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We are interested in the enumeration of Fully Packed Loop
configurations on a grid with a given noncrossing matching. By the
recently proved Razumov–Stroganov conjecture, these quantities
also appear as groundstate components in the Completely Packed
Loop model.
When considering matchings with p nested arches, these numbers
are known to be polynomials in p. In this article, we present
several conjectures about these polynomials: in particular, we
describe all real roots, certain values of these polynomials, and
conjecture that the coefficients are positive. The conjectures, which
are of a combinatorial nature, are supported by strong numerical
evidence and the proofs of several special cases. We also give a
version of the conjectures when an extra parameter τ is added to
the equations defining the groundstate of the Completely Packed
Loop model.
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0. Introduction

The recently proved Razumov–Stroganov conjecture [23,5] is a correspondence between, on the
one hand, combinatorially defined quantities called Fully Packed Loop (FPL) configurations, and on the
other hand, components of the groundstate vector of the Hamiltonian in the Completely Packed Loop
model. These quantities are indexed by noncrossing, perfect matchings π of 2n points (cf. definition
in Section 1.1). The number of FPL configurations with associated matching π will be denoted Aπ ,
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while the corresponding components of the groundstate vector in the Completely Packed Loop model
are written Ψπ . The Razumov–Stroganov conjecture states then that Aπ = Ψπ for any π .

The goal of this article is to exhibit some surprising properties of these numbers when one studies
matchings with nested arches (π)p = (· · · (π) · · ·), which means that there are p nested arches above
the matching π . It was conjectured in [33], and subsequently proved in [7,14], that the quantities
A(π)p and Ψ(π)p are polynomial in p. We define then the polynomial Aπ (t) such that Aπ (p) = A(π)p

when p is a nonnegative integer.
This paper deals with certain conjectures about these polynomials. Let π be a matching with

n arches: the main conjectures deal with the description of real roots of the polynomials (Conjec-
ture 3.5), their values at negative integers between 1 − n and −1 (Conjecture 3.8), evaluations at −n
(Conjecture 3.11) and finally the positivity of the coefficients (Conjecture 3.12). We gather some ev-
idence for the conjectures, and prove some special cases (cf. Theorem 4.1 and Theorem 5.1). In the
Completely Packed Loop model, one can in fact define bivariate polynomials Ψ (τ , t) that coincide
with Ψ (t) at τ = 1; it turns out that most of our conjectures admit a natural generalization in this
context also, which in some sense is more evidence for the original conjectures.

We believe these conjectures can help us understand better the numbers Aπ . Moreover, our work
on these conjectures has some interesting byproducts: first, the conjectured root multiplicities of the
polynomials Aπ (t) have nice combinatorial descriptions in terms of π (see Section 3.1). Then, from
the proof of Theorem 4.1, we deduce some nice formulas about products of hook lengths of parti-
tions (Proposition 4.3). Also, the proof of Theorem 5.1 involves the introduction of a new multivariate
integral.

Let us give a detailed outline of this article, where π will refer to a matching with n arches. In
Section 1, we define the quantities Aπ and Ψπ , and formulate the Razumov–Stroganov conjecture.
We introduce in Section 2 the central objects of our study, the polynomials Aπ (t). It is also recalled
how to approach the computation of these polynomials.

The main conjectures about the Aπ (t) are gathered in Section 3: they are Conjectures 3.5, 3.8,
3.11 and 3.12. We give also numerous evidence for these conjectures, the most important one being
perhaps that they have been checked for all matchings with n � 8.

The next two sections address particular cases of some of the conjectures: in Section 4, we are con-
cerned with the computation of the subleading term of the polynomials. The main result, Theorem 4.1,
shows that this is a positive number both for Aπ (t); it is thus a special case of Conjecture 3.12. We
give two proofs of this result, from which we derive some nice formulas mixing hook lengths and
contents of partitions (Proposition 4.3). Section 5 is concerned with the proof that if {1,2n} is not
an arch in π , then Aπ (−1) = 0; this is a special case of Conjecture 3.5. The proof relies on the
multivariate polynomial extension of Ψπ , the main properties of which are recalled briefly.

Section 6 deals with certain bivariate polynomials Ψπ(τ , t) which specialize to Aπ (t) when τ = 1.
It turns out that the conjectures of Section 3 generalize in a very satisfying way. We finally give two
appendices: Appendix A gives a proof of the technical result in Theorem 3.1, while Appendix B lists
some data on the polynomials Aπ (t).

1. Definitions

We first introduce matchings and different notions related to them. We then describe Fully Packed
Loop configurations, as well as the Completely Packed Loop model.

1.1. Matchings

A matching2 π of size n is defined as a set of n disjoint pairs of integers {1, . . . ,2n}, which are
noncrossing in the sense that if {i, j} and {k, l} are two pairs in π with i < j and k < l, then it is
forbidden to have i < k < j < l or k < i < l < j. We will represent matchings by sets of arches on 2n

2 Our matchings are usually called perfect noncrossing matchings in the literature, but this is the only kind of matchings we
will encounter so there will be no possible confusion.
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Fig. 1. A matching, its conjugate, and the rotated matching.

horizontally aligned points labeled from 1 to 2n. There are 1
n+1

(2n
n

)
matchings with n pairs, which is

the famous nth Catalan number. Matchings can be represented by other equivalent objects:

• A well-formed sequence of parentheses, also called parenthesis word. Given an arch in a matching,
its left endpoint (respectively its right endpoint) is encoded by an opening parenthesis (resp. by
a closing parenthesis);

⇔ ()(())

• A Dyck Path, which is a path between (0,0) and (2n,0) with steps NE (1,1) and SE (1,−1) that
never goes under the horizontal line y = 0. An opening parenthesis corresponds to a NE step, and
a closing one to a SE step;

()(()) ⇔

• A Young diagram is a collection of boxes, arranged in left-justified rows, such that the size of
the rows is weakly decreasing from top to bottom. Matchings with n arches are in bijection with
Young diagrams such that the ith row from the top has no more than n − i boxes. The Young
diagram can be constructed as the complement of a Dyck path, rotated 45◦ counterclockwise;

• A sequence a = {a1, . . . ,an} ⊆ {1, . . . ,2n}, such that ai−1 < ai and ai � 2i − 1 for all i. Here ai is
the position of the ith opening parenthesis.

()(()) ⇔ {1,3,4}

We will often identify matchings under those different representations, through the bijections ex-
plained above. We may need at times to stress a particular representation: thus we write Y (π) for
the Young diagram associated to π , and a(π) for the increasing sequence associated to π , etc.

We will represent p nested arches around a matching π by “(π)p”, and p consecutive small arches
by “()p”; thus for instance

((((()()))))()()() = (
()2)

4()
3.

We define a partial order on matchings as follows: σ � π if the Young diagram of π contains the
Young diagram of σ , that is Y (σ ) ⊆ Y (π). In the Dyck path representation, this means that the path
corresponding to σ is always weakly above the path corresponding to π ; in the sequence represen-
tation, if we write a = a(σ ) and a′ = a(π), then this is simply expressed by ai � a′

i for all i.
Given a matching π , we define d(π) as the total number of boxes in the Young diagram Y (π).

We also let π∗ be the conjugate matching of π , defined by: {i, j} is an arch in π∗ if and only if
{2n + 1 − j,2n + 1 − i} is an arch in π . This corresponds to a mirror symmetry of the parenthesis
word, and a transposition in the Young diagram. We also define a natural rotation r on matchings:
i, j are linked by an arch in r(π) if and only if i + 1, j + 1 are linked in π (where indices are taken
modulo 2n). These last two notions are illustrated on Fig. 1.
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Fig. 2. FPL with its associated matching.

We need additional notions related to the Young diagram representation. So let Y be a young
diagram, and u one of its boxes. The hook length h(u) is the number of boxes below u in the same
column, or to its right in the same row (including the box u itself). We note HY the product of all
hook lengths, i.e. HY = ∏

u∈Y h(u). The content c(u) is given by y − x if u is located in the xth row
from the top and the yth column from the left; we write u = (x, y) in this case. The rim of Y consists
of all boxes of Y which are on its southeast boundary; removing the rim of a partition leaves another
partition, and repeating this operation until the partition is empty gives us the rim decomposition of Y .

1.2. Fully Packed Loops

A Fully Packed Loop configuration (FPL) of size n is a subgraph of the square grid with n2 vertices,
such that each vertex is connected to exactly two edges. We furthermore impose the following bound-
ary conditions: the grid is assumed to have n external edges on each side, and we select alternatively
every second of these edges to be part of our FPLs. By convention, we fix that the topmost external
edge on the left boundary is part of the selected edges, which fixes thus the entire boundary of our
FPLs. We number these external edges counterclockwise from 1 to 2n, see Fig. 2.

In each FPL configuration F the chosen external edges are clearly linked by paths which do not
cross each other. We define π(F ) as the set of pairs {i, j} of integers in {1, . . . ,2n} such that the
external edges labeled i and j are linked by a path in F . Then π(F ) is a matching in the sense of
Section 1.1; an example is given on the right of Fig. 2.

Definition 1.1 (Aπ ). For any matching π , we define Aπ as the number of FPLs F such that π(F ) = π .

A result of Wieland [28] shows that a rotation on matchings leaves the numbers Aπ invariant, and
it is then easily seen that conjugation of matchings also leaves them invariant:

Theorem 1.2. (See [28].) For any matching π , we have Aπ = Ar(π) and Aπ = Aπ∗ .

Now we let An be the total number of FPLs of size n; by definition we have An = ∑
π Aπ where π

goes through all matchings with n arches. We also define AV
n as the number of FPLs of size n which

are invariant with respect to vertical symmetry. It is easily seen that AV
2n = 0. We have the famous

product expressions of these quantities:

An =
n−1∏
k=0

(3k + 1)!
(n + k)! ; (1)

AV
2n+1 = 1

2n

n∏
k=1

(6k − 2)!(2k − 1)!
(4k − 1)!(4k − 2)! . (2)

The original proofs can be found in [29,18] for An , and [19] for AV
n .
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1.3. Completely Packed Loop model

In this subsection we explain briefly the Completely Packed Loop model (CPL) with periodic bound-
ary conditions; for more details see [14,32,8]. Let n be an integer, and define a state to be a formal
linear combination of matchings of size n.

Let ei be the operator on matchings which creates a new arch at (i, i + 1), and join the vertices
formerly linked to i and i + 1, as shown in the following examples:

The operator e0 creates an arch linking the positions 1 and 2n. Attached to these operators is the
Hamiltonian

H2n =
2n−1∑
i=0

(1 − ei),

where 1 is the identity. H2n acts naturally on states, and the groundstate (Ψπ )π :|π |=n attached to H2n
is defined as follows:

Definition 1.3 (Ψπ ). Let n be a positive integer. We define the groundstate in the Completely Packed
Loop model as the vector Ψ = (Ψπ )π :|π |=n which is the solution of H2nΨ = 0, normalized by Ψ()n = 1.

By the Perron–Frobenius theorem, this is well defined. We have then the followings properties:

Theorem 1.4. Let n be a positive integer.

• For any π , Ψr(π) = Ψπ∗ = Ψπ .
• The numbers Ψπ are positive integers.
• ∑

π Ψπ = An, where the sum is over matchings such that |π | = n.

The stability by rotation and conjugation is clear from the symmetry of the problem. The integral
property was proved in [10, Section 4.4], while the sum rule was proved in [9]. The computa-
tion of this groundstate has received a lot of interest, mainly because of the Razumov–Stroganov
(ex-)conjecture.

1.4. The Razumov–Stroganov conjecture

A simple computation shows that

which are exactly the numbers that appear in the FPL counting:
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Razumov and Stroganov [23] noticed in 2001 that this seems to hold in general, and this was recently
proved by Cantini and Sportiello [5]:

Theorem 1.5 (Razumov–Stroganov conjecture). The groundstate components of the Completely Packed Loop
model count the number of FPL configurations: for any matching π ,

Ψπ = Aπ .

The proof of Cantini and Sportiello consists in verifying that the relations of Definition 1.3 hold for
the numbers Aπ . We note also that the results of Theorem 1.4 are now a corollary of the Razumov–
Stroganov conjecture.

2. Matchings with nested arches and polynomials

2.1. Definitions and results

In [33], Zuber computed some Ψ(π)p for some small matchings π , and p = 0,1,2, . . . . Among
other things, he conjectured the following:

Theorem 2.1. (See [7,14].) For any matching π and p a nonnegative integer, the quantity A(π)p can be written
in the following form:

A(π)p = Pπ (p)

d(π)! ,

where Pπ (p) is a polynomial in p of degree d(π) with integer coefficients, and leading coefficient equal to
d(π)!/Hπ .

This was proved first by Caselli, Krattenthaler, Lass and Nadeau in [7] for A(π)p , and by Fonseca
and Zinn-Justin in [14] for Ψ(π)p . Because of this polynomiality property, we introduce the following
notations:

Definition 2.2 (Aπ (t) and Ψπ(t)). We let Aπ (t) (respectively Ψπ(t)) be the polynomial in t such that
Aπ (p) = A(π)p (resp. Ψπ(p) = Ψ(π)p ) for all integers p � 0.

By the Razumov–Stroganov conjecture (Theorem 1.5) one has clearly for all π :

Aπ (t) = Ψπ(t).

We introduced two different notations so that the origin of the quantities involved becomes clearer;
in most of this paper however we will only use the notation Aπ (t). It is the objective of this paper
to investigate these polynomials, and give evidence that they possess very interesting properties, in
particular when they are evaluated at negative integers. The following proposition sums up some
properties of the polynomials.

Proposition 2.3. The polynomial Aπ (t) has degree d(π) and leading coefficient 1/Hπ . Furthermore, we have
Aπ (t) = Aπ∗(t), and A(π)� (t) = Aπ (t + �) for any nonnegative integer �.

The first part comes from Theorem 2.1, while the rest is clear when t is a nonnegative integer and
thus holds true in general by polynomiality in t .

In this section we will recall briefly certain expressions for these polynomials, and point to other
works for the proofs.
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2.2. The FPL case

If π is a matching with n arches, the polynomial Aπ (t) admits the following expression:

Aπ (t) =
∑
σ�π

aπ
σ · Sσ (t − n + 1), (3)

in which σ is a parenthesis word (cf. Section 1.1), the aπ
σ are the nonnegative integers denoted by

a(σ ,π,0n) in [27], and Sσ (t − n + 1) is the polynomial given by

Sσ (t − n + 1) = 1

Hσ

∏
u∈Y (σ )

(
t − n + 1 + c(u)

)
,

in which Hσ and c(u) were defined in Section 1.1. If N denotes a nonnegative integer, Sσ (N) enu-
merates semistandard Young tableaux of shape Y (σ ) with entries not larger than N: this is the hook
content formula, cf. [26] for instance.

Eq. (3) above can be derived from [27, Eq. (4)] (itself based on the work [7]) together with Con-
jecture 3.4 in the same paper: this conjecture and the derivation are proved in [21].

2.3. The CPL case

In this subsection we briefly explain how to compute bivariate polynomials Ψπ(τ , t), defined as the
homogeneous limit of certain multivariate polynomials (see Section 5 for more details and references).
We will be mostly interested in the case τ = 1, since we recover the groundstate Ψπ(t) = Ψπ(1, t), as
explained in [32]; we address the case of general τ in Section 6.

So let a = {a1, . . . ,an} be a matching represented as an increasing sequence, and define the poly-
nomial Φa(τ ) by:

Φa(τ ) =
∮

. . .

∮ ∏
i

dui

2π iuai
i

∏
j>i

(u j − ui)(1 + τu j + uiu j).

We can then obtain the Ψπ(τ ) via a certain matrix C(τ ) :

Φa(τ ) =
∑
π

Ca,π (τ )Ψπ (τ ); (4)

Ψπ(τ ) =
∑

a

C−1
π,a(τ )Φa(τ ). (5)

The coefficients Ca,π (τ ) are given explicitly in [11, Appendix A]. We just need the following facts:

Proposition 2.4. (See [14, Lemma 3].) Let a and π be two matchings. Then we have:

Ca,π (τ ) =
⎧⎨⎩0 if π � a;

1 if π = a;
Pa,π (τ ) if π < a,

where Pa,π (τ ) is a polynomial in τ with degree � d(a) − d(π) − 2.
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Moreover, we have

Ca,π (τ ) = (−1)d(a)−d(π)Ca,π (−τ ), (6)

since it is a product of polynomials Us in τ with degree of the form d(a) − d(π) − 2k, k ∈ N, and
parity given by d(a) − d(π): this is an easy consequence of [14, p. 12 and Appendix C].

By abuse of notation, we write (a)p to represent {1, . . . , p, p + a1, . . . , p + an}, since this corre-
sponds indeed to adding p nested arches to π(a) via the bijections of Section 1. Then one easy but
important lemma for us is the following:

Lemma 2.5. (See [14, Lemma 4].) The coefficients Ca,π (τ ) are stable, that is:

C(a)p ,(π)p (τ ) = Ca,π (τ ) ∀p ∈ N.

We remark that Proposition 2.4, Eq. (6) and Lemma 2.5 also hold for the coefficients C−1
a,π (τ ) of

the inverse matrix. Now

Φ(a)p (τ ) =
∮

. . .

∮ n+p∏
i

dui

2π iuâi
i

∏
j>i

(u j − ui)(1 + τu j + uiu j)

=
∮

. . .

∮ n∏
i

dui

2π iuai
i

(1 + τui)
p
∏
j>i

(u j − ui)(1 + τu j + uiu j),

where we integrated in the first p variables and renamed the rest up+i 	→ ui . This is a polynomial
in p, and we will naturally note Φa(τ , t) the polynomial such that Φa(τ , p) = Φ(a)p (τ ).

Finally, from Eq. (5) and Lemma 2.5 we obtain the fundamental equation

Ψπ(τ , t) =
∑

a

C−1
π,a(τ )Φa(τ , t). (7)

In the special case τ = 1, we write Ca,π = Ca,π (1), Φa(t) = Φa(1, t) and thus

Aπ (t) = Ψπ(t) =
∑

a

C−1
π,aΦa(t), (8)

thanks to the Razumov–Stroganov conjecture (Theorem 1.5). This gives us a second expression for
Aπ (t), the first one being given by (3).

3. The main conjectures

In this section we present several conjectures about the polynomials Aπ (t). For each of them, we
will give strong supporting evidence. We will first give a combinatorial construction that is essential
in the statement of the conjectures.

3.1. Combinatorics

We give two rules which define certain integers attached to a matching π . It turns out that the
two rules are equivalent, which is the content of Theorem 3.1.

Let π be a link pattern, and n = |π | its number of arches. We let Y (π),d(π) be the Young diagram
of π and its number of boxes respectively, as defined in Section 1.1. We also use the notation x̂ =
2n + 1 − x for x ∈ �1,2n�.
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Rule A: For p between 1 and n − 1, we consider the set AL
p(π) of arches {a1,a2} such that a1 � p

and p < a2 < p̂, and the set A R
p (π) of arches {a1,a2} such that p < a1 < p̂ and p̂ � a2. It is clear that

|AL
p(π)| + |A R

p (π)| is an even integer, and we can thus define the integer m(A)
p (π) by

m(A)
p (π) := |AL

p(π)| + |A R
p (π)|

2
.

For instance, let π0 be the matching with 8 arches represented below on the left; we give an
alternative representation on the right by folding the second half of the points above the first half, so
that x̂ and x are vertically aligned. For p = 4, we get |AL

p(π0)| = 3, |A R
p (π0)| = 1, which count arches

between the regions (O) and (I), and thus m(A)
4 (π0) = 4/2 = 2. The reader will check that

m(A)
p (π0) = 0,1,2,2,2,1,1

for p = 1, . . . ,7.

Rule B: Label the boxes of Y (π) by associating n + 1 − x − y to the box (x, y). Then decompose
Y (π) in rims (cf. Section 1.1) and let R1, . . . , Rt be the successive rims: using the example π0 from
rule A, we represented below the Y (π0) with its labeling and decomposition in (three) rims. For a
given rim R� , denote by i and j the labels appearing at the bottom left and top right of the rim, and
by k the minimal value appearing in the rim (so that k � i, j). We define the multiset B� as

{k} ∪ {i, i − 1, . . . ,k + 1} ∪ { j, j − 1, . . .k + 1},

and let Bπ be the union of all multisets B� . Finally, we define m(B)
i (π) be the multiplicity of the

integer i ∈ {1, . . . ,n − 1} in Bπ .
In the case of π0, the rims give the multisets {2,4,3,3}, {4,5,5} and {6,7}. Their union is Bπ0 =

{2,32,42,52,6,7}, so that

m(B)
p (π0) = 0,1,2,2,2,1,1

for p = 1, . . . ,7.

We see here that m(A)
p (π0) = m(B)

p (π0) for all p, which holds in general:

Theorem 3.1. For any matching π , and any integer p such that 1 � p � |π |−1, we have m(A)
p (π) = m(B)

p (π).

The proof of this theorem is a bit technical, but not difficult; it is given in Appendix A.
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Definition 3.2 (mp(π)). For any matching π and any integer p, we let mp(π) be the common value

of m(A)
p (π) and m(B)

p (π) if 1 � p � |π | − 1, and be equal to 0 otherwise.

We have then the following result:

Proposition 3.3. For any matching π , we have
∑

p mp(π) � d(π), and the difference d(π) − ∑
p mp(π) is

an even integer.

Proof. Rule B is more suited to prove this proposition. We will clearly get the result if we can prove
that for each rim Rt , the number of boxes rt in Rt is greater or equal than the cardinality bt of the
multiset Bt , and the difference between the two quantities is even. Therefore we fix a rim Rt , and
we use the notations i, j,k from the definition of rule B. We compute easily rt = 2n − i − j − 1 while
bt = i + j − 2k + 1. The difference is thus δt := rt − bt = 2(k +n − 1 − (i + j)), which is obviously even.
It is also nonnegative: indeed, if c, c′ are the extreme boxes with the labels i, j respectively, then the
minimal value of k is obtained if the rim consists of the boxes to the right of c together with the
boxes below c′ . At the intersection of these two sets of boxes, the value of k is equal to i + j − n + 1,
which shows that δt is nonnegative and completes the proof. �

We will use this result in Section 3.2.1.

3.2. The conjectures

The rest of this section will consist of the statement of Conjectures 3.5, 3.8, 3.11 and 3.12, together
with evidence in their support. The first three conjectures are related to values of the polynomials
Aπ (t) when the argument t is a negative integer; what these conjectures imply is that some mys-
terious combinatorics occur around these values Aπ (−p). The fourth conjecture states simply that
the polynomials Aπ (t) have positive coefficients, and is thus slightly different in spirit than the other
ones, though they are clearly related.

The principal evidence in support of the conjectures, as well as the source of their discovery, is
the following result:

Fact 3.4. Conjectures 3.5, 3.8 and 3.12 are true for all matchings π such that |π | � 8. Conjecture 3.11 is true
for all n � 8.

The corresponding polynomials Aπ (t) were indeed computed in Mathematica for these values of
π thanks to Formula 6, and each conjecture was then checked from these exact expressions; note
that there are 1430 matchings |π | such that |π | = 8. In Appendix B we list the polynomials Aπ (t) for
|π | = 4.

3.2.1. Real roots
The first conjecture gives a complete description of all real roots of the polynomials Aπ (t):

Conjecture 3.5. All the real roots of the polynomials Aπ (t) are negative integers, and −p appears with mul-
tiplicity mp(π). Equivalently, we have a factorization:

Aπ (t) = 1

|d(π)|! ·
( |π |−1∏

p=1

(t + p)mp(π)

)
· Q π (t),

where Q π (t) is a polynomial with integer coefficients and no real roots.

We must verify first that the definition of the multiplicities is coherent with this conjecture. We
know indeed by Theorem 2.1 that Aπ (t) has degree d(π) in t; furthermore the degree of Q π (t) is
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necessarily even, since it is a real polynomial with no real roots. This means that the sum of the
mp(π) should not be larger than d(π), and should be of the same parity: this is precisely the content
of Proposition 3.3.

It is also immediately checked that the conjecture is compatible with the two stability properties
from Proposition 2.3, that is Aπ (t) = Aπ∗(t) and A(π)� (t) = Aπ (t + �) for any nonnegative integer �.
Indeed mp(π) = mp(π∗) is immediately seen from either one of the rules, as is mp+�((π)�) = mp(π).

As an example, the polynomial for the matching π0 of Section 3.1 is:

Aπ0(t) = (2 + t)(3 + t)2(4 + t)2(5 + t)2(6 + t)(7 + t)

145152000

× (
9t6 + 284t5 + 4355t4 + 39660t3 + 225436t2 + 757456t + 123120

)
.

In the articles [12] for the FPL case, and [30] for the CPL case, the following formula was estab-
lished:

A()a()b (t) =
a∏

i=1

b∏
j=1

t + i + j − 1

i + j − 1
.

This is exactly what Conjecture 3.5 predicts in this case (the constant factor is given by Theo-
rem 2.1). This is perhaps easier to see with the definition of the mi(π) by rule B. Here the Young
diagram is a rectangle, and it is easily seen that each box will correspond to a root of the polynomial,
matching precisely the expression above.

There is an extension of this “rectangular” case in the article [6], the results of which can be
reformulated as a computation of the polynomials Aπ (t) when the diagram Y (π) is formed of a
rectangle together with one more line consisting of one or two boxes, or two more lines with one
box each. Then a simple rewriting of the formulas of Theorems 3.2 and 4.2 in [6] shows that the
polynomials have indeed3 the form predicted by Conjecture 3.5.

In Section 5, we will give another piece of evidence for the conjecture, by showing that −1 is a
root of Aπ (t) as predicted, that is when there is no arch between 1 and 2n in the matching π ; note
though that we will not prove that we have multiplicity m1(π) = 1 in this case.

3.2.2. Values for some negative parameters
We are now interested in the values of the polynomial Aπ (t) is, when the argument t is special-

ized to a negative integer which is not a root. Note first that although Aπ (t) does not have integer
coefficients, we have the following:

Proposition 3.6. Let π be a matching, p > 0 an integer; then Aπ (−p) is an integer.

Proof. This is standard: for d = d(π), the polynomials
(t+d−i

d

)
, i = 0 . . .d, form a basis of the space of

complex polynomials in t of degree � d. Since Aπ (t) has degree d, we can write

Aπ (t) =
d∑

i=0

ci

(
t + d − i

d

)
. (9)

Now Aπ (p) = A(π)p is an integer when p is a nonnegative integer. Plugging in successively t =
0,1,2, . . . ,d in (9) shows then that c0, c1, . . . , cd are in fact all integers, which in turn implies that
for negative integers −p we have also that Aπ (−p) is an integer. �

3 We did not actually prove that the polynomials Q π (t) only have complex roots when they are of degree 4, though we
tested several values; when Q π (t) has degree 2, then from the explicit form in [6, Theorem 3.2] one checks that it has a
negative discriminant.
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So let π be a matching, and p ∈ �0, |π |� be such that mp(π) = 0. By rule A in Section 3.1, this
means that there are no arches that connect the outer part of π , consisting of the first p and the last
p points (denote it by α), and the inner part (denote it by β), as shown in the picture:

Here α and β can be naturally considered as matchings in their own right (when properly re-
labeled), and we introduce the notation π = α ◦ β in this situation. It turns out that the following
numbers play a special role in our second conjecture:

Definition 3.7 (Gπ ). For any matching π we define

Gπ := Aπ

(−|π |).
By Proposition 3.6 above, the Gπ are actually integers. The next conjecture says that these numbers

seem to appear naturally when evaluating our polynomials at certain negative integers:

Conjecture 3.8. Let π be a matching and p be an integer between 1 and |π | − 1 such that mp(π) = 0, and
write π = α ◦ β with |α| = p. We have then the following factorization:

Aπ (−p) = Gα Aβ .

Here we need to verify a certain sign compatibility with Conjecture 3.5, which predicts that
Aπ (−p) has sign (−1)Mp where M p = ∑

i�p mi(π). Now for this range of i we have obviously

mi(π) = mi(α) by rule A, so that Aπ (−p) has sign (−1)d(α) by Proposition 3.3; but this is then
(conjecturally) the sign of Gα (cf. Proposition 3.9 below), which is coherent with the signs in Conjec-
ture 3.8.

3.2.3. Properties of the Gπ

Conjecture 3.8 shows that the numbers Gπ seem to play a special role in the values of Aπ (t) at
negative integers.

Proposition 3.9. For any matching π , Gπ = G(π) and Gπ = Gπ∗ . Moreover, Conjecture 3.5 implies that
sign(Gπ ) = (−1)d(π) .

Proof. The first two properties are immediately derived from the polynomial identities Aπ (t + 1) =
A(π)(t) and Aπ (t) = Aπ∗ (t) respectively, given in Proposition 2.3. Then, if all real roots of Aπ (t) are
between −1 and 1 − |π | as predicted by Conjecture 3.5, the sign of Gπ must be equal to the sign of
(−1)d(π) , since Aπ (t) has leading term td(π)/Hπ by Theorem 2.1. �

We can compute some special cases, corresponding to Y (π) being a rectangle, or a rectangle plus
an extra row with just one box:

Proposition 3.10. We have G()a()b = (−1)ab , while G(()())a−2()b = (−1)ab+1(a + 1).

This is easily proved by using the explicit formulas for such π which were mentioned in Sec-
tion 3.2.1. Finally, the most striking features about these numbers are conjectural:

Conjecture 3.11. For any positive integer n, we have
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∑
π : |π |=n

|Gπ | = An and
∑

π : |π |=n

Gπ = (−1)
n(n−1)

2
(

AV
n

)2
, (10)

G()n =
⎧⎨⎩ (−1)

n(n−1)
2 (AV

n+1)
2 if n is even;

(−1)
n(n−1)

2 (AV
n AV

n+2) if n is odd.
(11)

The first equality in (10) is particularly interesting: it implies that the unsigned integers |Gπ |,
when π runs through all matchings of size n, sum up to An , the total number of FPL of size n.
Of course the Aπ verify exactly this also, but the properties of Gπ we have just seen show that
the sets of numbers have different behaviors. For instance, the stability property Gπ = G(π) fails for
Aπ obviously, while in general Gr(π) �= Gπ . Furthermore, A(()())a−2()b = a + b − 1 while G(()())a−2()b =
(−1)ab+1(a + 1). This raises the problem of finding a partition of FPLs of size n – or any other combi-
natorial object enumerated by An – whose blocks {Gπ }π : |π |=n verify |Gπ | = |Gπ |.

Remark. In fact, part of the conjecture is a consequence of Conjectures 3.5 and 3.8. Indeed, it was
proved in [14] that, as polynomials, we have:

A()n(t) =
∑

π : |π |=n

Aπ (t − 1). (12)

If one evaluates this for t = 1 − n, then two cases occur:

• if n is even, then we have that 1 − n is a root of A()n (t) by Conjecture 3.5, and we get from (12)
that

∑
π : |π |=n

Gπ = 0;

• if n is odd, then we are in the conditions of Conjecture 3.8, which tells us that A()n (1 − n) =
G()n−1 A() = G()n−1 , and from (12) we have

∑
π : |π |=n

Gπ = G()n−1 .

This then proves that the second equality in (10) can be deduced from the first case in (11).

3.2.4. Positivity of the coefficients
Our last conjecture is a bit different from the other three ones, in that it does not deal with values

of the polynomials, but their coefficients:

Conjecture 3.12. For any π , the coefficients of Aπ (t) are nonnegative.

It seems in fact to be true that the polynomials Q π (t) – whose existence is predicted by Conjec-
ture 3.5 – also only have nonnegative coefficients.

By Theorem 2.1, we know already that Aπ (t) is of degree d(π) with a positive leading coefficient,
so we will be interested in the subleading coefficient, that is, the coefficient of td(π)−1. We managed to
compute this coefficient and prove that it is indeed positive: this is Theorem 4.1 in the next section.
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4. The subleading term of the polynomials

In this section we will prove the following result:

Theorem 4.1. Given a matching π of size n, π �= ()n, the coefficient of td(π)−1 in Aπ (t) is positive.

This is a special case of Conjecture 3.12. We will give two proofs of this theorem, one starting
from the expression (3), the other based on the expression (8). As a byproduct of these proofs, we
will deduce two formulas concerning products of hook lengths (Proposition 4.3).

4.1. First proof

We use first the expression of Aπ (t) given by the sum in Eq. (3):

Aπ (t) =
∑
σ�π

aπ
σ · Sσ (t + 1 − n).

We need to gather the terms contributing to the coefficient of td(π)−1: they are of two kinds,
depending on whether Sσ (t + 1 − n) has degree d(σ ) equal to d(π) or d(π) − 1. Since σ � π , the
first case occurs only for σ = π , while the second case occurs when Y (σ ) is obtained from the
diagram Y (π) by removing a corner from this diagram, i.e. a box of Y (π) which has no box below it
and no box to its right. We denote by Cor(π) the set of corners of Y (π), and we get:

[
td(π)−1]Aπ (t) = aπ

π

Hπ

∑
u∈Y (π)

(
1 − n + c(u)

) +
∑

(x,y)∈Cor(π)

aπ
π−(x,y)

Hπ−(x,y)

.

It is proved in [7] that aπ
π = 1, and in [21] that aπ

π−(x,y) = 2n − 1 − y when (x, y) belongs to Cor(π).
We can then rewrite the previous expression as follows:

d(π)(1 − n)

Hπ
+ 1

Hπ

∑
u∈Y (π)

c(u) +
∑

(x,y)∈Cor(π)

(n − 1)

Hπ−(x,y)

+
∑

(x,y)∈Cor(π)

(n − y)

Hπ−(x,y)

.

Now the first and third terms cancel each other because of the hook length formula (see [26] for
instance), which is equivalent to

d(π)

Hπ
=

∑
(x,y)∈Cor(π)

1

Hπ−(x,y)

.

Therefore we are left with

[
td(π)−1]Aπ (t) = 1

Hπ

∑
u∈Y (π)

c(u) +
∑

(x,y)∈Cor(π)

(n − y)

Hπ−(x,y)

. (13)

We now wish to prove that this is positive, which is not clear since the first term can be negative.
The idea is to remember that Aπ (t) = Aπ∗(t) by Proposition 2.3. Now when π 	→ π∗ , the box (x, y)

is sent to (y, x), all contents change signs, Cor(π) is sent to Cor(π∗), and hook lengths are preserved.
From these observations we get the alternative expression:

[
td(π)−1]Aπ (t) = − 1

Hπ

∑
u∈Y (π)

c(u) +
∑

(x,y)∈Cor(π)

(n − x)

Hπ−(x,y)

. (14)
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Clearly in both (13) and (14) the second term is positive, since y < n for all boxes (x, y) in Y (π)

(there is at least one such box because π �= ()n). Adding (13) and (14), and dividing by 2, we obtain
that the coefficient [td(π)−1]Aπ (t) is positive:

[
td(π)−1]Aπ (t) =

∑
(x,y)∈Cor(π)

(2n − x − y)

Hπ−(x,y)

. (15)

4.2. Second proof

Here we use the results of Section 2.3, with τ = 1. Eq. (8) says that

Φa(t) = Aπ (t) +
∑
σ<π

Cπ,σ Aσ (t),

where a = a(π). By Theorem 2.1, we know that Aπ (t) has degree d(π). Furthermore, since Cπ,σ has
degree � d(π) − d(σ ) − 2 if σ < π , we conclude that the coefficient of td(π)−1 in Aπ (t) and Φa(π)(t)
is the same, so:

[
td(π)−1]Aπ (t) = [

td(π)−1] ∮
. . .

∮ |a|∏
i=1

dui

2π iuai
i

(1 + ui)
t
∏
j>i

(u j − ui)(1 + u j + uiu j).

If we consider (1 + u j + uiu j) = (1 + u j) + uiu j , we notice that each time we pick the term uiu j ,
we decrease ai and a j by 1 and thus the integral corresponds formally to a diagram with two boxes
less, so the degree in t decreases by 2 also; these terms can thus be ignored, which gives:

[
td(π)−1]Aπ (t) = [

td(π)−1]∮
. . .

∮ ∏
i

dui

2π iuai
i

(1 + ui)
t+i−1

∏
j>i

(u j − ui)

= [
td(π)−1] ∑

σ∈S |π |
(−1)σ

∮
. . .

∮ ∏
i

dui

2π iai + 1 − σi
(1 + ui)

t+i−1

= [
td(π)−1]∑

σ

(−1)σ
∏

i

(
t + i − 1

ai − σi

)

= [
td(π)−1]det

∣∣∣∣(t + i − 1

ai − j

)∣∣∣∣.
Expanding the binomial up to the second order, we get:

(
t + i − 1

ai − j

)
= tai− j 1 + (ai− j)(2i+ j−ai−1)

t

(ai − j)! + terms of lower degree.

If we compute the subleading term of the determinant we get:

[
td(π)−1]Aπ (t) = [

t−1] det

∣∣∣∣1 + (ai− j)(2i+ j−ai−1)
t

(ai − j)!
∣∣∣∣

=
n−1∑

det

∣∣∣∣ 1

(ai − j)! ×
{

1 if i �= k,

(ai − j)(2i + j − ai − 1)/2 if i = k

∣∣∣∣. (16)

k=0
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We want to show that this expression is equal to the r.h.s. of (14). First of all, we need to express
the quantities involving hooks and contents in terms of the sequence a. Notice that the integer ai is
naturally associated to the (n + 1 − i)th row from the top in Y (a), the length of this row being given
by (ai − i).

• It is well known (see for instance [24, p. 132]) that

1

HY (a)

= det

∣∣∣∣ 1

(ai − j)!
∣∣∣∣; (17)

• The contents in the row indexed by ai are given by i − n, i − n + 1, . . . , i − n + (ai − i − 1), which
sum up to 1

2 (ai − i)(2n − ai − i + 1), and therefore we get

∑
u∈Y (a)

c(u) =
n∑

i=1

1

2
(ai − i)(2n − ai − i + 1);

• Noticing that ai 	→ ai − 1 removes a box in (n + 1 − i)th row, we have:

∑
(x,y)∈Cor(π)

n − x

Hπ−(x,y)

=
n∑

k=1

det

∣∣∣∣ 1

(ai − j)!
{

1 if i �= k,

(ai − j)(i − 1) if i = k

∣∣∣∣. (18)

Here we can sum over all k, i.e. all rows, because the determinants corresponding to rows without
a corner in Y (a) have two equal rows and thus vanish.

Looking back at Eq. (16), we write

(ai − j)(2i + j − ai − 1)/2 = −(ai − j)(ai − j − 1)/2 + (ai − j)(i − 1),

thus splitting each determinant in two thanks to linearity in the kth row. Then the expression ob-
tained by summing the determinants corresponding to the second term is precisely (18); therefore all
that remains to prove is the following lemma:

Lemma 4.2.

n∑
k=1

det

∣∣∣∣ 1

(ai − j)! ×
{

1 if i �= k,

(ai − j)(ai − j − 1) if i = k

∣∣∣∣
=

(
n∑

k=1

(ak − k)(ak − 2n + k − 1)

)
× det

∣∣∣∣ 1

(ai − j)!
∣∣∣∣. (19)

Proof. We write (ak − k)(ak − 2n + k − 1) = ak(ak − 2n − 1) + k(2n − k + 1) and use linearity of the
determinant with respect to line (and column) k to write the r.h.s. of (19) as

n∑
k=1

det

∣∣∣∣ 1

(ai − j)!
{

1 if i �= k,

ai(ai − 2n − 1) if i = k

∣∣∣∣
+

n∑
det

∣∣∣∣ 1

(ai − j)!
{

1 if j �= k,

j(2n − j + 1) if j = k

∣∣∣∣. (20)

k=1
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Now we notice that we have the general identity for any variables aij,bij :

n∑
k=1

det

∣∣∣∣aij

{
1 if i �= k,

bij if i = k

∣∣∣∣ =
n∑

k=1

det

∣∣∣∣aij

{
1 if j �= k,

bij if j = k

∣∣∣∣.
Indeed, both correspond to the coefficient of t−1 in det |aij + aijbi j/t|, which can be expanded using
multilinearity according either to rows or to columns. We use this in the first term of (20) and in the
l.h.s. in the lemma; putting things together, the r.h.s. of (19) minus the l.h.s is equal to:

n∑
k=1

det

∣∣∣∣ 1

(ai − j)!
{

1 if j �= k,

2(n − j)(ai − j) if j = k

∣∣∣∣.
For all k < n the determinants have two proportional columns (k and k + 1), while for k = n the

nth column of the determinant is zero. So all these determinants are zero and therefore so is their
sum, which achieves the proof of the lemma. �

This completes the second proof of Theorem 4.1.

4.3. Application to hook length products

It turns out that some of the computations made to prove Theorem 4.1 have nice applications to
certain hook identities. If Y is a Young diagram, let Cor(Y ) be its corners, and HD(Y ) (respectively
VD(Y )) be the horizontal (resp. vertical) dominos which can be removed from Y , defined as two
boxes which can be removed in the same row (resp. the same column). Then we have the following
identities:

Proposition 4.3. For any Young diagram Y we have:

2
∑

u∈Y c(u)

HY
=

∑
(x,y)∈Cor(Y )

(y − x)

HY −(x,y)

and

2
∑

u∈Y c(u)

HY
=

∑
hd∈HD(Y )

1

H(Y −hd)

−
∑

vd∈VD(Y )

1

H(Y −vd)

.

Proof. We consider a, a sequence such that Y (a) = Y . The first formula consists simply in equating
the expressions in (13) and (14).

We will see that the second formula is a reformulation of Lemma 4.2. We already identified
2

HY

∑
u∈Y c(u) as the r.h.s. of the lemma, so we want identify the sums on dominos with the l.h.s.

in Lemma 4.2. We note first that the kth determinant in (19) is of the form (17) for the sequence a(k)

which coincides with a except a(k)

k = ak − 2. There are three different cases to consider: firstly, if a(k)

has two equal terms, the corresponding determinant vanishes. Then, if a(k) is increasing, we obtain
one of the terms in the sum over HD(Y ). Finally, for a(k) to have distinct terms when it’s not increas-
ing, it is necessary and sufficient that ak = ak−1 + 1 and ak−2 < ak − 2. The sequence obtained by
switching ak − 2 and ak−1 is then strictly increasing; if we exchange the rows in the determinant, we
will get a negative sign. It is then easy to verify that such sequences are those obtained by removing
a vertical domino from Y , which achieves the proof. �
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As pointed out to the second author by V. Féray [13], both formulas can in fact be deduced from
the representation theory of the symmetric group, using the properties of Jucys–Murphy elements [16,
20].

5. The first root

In this section we will prove the following theorem

Theorem 5.1. For any matching π we have

Ψπ(τ ,−1) =
{

Ψπ ′(τ ) if π = (π ′);
0 otherwise.

This is a special case of Conjecture 3.5 by setting τ = 1:

Corollary 5.2. If m1(π) = 1, then (t + 1) divides the polynomial Aπ (t).

Indeed m1(π) = 1 precisely when there is no arch between 1 and 2n in π (cf. rule A in Sec-
tion 3.1), which means that π cannot be written as (π ′). For the same reason, Theorem 5.1 is in
general a special case of Conjecture 6.1.

To prove this theorem, we use the multiparameter version of the quantities Ψπ .

5.1. Multiparameter setting

We recall the principal properties of the multiparameter setting as presented in [14,32,10]. Note
that in fact, it is this setting that was used originally to prove the results of Section 2.3; we presented
things backwards because this was not needed outside of this section.

There exist polynomials in 2n variables Ψπ(z1, . . . , z2n) with coefficients in C(q), indexed by
matchings of size n, which are defined as solutions of a certain equation [32, Formulas 4.2 and 4.3]
(related to the qKZ equation introduced by Frenkel and Reshetikhin in [15]), which is a general-
ization of the eigenvector equation defining the Ψπ (cf. Section 1.3). Here q and τ are related by
τ = −q − q−1, so that q = ±e2iπ/3 will give τ = 1. One can show that these polynomials form a basis
of the following vector space Vn:

Definition 5.3 (Vn). We define Vn as the vector space of all homogeneous polynomials in 2n variables,
with total degree δ = n(n − 1) and partial degree δi = n − 1 in each variable, which obey to the wheel
condition:

P (z1, . . . , z2n)
∣∣

zk=q2z j=q4zi
= 0 ∀k > j > i.

This vector space has dimension (2n)!
n!(n+1)! , the number of matchings of size |π | = n. The polynomials

Ψπ(z1, . . . , z2n) have the following important specializations

Lemma 5.4. (See [11].) Let qε = {qε1 , . . . ,qε2n }, where εi = ±1 are such that if q−1,q are replaced by opening
and closing parentheses respectively, one gets a valid parenthesis word π(ε). Then

Ψπ

(
qε

) = τ d(π)δπ,ε,

where δπ,ε = 1 when we have π(ε) = π .
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Since the Ψπ(z1, . . . , z2n) form a basis of Vn , the lemma shows that a polynomial in this space is
determined by its value on these points qε . There is a small variation of this lemma, for the cases
with a big arch (1,2n), cf. [32, Formula 4.15]4:

Ψπ

(
q−2,qε,q2) =

(
q − 1

q − q−1

)2(n−1)

τ d(π)q−(n−1)δ(ε),π .

Another basis. We now define another set of polynomials Φa(z1, . . . , z2n) (indexed by the increasing
sequences defined in Section 1.1), by the integral formula:

Φa(z1, . . . , z2n) = cn

∏
1�i< j�2n

(
qzi − q−1z j

)

×
∮

. . .

∮ n∏
i=1

dwi

2π i

∏
1�i< j�n(w j − wi)(qwi − q−1 w j)∏

1�k�ai
(wi − zk)

∏
ai<k�2n(qwi − q−1zk)

, (21)

where the integral is performed around the zi but not around q−2zi , and cn = (q − q−1)−n(n−1) . In the
limit zi = 1 for all i we simply obtain the equations for Φa(τ ) given in Section 2.3, by the change of
variables ui = wi−1

qwi−q−1 . In fact, these polynomials actually also live in Vn and we have

Φa(z1, . . . , z2n) =
∑
π

Ca,π (τ )Ψπ (z1, . . . , z2n),

where the Ca,π (τ ) are precisely the coefficients that appear in Section 2.3.5 Then

Φa
(
qε

) = τ d(ε)Ca,ε(τ ), (22)

which is an immediate application of Lemma 5.4. Using the lemma’s variation, we also have:

Φa
(
q−2,qε,q2) = τ d(ε)q−(n−1)

(
q − 1

q − q−1

)2(n−1)

Ca,(ε). (23)

5.2. The proof

By Lemma 2.5,

Ψπ(−1) =
∑

a

C−1
π,aΦa(−1).

We now introduce the following multiple integral, inspired by Formula (21):

Φa(z1, . . . , z2n| − 1)

:= cn
z1(q − q−1)

qz1 − q−1z2n

∏
1�i< j�2n

(
qzi − q−1z j

)

×
∮

. . .

∮ ∏
i

dwi

2iπ

∏
i< j(w j − wi)(qwi − q−1 w j)∏

j�ai
(wi − z j)

∏
j>ai

(qwi − q−1z j)

∏
i

qwi − q−1z2n

qz1 − q−1 wi
. (24)

4 We do not use the same normalization as in [32].
5 In fact, this is the true definition of these coefficients, and the properties listed in Section 2.3 are proved from this definition

and (22).
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The essential property of Φa(z1, . . . , z2n|−1) is that if all zi = 1, then we get Φa(−1); this requires
the change of variables ui = wi−1

qwi−q−1 already mentioned after Formula (21). If we integrate in w1, we

obtain:

Φa(z1, . . . , z2n| − 1) = cn

2n−1∏
i=2

(
qzi − q−1z2n

) 2n−1∏
2�i< j

(
qzi − q−1z j

)

×
∮

. . .

∮ ∏
i=2

dwi

2iπ

∏
i< j(w j − wi)(qwi − q−1 w j)∏

2� j�ai
(wi − z j)

∏
2n> j>ai

(qwi − q−1z j)
.

The r.h.s. is now factorized in one term which depends on z1 and z2n , but not on a, and one which
does not depend on z1 and z2n , and lives in the vector space Vn−1 (with parameters {z2, . . . , z2n−1}).
Therefore we can write Φa(z1, . . . , z2n| − 1) as a linear combination of Ψπ(z2, . . . , z2n−1):

Φa(z1, . . . , z2n| − 1) =
∏2n−1

i=2 (qzi − q−1z2n)

(q − q−1)2(n−1)
×

∑
π

Ĉa,πΨπ (z2, . . . , z2n−1). (25)

We have then the following essential lemma:

Lemma 5.5. For any a, ε we have Ĉa,ε = Ca,(ε) .

Proof. First we integrate Formula (21) in w1:

Φa(z1, . . . , z2n) = cn

2n−1∏
i=2

(
qzi − q−1z2n

) ∏
2�i< j<2n

(
qzi − q−1z j

)

×
∮

. . .

∮ ∏
i

dwi

2iπ

∏
i< j(w j − wi)(qwi − q−1 w j)∏

j�ai
(wi − z j)

∏
2n> j>ai

(qwi − q−1z j)

2n−1∏
i=2

qz1 − q−1 wi

qwi − q−1z2n
.

We then make the substitutions z1 	→ q−2 and z2n 	→ q2:

Φa
(
q−2, z2, . . . , z2n−1,q2) = cn(−1)n−1

2n−1∏
i=2

(zi − 1)
∏

2�i< j<2n

(
qzi − q−1z j

)

×
∮

. . .

∮ ∏
i=2

dwi

2iπ

∏
i< j(w j − wi)(qwi − q−1 w j)∏

2� j�ai
(wi − z j)

∏
2n> j>ai

(qwi − q−1z j)
.

Comparing with the formula obtained for Φa(z1, . . . , z2n| − 1), we get:

Φa(z1, . . . , z2n| − 1) = (−1)n−1
2n−1∏
i=2

qzi − q−1z2n

zi − 1
Φa

(
q−2, z2, . . . , z2n−1,q2),

which thanks to (25) becomes:

∑
Ĉa,εΨε(z2, . . . , z2n−1) = (q − q−1)2(n−1)∏2n−1 zi − 1

(−1)n−1
∑

Ca,πΨπ

(
q−2, z2, . . . , z2n−1,q2).
ε i=2 π
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Now the l.h.s. lives in Vn−1, so it is determined by the points (qσ ) (cf. Lemma 5.4 and its variation):∑
ε

Ĉa,εδε,σ τ d(ε) =
∑
π

Ca,π δπ,(σ )τ
d(π),

This simplifies to Ĉa,σ τ d((σ )) = Ca,σ τ d(σ ); since d(σ ) = d((σ )), we get the expected result. �
We can now finish the proof of the theorem. In the limit zi = 1 for all i, Eq. (25) becomes

Φa(−1) =
∑

π :|π |=n−1

Ĉa,πΨπ .

Using the lemma, and multiplying by C−1
π,a , this becomes:

∑
a

C−1
π,aΦa(−1) =

∑
a

∑
ε

C−1
π,aCa,(ε)Ψε ⇔ Ψπ(−1) =

∑
ε

δπ,(ε)Ψε,

which achieves the proof.

6. The τ case

The bivariate polynomials Ψπ(τ , t) were introduced in Section 2.3. In this section we present con-
jectures mimicking those of Section 3 for these polynomials.

6.1. Conjectures

We will give four conjectures, each of them being in fact a natural extension of one of the conjec-
tures of Section 3. All of these conjectures have been verified for all Ψπ(τ , t) with |π | � 8. We begin
with roots:

Conjecture 6.1. Considering Ψπ(τ , t) as a polynomial in t with coefficients in Q[τ ], the real roots of Ψπ(τ , t)
are negative integers −p and with multiplicity given by mp(π):

Ψπ(τ , t) = 1

|d(π)|! ×
|π |∏
i=1

(t + i)mi(π) Q π (τ , t),

where Q π (τ , t) is a polynomial in t with no real roots.

For the example π0 of Section 3.1 we compute:

Ψπ0(τ , t) = (2 + t)(3 + t)2(4 + t)2(5 + t)2(6 + t)(7 + t)

145152000
τ 9

× (
84000 + 440640τ 2 + 151440tτ 2 + 13200t2τ 2 + 523680τ 4 + 394360tτ 4

+ 110520t2 + τ 413670t3τ 4 + 630t4τ 4 + 182880τ 6 + 211656tτ 6

+ 101716t2τ 6 + 25990t3τ 6 + 3725t4τ 6 + 284t5τ 6 + 9t6τ 6).
We then have the natural generalization of the factorization conjecture:
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Conjecture 6.2. Let π be a matching and p be a integer between 1 and |π | − 1 such that mp(π) = 0, so that
π = α ◦ β with |α| = p; then

Ψπ(τ ,−p) = Gα(τ )Ψβ(τ ).

Here Gπ (τ ) is naturally defined by Gπ (τ ) := Ψπ(τ ,−|π |), while Ψπ(τ ) was defined in Section 2.3
and is equal to Ψπ(τ ,0). The values for |π | = 4 are given in Appendix B. These Gπ (τ ) present several
properties:

Conjecture 6.3. We have Gπ (τ ) = (−1)d(π) gπ (τ ) where gπ (τ ) is a polynomial with nonnegative integer
coefficients. Furthermore, we have the sum rule:∑

π

Gπ (τ ) =
∑
π

Ψπ(−τ ).

We will show in Section 6.2 that the leading term of gπ (τ ) is τ d(π); we will actually compute
the leading term in τ of Ψπ(τ , p) for various integer values of p. Another property of these Gπ (τ ) is
that

Gπ (τ ) = (−1)d(π)Gπ (−τ ),

so that they are odd or even polynomials depending on the parity of π . More generally, one has
Ψπ(τ , t) = (−1)d(π)Ψπ (−τ , t). Indeed, this is obvious for the polynomials

Φa =
∮

. . .

∮ ∏
i

dui

uai
i

(1 + τui)
∏
j>i

(u j − ui)(1 + τu j + uiu j),

and as the basis transformation respects this parity, this holds for Ψπ(τ , t) as well.
Finally, introducing a τ doesn’t change the positivity:

Conjecture 6.4. The bivariate polynomial d(π)Ψπ (τ , t) has nonnegative integer coefficients.

6.2. The leading term of Ψπ(τ , p)

We now consider Ψπ(τ , t) as a polynomial in τ , first with coefficients in C[t], and then with
rational coefficients under the specializations t = p for p an integer.

We start by deriving an expression for the leading term in τ of the polynomial Ψπ(τ , t). First we
consider the leading term in τ of Φa(τ , t) for a given sequence a. We have

Φa(τ , t) =
∮

. . .

∮ ∏
i

dui

2π iuai
i

(1 + τui)
t
∏
j>i

(u j − ui)(1 + τu j + uiu j),

It is clear that if we replace (1 + τui + uiu j) for (1 + τui) we don’t change the leading term (for the
same reasons as in Section 4.2). Therefore this last expression has the same leading term in τ as∮

. . .

∮ ∏
i

dui

2π iuai
i

(1 + τui)
t+i−1

∏
j>i

(u j − ui)

=
∑
σ∈S

(−1)σ
∮

. . .

∮ ∏
i

dui

2π iuai+1−σi
(1 + τui)

t+i−1
n i
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=
∑
σ∈Sn

(−1)σ
∏

i

τ ai−σi

(
t + i − 1

ai − σi

)

= τ d(a) det
n×n

∣∣∣∣(t + i − 1

ai − j

)∣∣∣∣.
So we know that the degree in τ of Φa(τ , t) is d(a). Because of Eq. (7) and Proposition 2.4, it is

clear that the leading term of Ψπ(τ , t) is the same as Φa(π)(τ , t). We have thus proved:

Proposition 6.5. As a polynomial in τ , the leading term of Ψπ(τ , t) is given by Dπ (t)τ d(π) , where for a =
a(π) we have

Dπ (t) = det
n×n

∣∣∣∣(t + i − 1

ai − j

)∣∣∣∣.
Now we turn to what happens when t is specialized to an integer p; by definition the cases p = 0

and p = −|π | correspond respectively to the polynomials Ψπ(τ ) and Gπ (τ ). Clearly if Dπ (p) �= 0
then the leading term of Ψπ(τ , p) is Dπ (p)τ d(π) by the previous proposition, while if Dπ (p) = 0 the
leading term is necessarily of smaller degree. Our result is the following:

Theorem 6.6. Let π be a matching, and p be an integer; if p < 0, we also assume that π is not of the
form (ρ)|p| . Then Dπ (p) = 0 if and only if 1 − |π | � p � −1. Furthermore,

• if p � 0 then Dπ (p) counts the number of tableaux of shape Y (π) with entries bounded by p + |π | − 1
which are strictly increasing in rows and columns;

• if p � −|π |, then (−1)d(π)Dπ (p) counts the number of tableaux of shape Y (π) with entries bounded by
|p| − |π | which are weakly increasing in rows and columns;

• if 1 − |π | � p � −1, then
– if m|p|(π) �= 0, Conjecture 6.1 implies that Ψπ(τ , p) is the zero polynomial;
– if m|p|(π) = 0 and π = α ◦ β with |α| = |p|, Conjecture 6.2 implies that the leading term of Ψπ(τ , p)

is given by (−1)d(α)Dβ(0)τ d(α)+d(β) .

Note that the condition that π is not of the form (ρ)|p| is not a restriction, since in such a case
Ψπ(τ , p) = Ψρ(τ ,0).

Proof. We study separately the three cases:

Case p � 0. The determinant Dπ (p) is here a particular case of [17, Theorem 6.1], which says that
indeed Dπ (p) counts tableaux of shape Y (π) with entries bounded by (p + |π | − 1) and increasing
in both directions. For example, if a(π) = {1,2,4,7} and p = 1 we get

D{1,2,4,7}(1) = det
4×4

∣∣∣∣( i

ai − j

)∣∣∣∣ = 11,

corresponding to the 11 tableaux:

Note also that the filling of the shape Y (π) where the cell (x, y) is labeled by x + y − 1 is a valid
tableau because x + y � n holds for every cell, and therefore Dπ (p) > 0 for p � 0.
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Case p � −|π |. We use first the transformation
(N

k

) = (−1)k
(N+k−1

k

)
for each coefficient in Dπ (p) to

get:

Dπ (p) = (−1)d(π) det
n×n

∣∣∣∣(|p| + ai − i − j

ai − j

)∣∣∣∣.
Here the sign comes from (−1)ai− j = (−1)ai (−1)− j for the coefficient (i, j), with gives the global

sign (−1)
∑

i ai−
∑

j j = (−1)d(π) . We can then use [17, Theorem 6.1] in this case also, which gives us
that (−1)d(π)Dπ (p) counts tableaux of shape Y (π) with entries between 0 and |p| − |π | which are
weakly increasing in both directions. For the same partition a(π) = {1,2,4,7} and p = −5 we get

∣∣Dπ (−5)
∣∣ = det

4×4

∣∣∣∣(5 + ai − i − j

5 − i

)∣∣∣∣ = 7,

which corresponds to the 7 tableaux:

Now here also Dπ (p) �= 0 because the tableau filled zeros is valid. For p = −|π |, this is the only
possible tableau and thus the leading coefficient of Gπ (τ ) is given by Dπ (−|π |) = (−1)d(π) .

Case −|π | < p < 0. We first want to prove that Dπ (p) = 0 if π is not of the form (ρ)|p| . We easily
check that

(p+i−1
ai− j

)
is zero unless either (i, j) < (|p| + 1,a|p|+1) or (i, j) � (|p| + 1,a|p|+1). Therefore

we get a matrix which splits into two rectangular submatrices; the determinant is zero unless these
submatrices are square, which means that |p| + 1 = ap+1, and then

Dπ (p) = det|p|×|p|

∣∣∣∣(p + i − 1

i − j

)∣∣∣∣ × det
(|π |−|p|)×(|π |−|p|)

∣∣∣∣( i − 1

âi − j

)∣∣∣∣
= D{1,...,−p}(p) × Dâ(0),

where âi = ar+i − r. The first factor is 1, and the second is non-zero if and only if â corresponds to
a matching; but this is not the case because then π would be of the form (ρ)|p| , which is excluded.
Therefore Dπ (p) = 0 as wanted.

Now Conjecture 6.1 immediately implies that if m|p|(π) �= 0, then t = p is a root of Ψπ(τ , t), so
that Ψπ(τ , p) ≡ 0. If m|p|(π) = 0, then by Conjecture 6.2, the leading term of Ψπ(τ , p) is equal to
the product of the leading terms of Gα(τ ) and Ψβ(τ ). The first one is given by (−1)d(α)τ d(α) as
proved above, while the leading term of Ψβ(τ ) = Ψβ(τ ,0) is given by Dβ(0)τ d(β) , which achieves the
proof. �
7. Further questions

7.1. Solving the conjectures

Since our paper is centered around conjectures, the most immediate problem is to solve them. We
listed four conjectures in Section 3 which concern roots, specializations and coefficients of the poly-
nomials Aπ (t). The difficulty here is that existing expressions for the polynomials Aπ (t), namely (3)
and (8), consist of certain sums of polynomials, so that it makes it uneasy to find real roots of Aπ (t),
and more generally the sign variations when t is a real variable. For the same reasons, it is hard to
figure out where the factorization from Conjecture 3.8 comes from. Furthermore, both expressions (3)
and (8) involve negative signs, so that the positivity of coefficients is not at all obvious. One way
to attack the conjectures would be then to find new expressions for the polynomials; this could be
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done by either understanding better the quantities involved in (3) and (8), or coming up with a new
decomposition of the FPLs counted by A(π)p for instance.

Note also that the linear relations from Definition 1.3, which determine the Aπ by the Razumov
Stroganov correspondence 1.5, do not seem to be helpful in the case of nested arches. Indeed given
a matching (π)p , then the linear relation corresponding to A(π)p involves not only quantities of the
form A(π ′)p or A(π ′)p−1 , but also A()(π)p−2() = A()()(π)p−2 , which is not of the form considered in this
work. For two matchings π,π ′ , the quantities Aπ ′(π)p are polynomials in p when p is big enough
(cf. [7, Theorem 6.7]), and these ones are “stable” with respect to these Razumov–Stroganov linear
relations: it would be very interesting to study these more general polynomials and find out how our
conjectures can be extended.

Another angle to attack some of the conjectures (namely Conjectures 3.5, 3.8 and their τ coun-
terparts 6.1, 6.3) would be to extend the approach used in the proof of Theorem 5.1: one first needs
to extend the multivariate integral definition (24) to any integer p, which can easily be done. The
problem is that the expressions obtained are fairly more complicated and intricate than in the case
p = −1. This is work in progress.

7.2. Combinatorial reciprocity

The idea underlying our conjectures (Conjecture 3.12 excepted) is that there should be a “com-
binatorial reciprocity theorem” [25] attached to these polynomials. That is, we believe there exist
yet-to-be-discovered combinatorial objects depending on π such that Aπ (−p) is equal (up to sign)
to the number of these objects with size p. The most well-known example in the literature of such a
phenomenon concerns the Ehrhart polynomial i P (t) of a lattice polytope P , which counts the number
of lattice points in t P when t is a positive integer: for such t , Ehrhart reciprocity then tells us that
(−1)dim P i P (−t) counts lattice points strictly in t P (see [1] for instance).

It is natural to wonder if our problem fits in the domain of Ehrhart theory, since most known
examples of combinatorial reciprocity can be formulated in terms of Ehrhart polynomials: see for
instance certain polynomials attached to graphs [3,4]. It cannot be a straightforward application how-
ever, in the sense Aπ (t) is not equal to an Ehrhart polynomial i P (t) in general: indeed, for any lattice
polytope P there cannot be two positive integers i, j such that i P (−i)i P (− j) < 0 since such values
are either 0 or of the sign (−1)dim P by Ehrhart reciprocity. But for π = ()()()() = ()4 for instance, one
computes from the explicit expression given in Appendix B that Aπ (−2) = −1 while Aπ (−4) = 9.
Moreover, one can also show that if Conjecture 3.5 holds, then given any finite set S of negative inte-
gers (included say in {−1, . . . ,1 −n}) there exists a matching π of size n such that the set of negative
roots of Aπ (t) is precisely S . This is clearly a behaviour contrasting with Ehrhart polynomials, and
even their generalizations to inside-out polytopes [2].

Conjectures 3.5 and 3.8 tell us in particular for which values of p objects counted by |Aπ (−p)|
should exist, and moreover that such objects should split for certain values of p. As pointed out in
Section 3.2.3, Conjectures 3.8 and 3.11 make it particularly important to figure out what the numbers
Gπ = Aπ (−|π |) count.

7.3. Consequences of the conjectures

The conjectures have interesting consequences regarding the numbers aπ
σ involved in Eq. (3), since

for instance Conjecture 3.5 directly implies certain linear relations among these numbers. Discovering
what these numbers aπ

σ are is a step in the direction of a new proof of the Razumov–Stroganov
conjecture, in the sense that it gives an expression for Aπ that could be compared to the expressions
for Ψπ . We note also that a conjectural expression for these numbers aπ

σ was given in [31], which
if true would in fact give another proof of the Razumov–Stroganov conjecture; a special case of this
expression is proven in [22].
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Appendix A. Equivalence of the definitions of root multiplicities

We will give here a proof of Theorem 3.1, which states the integers m(A)
i (π) and m(B)

i (π) defined
in Section 3.1 are equal for any matching π and any integer i with 1 � i � |π | − 1.

Let π be a matching with n arches; we will prove the theorem by induction on d(π). The theorem
holds if d(π) = 0; indeed this means that π = ()n , and clearly that m(A)

i (π) = m(B)
i (π) = 0 for all i in

this case.
We now assume d(π) > 0. Let π ′ be the matching obtained when the external rim of π is re-

moved. If π is represented as a parenthesis word, then π ′ is simply obtained by replacing the leftmost
closing parenthesis of π by an opening parenthesis, and the rightmost opening parenthesis by a clos-
ing one. Let i, j,k be the indices defined in rule B (see an example in Fig. 3). Then in the parenthesis
word representing π , the indices of the two parentheses above are respectively i + 1 and ĵ − 1. More
precisely, π admits the unique factorization:

π = (i)x1)x2) · · · xi−k)w(y j−k(· · · (y2(y1()
j, (26)

where xt , yt and w are (possibly empty) parenthesis words. We let a0 := i + 1 < a1 < · · · < ai−k be
the indices of the closing parentheses written above and b j−k < · · · < b1 < b0 = ĵ + 1 be the indices
of opening ones.

Then by the factorization (26) the matching π includes the arches:

(k,ai−k), . . . , (i − 1,a1), (i, i + 1) and (b j−k, k̂), . . . , (b1, ĵ − 1), (ĵ + 1, ĵ ), (27)

and moreover these are exactly the arches which are modified when going from π to π ′; indeed,
these are replaced in π ′ by

(k, k̂), (k + 1, k̂ + 1),

(k + 2,ai−k), . . . , (i,a2), (i + 1,a1),

(b j−k, k̂ − 2), . . . , (b2, ĵ ), (b1, ĵ + 1).

From this data we can now study the changes going from AL
t (π), A R

t (π) to AL
t (π ′), A R

t (π ′) for
any integer t between 1 and n − 1. A case-by-case analysis shows that:

∣∣AL
t (π)

∣∣ = ∣∣AL
t

(
π ′)∣∣ + δt, with δt =

⎧⎨⎩
1 if t = k;
2 if k < t � i;
0 otherwise,

and, symmetrically:

∣∣A R
t (π)

∣∣ = ∣∣A R
t

(
π ′)∣∣ + εt, with εt =

⎧⎨⎩
1 if t = k;
2 if k < t � j;
0 otherwise.

By definition m(A)
t (π) − m(A)

t (π ′) = (εt + δt)/2. From the explicit values above, this can be

equivalently expressed by the fact that the multiset difference between {1m(A)
1 (π)2m(A)

2 (π) . . .} and

{1m(A)
1 (π ′)2m(A)

2 (π ′) . . .} is:

{k, i, i − 1, . . . ,k + 1, j, j − 1, . . .k + 1}.
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Fig. 3. In this example we have i = 4, j = 5 and k = 2, therefore the multiset attached to rim by rule B is {2,32,42,5}.

But this is exactly the multiset associated to the rim of π in Rule B, so Theorem 3.1 is proved by
induction.

Appendix B. Examples

We computed the Aπ (t) for all matchings π such that |π | � 8. Here is a list of all polynomials for
|π | = 4; note that if π �= π∗ we listed just one of the two since the two polynomials are equal (cf.
Proposition 2.3).

A (t) = 1

A (t) = t + 3

A (t) = 1

2
(t + 2)(t + 3)

A (t) = 1

6
(t + 1)(t + 2)(t + 3)

A (t) = 1

6
(t + 2)

(
2t2 + 11t + 21

)
A (t) = 1

24
(t + 1)(t + 2)

(
3t2 + 17t + 36

)
A (t) = 1

12
(t + 1)(t + 2)2(t + 3)

A (t) = 1

24
(t + 1)(t + 2)(t + 3)

(
t2 + 4t + 12

)
A (t) = 1

60
(t + 1)

(
3t4 + 27t3 + 108t2 + 192t + 180

)
A (t) = 1

(t + 1)(t + 3)
(
4t4 + 32t3 + 155t2 + 334t + 420

)
.

180
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From this list, we can compute the corresponding Gπ := Aπ (−4) (see Section 3.2.3). Here we index
them with Y (π) instead of π : this is well defined by the stability property Gπ = G(π) .

G . = 1 G = −1 G = 1 G = −3

G = −1 G = 1 G = 4 G = −9

G = −3 G = 9

Finally, here are the Gπ (τ ) for |π | = 4, as defined in Section 6:

G . = 1 G = −τ G = τ 2 G = τ 2

G = −2τ − τ 3 G = −τ 3 G = −τ 3 G = τ 4

G = 3τ 2 + τ 4 G = 3τ 2 + τ 4 G = −3τ − 5τ 3 − τ 5 G = −2τ 3 − τ 5

G = −2τ 3 − τ 5 G = 3τ 2 + 5τ 4 + τ 6
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