal crypts.

(I and J) In situ hybridization for the crypt marker

Ets2 show that the expression in Ascl2 transgenic

animals is found along the entire crypt-villus axis.

(K and L) IHC Staining for the crypt marker Sox9

shows expanded expression of this protein in the

hyperplastic crypts of Ascl2 transgenic animals.

Scale bars represent 50 mm.

2004). A dramatically different observa-

tion was made when we deleted the func-

tionally important c-Myc gene using the

same protocol (Muncan et al., 2006).

The epithelium, which was essentially c-

Myc�/� at day 4 post-induction (PI), was

entirely replaced by wild-type epithelium

derived from low numbers of escaping,

nondeleted cells within 2-3 weeks.

We analyzed adult Ah-Cre/Ascl2floxed/floxed animals at 5, 8,

11 and 15 days PI and compared these to ßNF-treated

Ascl2floxed/floxed litter mates. Intestinal epithelium was subjected

to Southern blot analysis (Figure S3A). Figure 4A (upper panel)

shows recombination of the Ascl2floxed/floxed locus at the indi-

cated days PI. Complete recombination was observed at the 5-

and 8-day time points. At 11 days PI, a partial return of nonrecom-

bined alleles was observed. At day 15, recombined alleles were

no longer observed. The rapid reappearance of wild-type epithe-

lium implied a strong selective pressure favoring the few remain-

ing Ascl2+ epithelial Lgr5 stem cells. The Ah-Cre transgene is also

inducible in the liver, albeit to a lesser extent (Ireland et al., 2004).

As the Ascl2 gene is not expressed in liver, its deletion should be

neutral in terms of selection. A significant, albeit not entirely

complete, deletion of the Ascl2 gene was observed in liver

(Figure 4A, lower panel). This deletion pattern remained

unchanged over time. Quantitative recombination was confirmed

through Northern blot analysis of intestinal epithelial extracts

(Figure 4B) and Ascl2 antibody stainings (Figures 4C–4G).

To directly visualize the rescue process, we bred the Cre-

activatableRosa26-LacZ reporter (Soriano,1999) into the Ah-Cre/

Ascl2floxed/floxed strain. Rosa26-LacZ/Ah-Cre/Ascl2floxed/floxed ani-

mals were treated with ßNF and intestines were isolated at 5, 10

or 20 days PI. Intestines of Rosa26-LacZ/Ah-Cre/Ascl2floxed/wt

animals were used as controls. Figures 4H–4K illustrates LacZ
906 Cell 136, 903–912, March 6, 2009 ª2009 Elsevier Inc.



staining of the duodenum. At 5 days PI, virtually all cells were re-

combined and blue except for long-lived Paneth cells (Figure 4H).

At 10 days PI, nonrecombined epithelial cells started reappearing

(Figure 4I). At 20 days PI, virtually all crypts were again wild-type

(Figure 4J). In heterozygous intestines at 20 days PI, the entire

epithelium stained blue (Figure 4K).

Intestinal Stem Cells Are Lost upon Conditional
Deletion of Ascl2

No dramatic histological differences were observed by H&E

staining (Figures 5A and 5B) or Ki67 staining (Figures 5C and

5D) at 5 days PI. The crypt base entirely consisted of Paneth

cells, while Lgr5 stem cells recognizable by their elongated

Ki67+ nuclei were conspicuously absent (Figures 5C and 5D).

These observations were confirmed by electron microscopy

(Figures S4A and S4B). There was an increase in apopototic cells

A

D

B

Ascl2 flox:+/+ +/+  +/+ +/+  +/-  +/+  +/-

Ah-Cre: +    +     +     +     -      -    +

days PI: 5    8    11   15   15   11   8

Controls

4.9 kb, wt allele

3.4 kb, floxed allele

2.2 kb, floxed recomb. allele

Time course 

4.9 kb, wt allele

3.4 kb, floxed allele

2.2 kb, floxed recomb. allele

Intestine

Liver

Ascl2 flox:  +/+        +/+      +/+        +/+        +/+ 

Ah-Cre:    -            +         +           +           +

          days PI:    5           5         8          11          15

Control Time course 

Ascl2

18S

C Control 5 days PI 8 days PI 11 days PI 15 days PIE F G

H I

J K

Control

5 days PI 10 days PI

20 days PI

Figure 4. Conditional Ascl2 Inactivation in

the Intestinal Epithelium

(A) Southern blot analysis of genomic DNA of intes-

tinal epithelial cell extracts (upper panel) and liver

samples (lower panel) of Ah-Cre/Ascl2floxed/floxed

animals 5, 8, 11, and 15 days PI and control

animals. DNA was digested with EcoRV and

hybridized with probe A (as indicated in

Figure S3A).

(B) Ascl2 Northern blot analysis on total RNA from

intestinal epithelial cell extracts of Ah-Cre/

Ascl2floxed/floxed animals 5, 8, 11, and 15 days PI

and control.

(C–G) Monoclonal Ascl2 antibody staining demon-

strates Lgr5 stem cell restricted expression of the

Ascl2 protein (arrows) in control animals (C). 5 (D)

and 8 (E) days PI the Ascl2 signal is completely

gone. The signal reappears in the Lgr5 stem cells

11 (F) and 15 (G) days PI.

(H–K) LacZ staining of the duodenum illustrates

recombination efficiency in Rosa26-LacZ/Ah-Cre/

Ascl2floxed/floxed animals 5, 10 and 20 days PI. At

5 days PI, virtually all cells were recombined

(blue) except for long-lived Paneth cells (H). At 10

days PI, nonrecombined epithelial cells started re-

appearing (I). At 20 days PI, virtually all crypts

were wild-type (J). In Rosa26-LacZ/Ah-Cre/

Ascl2floxed/wt control animals 20 days PI, the entire

intestinal epithelium remained blue (K).

Scale bars represent 25 mm.

in the crypts of floxed animals (Figures 5E

and 5F). Analysis at late time points PI re-

vealed a strong increase in crypt fission

profiles (Figures 5G and 5H). Crypt fission

represents a powerful repair mechanism

of the intestinal epithelium, for instance

after radiation injury or genetic damage

(Cairnie and Millen, 1975; Muncan et al.,

2006).

To follow the fate of Lgr5 stem cells

more precisely, we utilized the robust

Olfm4 marker. In situ hybridizations for

Olfm4 expression confirmed that the Olfm4+ Lgr5 stem cells

were present in every single crypt of control intestines

(Figure 6A). Five days PI, Olfm4+ Lgr5 stem cells had vanished

(Figure 6B). At day 8 PI, an Olfm4 signal reappeared in occasional

crypts (Figure 6C). By 11 days PI (Figure 6D), larger patches of

Olfm4+ crypts reappeared. By day 15 PI, all crypts were Olfm4+

(Figure 6E).

To investigate the target gene program regulated by Ascl2 in

the small intestine, we performed comparative gene expression

profiling on RNA samples from isolated intestinal epithelium

of Ah-Cre/Ascl2floxed/floxed animals and Ah-Cre/Ascl2floxed/wt

control animals at day 3 and 5 days PI. A total of 130 genes,

also expressed by Lgr5 stem cells, was significantly downregu-

lated > 1.5-fold at both time points PI. Comparison of these Ascl2

target genes with the stem cell gene signature (Table S1)

revealed a �25% overlap (Figure 7A; Table S2).
Cell 136, 903–912, March 6, 2009 ª2009 Elsevier Inc. 907



To identify in vivo ASCL2 binding sites, we performed chro-

matin immunoprecipitations (ChIP) on human LS174T colorectal

cancer (CRC) cells. We probed a customized array containing

a set of TCF4-regulated genes (Hatzis and Clevers, unpub-

lished). Potential ASCL2-bound regulatory regions were verified

by qPCR. LGR5, EPHB3 and TNFRSF19 promoters were bound

by ASCL2, while the OLFM4 promoter was not. Nonpromoter

sequences in the PTPRO, SOAT1, ETS2 and SOX9 loci were

also bound by ASCL2 (Figure 7B).

As a further validation of these data, we created an LS174T

transfectant carrying a stably integrated, doxycycline-inducible

sh-RNA expression vector targeting ASCL2. An essentially

complete knock-down of the ASCL2 mRNA occurred within

24 hr upon RNAi induction, as shown by Northern blot analysis

(Figure S5A). We used this cell line to validate the generated

ChIP signals. As can be seen in Figure S5B, the ChIP signals for

the EPHB3 promoter and the ETS2 enhancer disappeared upon

ASCL2 knock-down. We cloned the putative SOX9 enhancer in

A B

C D

E F

G H

H&E H&E

Ki67 Ki67

Caspase-3 Caspase-3

Control animals: Ascl2
floxed/floxed

Ah-Cre/Ascl2
floxed/floxed

Increase in crypt fissionNormal crypts

Figure 5. Expansion of Ascl2 Wild-Type Crypts

through Crypt Fission

(A and B) H&E staining reveals normal morphology of crypt-

villus epithelium of Ascl2floxed/floxed control animals (A) and

Ah-Cre/Ascl2floxed/floxed animals 5 days PI (B).

(C and D) Ki67 staining showing normal numbers of prolifer-

ating cells in intestinal crypts of Ascl2floxed/floxed control

animals (C) and Ah-Cre/Ascl2floxed/floxed animals 5 days PI (D).

(E and F) Active Caspase-3 staining showing apoptosis

predominantly at the villus tip in Ascl2floxed/floxed control

animals (E). At 5 days PI, a strong increase in apoptosis in

the crypt region of Ah-Cre/Ascl2floxed/floxed animals can be

observed (F).

(G and H) Ki67 staining showing at a low magnification, normal

crypt-villus epithelium in Ascl2floxed/floxed control animals (G).

An increase in crypt fission (arrows) in Ah-Cre/Ascl2floxed/floxed

animals 11 days PI is observed (H).

Scale bars represent 50 mm.

a luciferase reporter plasmid. Transient transfection

was performed in the inducible LS174T ASCL2

RNAi cell line. Figure 7C shows that the spontaneous

activity of the SOX9 enhancer was significantly

downregulated upon ASCL2 knock-down. For the

reverse experiment, we stably integrated a dox-

inducible ASCL2 expression plasmid into HCT116

cells. This CRC cell line does not express endoge-

nous ASCL2 (Figure S5C). Transient transfection of

the SOX9 enhancer plasmid in this cell line resulted

in a significant activation of the SOX9 enhancer

upon ASCL2 induction (Figure 7D).

We interpreted the combined observations in the

following manner. The Ascl2 gene is crucial for the

maintenance of Lgr5 stem cells, the only cells in

the intestine that express the gene. Part of the

stem cell signature is Ascl2-dependent and involves

binding of Ascl2 to promoters and/or enhancers

elements to activate transcription of these target

genes. In the absence of Ascl2 expression, Lgr5

stem cells rapidly disappear. Ascl2 deletion in TA

cells does not directly harm these cells as they normally don’t

express the gene. The mutant TA cells continue to proliferate

and provide the villi with differentiated cells. However, no new

TA cells are produced from Lgr5 stem cells in mutant crypts.

The strong increase in apoptosis in the TA compartment likely

mirrors the limited self-renewal capacity that these cells possess.

As a consequence, a strong selective pressure is exerted which

favors the re-emergence of ‘‘escaper’’ crypts harboring intact

Ascl2 alleles.

DISCUSSION

Here, we define a minimal gene expression profile for the Lgr5

stem cells. Lgr5 is the most differentially expressed gene within

this set. Many other genes in the signature represent previously

identified Wnt-dependent genes, e.g., Ascl2, CD44, Ephb3 and

Sox9 (van der Flier et al., 2007). Given the intimate connection

between Wnt signaling and the biology of stem cells (Reya and
908 Cell 136, 903–912, March 6, 2009 ª2009 Elsevier Inc.



Clevers, 2005), this was not surprising. At least one novel marker

for Lgr5 stem cells, Olfm4, was not expressed under the control

of the Wnt pathway, implying the existence of a Wnt-indepen-

dent specifier for stem cell identity.

Ascl2 is one of the mammalian homologous of the Drosophila

achaete-scute complex genes (Johnson et al., 1990). This

complex encodes related bHLH proteins that are powerful regu-

lators of cell fate. The achaete-scute genes are initially

expressed in proneural cell clusters were they promote neuro-

blast differentiation. They are essential for the differentiation of

A B

C

D E

Control 5 days PI

8 days PI

11 days PI 15 days PI

Figure 6. Intestinal Stem Cells Are Lost upon Ascl2 Deletion

Olfm4 in situ hybridizations to visualize Lgr5 stem cells in Ah-Cre/

Ascl2floxed/floxed small intestines 5, 8, 11 and 15 days PI and in a control intestine.

(A) Olfm4 in situ staining at low magnification shows Lgr5 stem cell specific

staining in Ascl2floxed/floxed control animals in every crypt.

(B) The Olfm4 signal is almost completely gone 5 days PI in Ah-Cre/

Ascl2floxed/floxed animals. Sporadic positive Lgr5 stem cells can be observed

(arrow).

(C) Eight days PI most of the crypts are still negative for Olfm4, although

sporadic crypts display normal staining, while other crypts contain 1 or 2

positive Lgr5 stem cells (arrow).

(D) At 11 days PI, the tissue of Ah-Cre/Ascl2floxed/floxed shows patches of

positive and patches of negative crypts for Olfm4.

(E) The Olfm4 signal is completely restored 15 days PI in the Ah-Cre/

Ascl2floxed/floxed animals.

Scale bars represent 50 mm.
the central as well as peripheral nervous system (Calleja et al.,

2002). Achaete-scute genes are best known as targets of the

Notch pathway. Hairy/Enhancer of Split genes, activated by

Notch signaling, directly repress the proneural achaete-scute

genes. The indirect repression by Notch signals allows

achaete-scute gene-expressing cells to be singled-out through

lateral inhibition (Simpson, 1990). However, achaete-scute

genes can also be expressed under control of the Wnt pathway.

Wingless expression is required for achaete-scute complex gene

expression along the wing margin and for achaete-scute-depen-

dent formation of margin bristles and their precursors (Phillips

and Whittle, 1993). Intestinal Ascl2 is expressed under the

control of the Wnt pathway. In a recent genome-wide TCF4

Chromatin Immunoprecipitation study, we have observed that

the ASCL2 locus in human CRC cells contains two TCF4/b-cat-

enin-bound regulatory elements, indicating that ASCL2 is a direct

target of the Wnt pathway (Hatzis et al., 2008).

Like its fly counterparts, mammalian Ascl2 appears to control

lineage specification. In Ascl2-mutant mice, the spongiotropho-

blast layer is lost by embryonic day E10 at the expense of tropho-

blast giant cells (Guillemot et al., 1994; Hughes et al., 2004). The

current study demonstrates that Ascl2 is essential for the main-

tenance of Lgr5 stem cells in the adult intestinal epithelium and

that misexpression of Ascl2 in nonstem cells results in crypt

hyperplasia and crypt-like pockets on villi. In conclusion, we

have initiated a molecular characterization of the stem cell of

the intestinal epithelium by gene expression profiling of essen-

tially pure Lgr5 stem cells. The current study of Ascl2 demon-

strates that, with the available genetic tools, the intestinal epithe-

lium constitutes a prime model to unveil molecular mechanisms

underlying the biology of stem cells.

EXPERIMENTAL PROCEDURES

Isolation of GFP-Positive Epithelial Cells

Freshly isolated small intestines were incised along their length and villi were

removed. The intestinal tissue was washed in PBS/EDTA (5 mM) for 5 min, and

subsequently incubated in fresh PBS/EDTA for 30 min at 4�C. Vigorous shaking

yielded free crypts which were incubated in PBS supplemented with Trypsine

(10 mg/ml) and DNase (0.8 u/ml) for 30 min at 37�C. After incubation, cells were

spun down, resuspended in SMEM (Invitrogen) and filtered through a 40 mm

mesh. GFP-expressing cells were isolated using a MoFlo cell sorter (DAKO).

Microarray Analysis

RNA was isolated from sorted GFPhi and GFPlo cell fractions of intestines from

Lgr5-EGFP-ires-CreERT2 mice. For the analysis of Ascl2 target genes, RNA

was isolated from intestinal epithelial cells of Ah-Cre/Ascl2floxed/floxed animals

and Ah-Cre/Ascl2floxed/wt control animals 3 and 5 days post Cre induction.

500 ng of total RNA was labeled using low RNA Input Linear Amp kit (Agilent

Technologies, Pato Alto, CA, USA). Labeling, hybridization, and washing

protocols were done according to Agilent guidelines. Detailed information is

available in Supplemental Experimental Procedures.

Mice

The villin-Ascl2 transgenic expression construct was generated by cloning the

mouse Ascl2 coding sequence at the initiation codon of the 9-kb regulatory

region of the mouse villin gene (Pinto et al., 1999). An SV40 termination and

polyadenylation cassette was added downstream (Figure 2B, insert). Condi-

tional Ascl2 mice were generated through homologous recombination in

embryonic stem cells as depicted in Figure S3A. More detailed information

is available in Supplemental Experimental Procedures. The transgenic Ah-

Cre line (Ireland et al., 2004) was crossed with conditional Ascl2 mice to
Cell 136, 903–912, March 6, 2009 ª2009 Elsevier Inc. 909
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Figure 7. Ascl2 Target Genes

(A) Venn diagram showing the overlap between the

stem cell signature (Table S1) and the Ascl2 target

genes. Ascl2 target genes have been identified

through comparative gene profiling of RNA

samples from isolated intestinal epithelium of

Ah-Cre/Ascl2floxed/floxed animals and Ah-Cre/

Ascl2floxed/wt control animals at day 3 and 5 days

PI. For the comparison of the stem cell genes

and the Ascl2 target genes only those genes

expressed in both lists were compared. The iden-

tity of the overlapping genes is given in Table S2.

(B) Association of ASCL2 with the proximal

promoters and enhancers of the indicated Ascl2

target genes. ASCL2 binding to indicated regions

is expressed as relative enrichment of the respec-

tive qPCR product over the qPCR product of the

nonbound exon2 of the myoglobin gene. Experi-

ments have been performed at least three times.

A representative experiment is shown.

(C) Transcriptional activity of SOX9 enhancer in

integrated inducible ASCL2 RNAi LS174T cell

line. Luciferase reporter containing the SOX9

enhancer was transiently transfected in the

LS174T ASCL2 RNAi cell line. A CMV-Renilla

reporter was cotransfected as a normalizing

control. Cells were induced for 24 hr with doxycy-

cline to induce the sh-RNA against ASCL2. Control and ASCL2 RNAi values are normalized over the empty pGL4.10 TATA construct. Experiments have been

performed at least three times. A representative experiment is shown. Values are the average of normalized triplicates and error bars represent standard devi-

ations of these triplicates.

(D) Transcriptional activity of SOX9 enhancer in stably integrated inducible ASCL2 HCT116 cell line. Luciferase reporter containing the SOX9 enhancer was tran-

siently transfected in inducible ASCL2 HCT116 CRC cell line. A CMV-Renialla reporter was cotransfected as a normalizing control. Cells were induced for 24 hr

with doxycycline to induce ASCL2 expression. Control and ASCL2 induction values are normalized over the empty pGL4.10 TATA construct. Experiments have

been performed at least three times. A representative experiment is shown. Values are the average of normalized triplicates and error bars represent standard

deviations of these triplicates.
generate Ah-Cre/Ascl2floxed/floxed mice. The Cre enzyme was induced in mice

6-12 weeks old of age by intraperitoneal injections at day 0 of 200 ml b-naptho-

flavone (10 mg ml-1; Sigma Aldrich) dissolved in corn oil.

Isolation of Intestinal Cells for Southern and Northern Blot Analysis

Intestines were cut into small pieces and washed in ice-cold PBS (Mg2+/Ca2+).

The intestinal pieces were incubated in 30 mM EDTA in PBS at 37 degrees fol-

lowed by shaking. The released epithelium was then collected to prepare DNA

or RNA by standard procedures.

Histology, Immunohistochemistry, and In Situ Hybridization

Tissues were fixed in 10% formalin, paraffin embedded, and sectioned. Anti-

bodies: anti-Ki67 (1:100; Novacastra), rabbit anti-c-Myc (1:500; Upstate

Biotechnology), mouse anti-Ascl2 (1:5; Supplemental Experimental Proce-

dures), rabbit anti-Sox9 (1:600, Chemicon), rabbit anti-Caspase-3 (1:400;

Cell signaling), rabbit anti-GFP (1:6000, gift from E. Cuppen). Peroxidase conju-

gated secondary antibodies used were Mouse or Rabbit EnVision+ (DAKO).

Mouse ESTs were from RZPD. Protocols for in vitro transcription and in situ

hybridizations are described elsewhere (Gregorieff et al., 2005). b-galactosi-

dase (LacZ) staining was done as described previously (Barker et al., 2007).

Electron Microscopy Analysis

Tissues were fixed in 2.5% glutaraldehyde + 2.0% paraformaldehyde in caco-

dylate-buffer, postfixed in 1% OsO4, stained en bloced with uranylacetate,

and embedded in Epon resin. The samples were examined with a Phillips

CM10 microscope (Eindhoven, The Netherlands).

Generation of Transfected Cell Lines

T-Rex system (Invitrogen) was used to generate a clonal ASCL2- inducible

HCT116 cell line as described previously (van de Wetering et al., 2002).
910 Cell 136, 903–912, March 6, 2009 ª2009 Elsevier Inc.
LS174T cells were used to generate a clonal stable, inducible ASCL2 shRNA

cell line using the pTER system as described previously (van de Wetering

et al., 2003). Oligonucleotides: Table S3.

ChIP, qPCR, and Reporter Assays

ChIP, qPCR, and Reporter array protocols were performed as described previ-

ously (Hatzis et al., 2008) with small modifications. Detailed information is

available in Supplemental Experimental Procedures.

ACCESSION NUMBERS

Microarray data have been deposited in the Gene Expression Omnibus Data-

base with the accession number GSE14201.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, three

tables, five figures, and Supplemental References and can be found with

this article online at http://www.cell.com/supplemental/S0092-8674(09)

00079-8.
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