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Coxsackievirus infections are associated with severe diseases such as myocarditis, meningitis and pancreatitis.
To study the contribution of the intracellular viral sensor melanoma differentiation-associated protein-5
(MDA-5) in the host immune response to Coxsackievirus B3 (CVB3) we infected C57BL/6 and 129/Sv] mice
lacking mda-5. Mice deficient in MDA-5 showed a dramatically increased susceptibility to CVB3 infection. The
loss of MDA-5 allowed the virus to replicate faster, resulting in increased liver and pancreas damage and

heightened mortality. MDA-5 was not absolutely required for the induction of type 1 interferons (IFNs), but
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essential for the production of maximal levels of systemic IFN-o early after infection. Taken together, our
findings indicate that MDA-5 plays an important role in the host immune response to CVB3 by preventing early
virus replication and limiting tissue pathology.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Coxsackieviruses (CV) are positive single stranded (ss)RNA viruses
belonging to the genus of enteroviruses within the picornaviridae
family. They can be subdivided into CV group A and group B (CVB),
comprising 24 and 6 serotypes, respectively. Infections with CVB can
cause severe illnesses such as myocarditis, hepatitis and pancreatitis
(Pallansch et al., 2007; Tracy et al., 2000). They have also been
implicated in the etiopathogenesis of Type 1 Diabetes (Jaidane and
Hober, 2008; Richer and Horwitz, 2009a).

The melanoma differentiation-associated gene-5 (mda-5, also called
ifih1) encodes the protein MDA-5, which belongs to a group of cellular
receptors that facilitate the detection of infection by recognizing
pathogen associated molecular patterns (PAMPS). When viral RNA is
detected by MDA-5 a signal is relayed via the common adaptor protein
interferon promoter stimulator-1 (IPS-1, also called VISA or CARDIF).
This results in the activation of the transcription factors interferon
regulatory transcription factor-3 (IRF-3) and nuclear factor kKB (NF<B)
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(Takeuchi and Akira, 2009) and production of interferon beta (IFN-3). In
a second wave, IFN alpha (IFN-ot) and IFN-stimulated genes, such as the
chemokine CXCL10 and genes involved in antiviral defense, are induced
in an autocrine/paracrine manner (Smith et al., 2005).

The host's early innate immune response to CVB infections relies in
particular on the functions of type I IFNs. For example, mice
unresponsive to type 1 IFNs or lacking IFN-3 have an increased and
early mortality after infection with CVB (Deonarain et al., 2004;
Wessely et al., 2001). Toll like receptors (TLRs) 3, 7 and 8 have all been
suggested to recognize CVB and to initiate IFN production (Negishi et
al., 2008; Richer et al., 2009; Triantafilou et al., 2005). A role for MDA-
5 in recognizing enteroviruses has been suggested (Oikarinen et al.,
2008; Richer and Horwitz, 2009b). This hypothesis is mainly based on
the findings that encephalomyocarditis virus and Theiler's virus, also
belonging to the picornavirus family, are detected by MDA-5 (Gitlin et
al., 2006; Kato et al., 2006). However, the realization that Dengue
virus but not hepatitis C virus, both belonging to different genera of
the flaviviridea family, is recognized by MDA-5 (Loo et al., 2008; Saito
et al., 2007) shows that assumptions based solely on taxonomy can
sometimes be misleading. A recent study using mda-5 deficient mice
on a 29/Sv] background demonstrated that mda-5 is important for
host survival after challenge with a high dose of CVB serotype 3
(CVB3) (Wang et al., 2010). In the present study we made use of mda-
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5 deficient mice on two different genetic backgrounds in order to
evaluate the role of MDA-5 in host survival and regulation of early
virus replication after infection with CVB3. We also measured the
production of type I IFNs, and evaluated viral pathogenicity and the
long-term consequences of infection in the mda-5 deficient host.

Results

Mice deficient in mda-5 on a C57BL/6 background show increased
mortality after CVB3 infection

Coxsackievirus Group B strain 3 (CVB3) has mainly been
associated with the development of myocarditis (Tracy et al., 2000).
Besides its tropism for the heart, CVB3 also infects other organs such
as the liver and pancreas. Here, we determined whether MDA-5 is
important for host survival following infection with CVB3. To this end,
mda-5—'~ and wild-type (wt) mice on the C57BL/6 (B6) and 129/Sv]
(129) genetic backgrounds were challenged with a dose of CVB3 that
in our hands is non-lethal for most mice on these backgrounds
(10% PFU/mouse, Hiihn, Flodstrém Tullberg, unpublished results). B6
mice lacking mda-5—/~ demonstrated a strikingly high mortality
compared to wt (B6) mice (Fig. 1A). With a higher infectious dose
(10° PFU/mouse) the difference in survival disappeared, and few of
the mda-5—/~ (B6) and wt (B6) mice survived beyond day 10 post
infection (p.i.) (Supplementary Fig. 1). In contrast neither mda-5—"/~
(129) nor wt (129) mice succumbed to an infection with either 10°
(mda-5—"~ (129), n=38; wt (129), n=38) or 10° (mda-5—'~ (129),
n=3; wt (129), n=3) PFU/mouse (Fig. 1B, and data not shown).
Both mda-5—'~ (129) and wt (129) mice showed a drop in weight
and blood glucose levels around days 5 to 7 p.i. While the
hypoglycemia was transient, the weight loss remained throughout
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Fig. 1. C57BL/6 but not 129/Sv] mice lacking mda-5 show increased mortality after
CVB3 infection. Mice were infected with 10° PFU CVB3. (A) Survival curve of infected wt
(B6) (n=10, solid line) and mda-5—'~ (B6) (n = 10, dashed line); p = 0.0003, Log-rank
(Mantel-Cox) test, and, (B) wt (129) (n=8 solid line) and mda-5~/~ (129) (n=8,
dashed line), n.s

the 28 days study period (Supplementary Figs. 2A and B). No
difference was observed between mda-5—/~ (129) and wt (129)
mice. Hyperglycemia was not observed in any of the infected wt or
mda-5—'" mice (Supplementary Fig. 2A and data not shown).

These results indicate that MDA-5 is important for host recognition
of CVB3, but that the dependence on mda5 for host survival during
CVB3 infection differs between mouse strains.

MDA-5 restricts early virus replication

Host survival during virus infections is normally dependent on an
intact innate immune response, which prevents rampant virus
replication and spread before activation of the adaptive immune
system. The early death of the infected mda-5—/~ (B6) mice indicated
that MDA-5 is important during the early phase of infection. To
establish whether MDA-5 contributes to limiting viral replication we
measured virus titers in different organs from infected mice. As most
mda-5—/" (B6) animals had succumbed within the first 4-5 days after
infection, we were restricted to studies on organs harvested on day 3
or 4 p.i. On day 3, virus titers were dramatically higher in all organs
from mda-5~'~ (B6) animals compared to wt (B6) animals (Fig. 2A).
The difference was significant for all organs except kidneys. Despite
the enormous differences observed on day 3 p.i., mda-5~/~ (B6) and
wt (B6) mice showed comparable viral titers on day 4 p.i. (Fig. 2B).

Although the genetic background modified survival after CVB3
infection, significantly higher titers of infectious virus were also
observed on day 3 p.i. in pancreata of mda-5—/~ (129) mice compared
to wt (129) mice (Fig. 2C, p<0.05). The viral titers measured in other
organs showed a similar trend but failed to reach statistical
significance (Fig. 2C). These results suggest that irrespective of
genetic background, MDA-5 is particularly important in limiting
virus replication at an early time point after infection.

MDA-5 is not essential for systemic IFN-« production

Detection of viruses by MDA-5 results in the production of type |
IFNs (Gitlin et al., 2006; Kato et al., 2006; McCartney et al., 2008),
cytokines known to be critical for the control of CVB replication and
host survival (Deonarain et al., 2004; Flodstrom et al., 2002; Wessely
et al,, 2001). Therefore, we next investigated if the observed
phenotype in mda-5~/~ (B6) mice could be explained by a change
in type I IFN production. Low levels of systemic IFN-o. were detected
in serum from mice of both genotypes 24 h after infection (Fig. 3A). A
significant increase was observed after 48 h in infected wt (B6) mice
(Fig. 3A). At this time point, the infected mda-5—"'" (B6) mice also
produced heightened levels of IFN-a. The difference compared to
uninfected mda-5—/~ (B6) mice was, however, not significant.
Moreover, there was a non-significant trend toward lower IFN-o
levels in CVB3 infected mda-5—/~ (B6) mice compared to wt (B6)
mice. These observations indicate that although mda-5 may be
required for maximal production of IFN-q, it is not absolutely
required for the induction of this cytokine early after infection.

Tissue expression of IFN-3 and IFN-stimulated genes is unaffected in
mda-5 deficient mice

Because MDA-5 may play an important role in detecting CVB3 in
tissues for which the virus demonstrate tropism we next studied the
mRNA expression of ifn-(3 in the pancreas and livers on day 3 p.i. The
majority of infected mda-5~/— (B6) mice, but only one wt (B6) mouse,
expressed increased levels of ifn-3 compared to uninfected animals
(Fig. 3B). This mouse was the only wt (B6) mouse that had high virus
titers both in liver and pancreata on day 3 p.i. (Supplementary Fig. 3). In
addition to IFN-B we assessed the mRNA expression of two IFN-
stimulated genes, 2’5'0AS1a (OAS1a), a gene known to be of
importance in the host defense to CVB (Flodstrom-Tullberg et al.,
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Fig. 2. Increased early virus replication in mda-5—/~ mice. Mice were infected with
10% PFU CVB3. Organs were removed on day 3 (A and C) or day 4 (B) p.i. and viral titers
measured by plaque assay. (A and B) Virus titers in organs harvested from infected wt
(gray bars) and mda-5—/~ (white bars) C57BL/6 mice on days 3 (A) or 4 (B) p.i. (C)
Virus titers in organs harvested from infected wt (gray bars) and mda-5—/~ (white
bars) 129/Sv] mice on day 3 p.i. Results are presented as log;o(PFU/g wet tissue).
Results from individual wt and mda-5—/~ animals are depicted as squares and circles,
respectively, and bars show mean+S.D. *p<0.05 **p<0.01, Two-way repeated
measurement ANOVA.

2005), and CXCL10, a chemokine expressed during CVB infection
(Christen et al,, 2003; Hultcrantz et al., 2007). On day 3 p.i. OAS1a mRNA
expression was significantly induced both in livers and pancreata
harvested from mda-5~'~ (B6) mice, but not wt (B6) mice (Fig. 3C). In
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Fig. 3. IFNs and the IFN-stimulated genes OAS1a and CXCL10 are expressed in serum
and organs from infected mda-5=/~ mice. (A) Wt (B6) and mda-5~/~ (B6) mice were
infected with 10 PFU CVB3. Serum was drawn 24 and 48 h after infection and IFN-a
measured by ELISA. Wt (B6) mice and mda-5—'/~ (B6) mice are shown in gray and
white bars, respectively. (B-D) Wt (B6) and mda-5~/~ (B6) mice were infected with
10° PFU CVB3. On day 3 p.i. small parts of the pancreata and livers were removed. RNA
was isolated and the expression of IFN- (B) OASl1a (C), CXCL10 (D) mRNA was
measured by real time PCR, as described in Materials and methods. Wt (B6) and
mda-5—'" (B6) are shown as gray squares and open circles, respectively. All expression
levels were normalized to HPRT. Symbols represent data from individual animals, and
mean values are shown as black bars. Statistical analysis was performed using ANOVA,
*p<0.05, **p<0.01, and ***p<0.001.

livers the expression was significantly higher in mda-5~/~ (B6) mice
than in wt (B6) mice. CXCL10 showed a similar pattern of expression,
and was significantly higher expressed in liver and pancreas from mda-
5/~ (B6) mice compared to wt (B6) mice (Fig. 3D). These findings
show that IFN-P3 and the IFN-inducible genes OAS1a and CXCL10 are
expressed in tissues even in the absence of MDA-5.

MDA-5 deficiency leads to increased tissue damage and inflammation
after infection

A failure to block early virus replication may result in increased
tissue damage (Deonarain et al., 2004). To assess if the lack of MDA-5
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leads to increased pathology, we first performed a careful histological
evaluation of livers and pancreata, organs that may be affected early
after CVB3 infection (Flodstrom et al., 2001; Mena et al., 2000). The
livers harvested from wt (B6) mice on day 3 p.i. (n =5) demonstrated
signs of mild viral hepatitis. Immune cell infiltrates, mainly localized
in inflammatory foci, were seen in the livers of some mice (Fig. 4A).
The liver architecture was intact and there were no clear signs of

A wt (B6) uninfected mda-5 * (B6) uninfected

p s i %

hepatocyte damage. On day 4 p.i. (n=5) the hepatitis was still
moderate in all animals analyzed (Fig. 4B). In stark contrast, moderate
to severe viral hepatitis was observed in all infected mda-5—'~ (B6)
animals already on day 3 p.i. (n =4, Fig. 4A). Immune cell infiltration
was more extensive and less organized than in wt (B6) animals.
Moreover, there were clear signs of hepatocyte damage. Some
hepatocytes showed features of ballooning degeneration and others

C wt(Bs

Fig. 4. Increased tissue damage and inflammation in livers and pancreata of CVB3-infected mda-5—/" mice. C57BL/6 (B6, A-C) and 129/Sv] (129, D and E) wt and mda-5—/" mice
were infected with 10> PFU CVB3. After 3 (A, Cand D), 4 (B) or 28 (E) days organs were removed and analyzed by histology. (A) Liver sections of uninfected (upper row) and infected
(lower row) wt (B6) and mda-5—/~ (B6) mice stained with H&E. (B) H&E staining of liver sections from infected wt (B6) and mda-5—'" (B6) 4 days after infection. Arrowheads
indicate cells with apoptotic nuclei and an arrow indicates an inflammatory foci. Two different magnifications for each section are shown. The boxes in the lower magnification
indicate the approximate location of the parts shown at a higher magnification. (C) Pancreas sections from infected wt (B6) (left) and mda-5—/~ (B6) (right) mice (day 3 p.i.) were
stained with an antibody against insulin. (D) Pancreas sections of infected wt (129) (left) and mda-5—/~ (129) (right) mice (day 3 p.i.) were stained using an antibody to the
enterovirus capsid protein VP1. (E) Pancreas sections of infected wt (129) (left) and mda-5—'— (129) (right) mice (day 28 p.i.) were stained using an antibody to insulin. Shown are
tissue sections representative for the indicated groups (A and C, n=3-5, and D and E, n=8 mice/group). Scale bars are shown in every picture as a point of reference.
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of apoptosis (Fig. 4A, and data not shown). Livers harvested on day 4
p.. (n=3) showed similar pathology with the exception that the
infiltrating immune cells were now present both as inflammatory foci
and as single cells spread throughout the parenchyma (Fig. 4B). The
liver inflammation observed in 129/Sv] mice was milder than in C57/
BL6 animals. The majority of mda-5—"/~ (129) (7/8) but none of the
wt (129) (0/8) mice showed clear signs of inflammation (data not
shown).

Three days after infection all infected mda-5—/"— (B6) mice (n=4)
demonstrated widespread pancreatic exocrine tissue destruction
(Fig. 4C). At this time point only one out of five infected wt (B6)
mice (Fig. 4C) had signs of acinar cell damage. Four days after
infection the majority of both mda-5—/~ (B6) (2/3) and wt (B6) mice
(4/5) suffered from exocrine pancreas damage (data not shown). No
abnormalities were found in uninfected control animals (mda-5—/—
(B6), n=3, and wt (B6), n=3, data not shown). Lymphocyte
infiltration (pancreatitis) and severe damage to the exocrine pancreas
were present in several of the CVB3 infected mda-5—/~ (129) mice
(2/8 and 3/8, respectively), but not in wt (129) (0/8) mice on day 3 p.
i. (data not shown). CVB virus, as visualized with the VP-1 antibody,
was present in the exocrine tissue of the majority of mda-5—"/~ (129)
mice, but not in wt (129) mice. The islets of both mda-5—/~ (129) and
wt (129) mice remained free from VP-1 staining (Fig. 4D).

Collectively, these observations show that mda-5~/" mice suffer
from increased tissue damage after CVB3 infection. The difference was
particularly prominent in mda-5~/" mice on a C57BL/6 background.

Irreversible pancreas damage in mda-5 deficient mice on a 129/Sv]
background

The low mortality in mda-5~'" mice on a 129/Sv] background
allowed us assess if the absence of MDA-5 had long-term con-
sequences for the infected host. On day 28 p.i,, a time point when
infectious CVB is usually cleared from all organs (Flodstrém et al.,
2001; Mena et al., 2000), no VP-1 staining could be seen in the
pancreata of infected wt (129) and mda-5—/~ (129) mice (data not
shown). Around 75% (6/8) of the mda-5—/~ (129) mice showed
severe damage to the exocrine pancreas, as well as lymphocyte
infiltration (Fig. 4E). In contrast, only 25% (2/8) of the infected wt
(129) mice demonstrated exocrine tissue damage, and infiltrating
lymphocytes were only seen in 37.5% (3/8) of the mice at this time
point.

We also examined liver and heart tissues harvested from mda-5—"/"—
(129) (n=8) and wt (129) (n=238) mice on day 28 p.i. We did not
observe any signs of inflammation or cell death in the livers of either
genotype (data not shown). Mild fibrosis could be detected in the hearts
by Masson's Trichrome staining, with no difference between wt (129)
and mda-5—'" animals (data not shown).

Discussion

A detailed understanding on how the host immune system
recognizes viral infections may help in the development of new
treatments preventing virus-induced pathology. In this study, we
investigated the role of MDA-5 in the host immune response to CVB3,
a virus linked to severe diseases such as myocarditis, pancreatitis and
meningitis. We found that mda-5~—/~ mice show a strikingly increased
susceptibility to infections with CVB3.

Our findings support a critical role for MDA-5 in regulating early
CVB3 replication. By day 3 p.i. the virus was replicating vigorously in
organs of most animals lacking mda-5, but only in a minority of the
infected wt mice. Thus, the loss of MDA-5 appeared to allow rapid
viral replication and spread. The difference in virus titers disappeared
on day 4 p.., suggesting that MDA-5 temporarily hinders virus
replication. The momentary block in virus replication appeared to
provide essential protection from tissue damage. Indeed, mice lacking

MDA-5 demonstrated more pancreatitis and severe hepatitis, as well
as increased acinar cell and hepatocyte damage, compared to infected
wt mice. In mda-5—/~ mice on a C57BL/6 background this had a
devastating outcome, as the infection was lethal.

A CVB infection is lytic in many cells (Chehadeh et al., 2000;
Schmidtke et al., 2000). Hence, direct cytolytic damage caused by the
replicating virus is a likely explanation to the observed cellular damage
to hepatocytes and pancreatic acinar cells. The large influx of immune
cells and augmented inflammation observed in livers and pancreata of
mda-5~/~ mice may, at least in part, have been an effect of the increased
expression of the T- and natural killer cell attracting chemokine CXCL10
(Fig. 3). Notably this expression was low in organs of wt mice with no or
barely detectable virus titers (Supplementary Fig. 3).

We measured increased serum levels of IFN-a in both wt (B6) and
mda-5~'~ (B6) mice 48 h after CVB3 infection (Fig. 3A). Keeping in
mind the important role for type I IFNs in the host immune response
to CVB infections (Deonarain et al., 2004; Flodstrom et al., 2002;
Wessely et al., 2001), it is of interest that 48 h after infection the
infected wt (B6) mice produced two-fold more IFN-o than mda-5~"—
(B6) mice. Although this difference failed to reach statistical
significance, a weak IFN response during early infection may have
contributed to increased virus titers and pathology. The increased
production of IFN-c in mda-5—/~ (B6) mice also indicates that MDA-5
is not absolutely required for the induction of this cytokine during
early CVB3 infection.

We also found that the expression of ifn-3 mRNA was increased in
livers and pancreata from both mda-5=/~ (B6) and wt (B6) mice
having high levels of replicating CVB3 (Fig. 3B, and Supplementary
Fig. 3). Besides MDA-5 other pattern recognition receptors (PRR) have
been shown to be important in the recognition of CVBs (Flodstrém-
Tullberg et al., 2005; Negishi et al., 2008; Richer et al.,, 2009;
Triantafilou et al.,, 2005). The fact that we could detect a robust
induction of ifn-B and the IFN-stimulated genes OAS1a and CXCL10 in
mda-5—'" mice suggests that MDA-5 is dispensable for the induction
of type 1 IFN in these tissues. This indicates that other PRR are more
important in detecting CVB infections in liver and pancreas. Both
CXCL10 and OASla can be induced also by type II interferons
(Flodstrom-Tullberg et al., 2005; Hultcrantz et al., 2007). However,
we did not find an increased mRNA expression of IFN-y in livers and
pancreata of infected mice (data not shown), indicating that IFN-vy is
not a valid explanation. Collectively, our results suggest that for
example one of the TLRs also contributes to the recognition of CVB3, a
hypothesis that will be addressed in future studies.

The severity of CVB3 infection in mda-5—/~ mice seems to, at least in
part, be dependent on the genetic background. The majority of C57BL/6
mice lacking mda-5 succumbed to 10> PFU CVB3 within 3 to 9 days,
while all infected mda-5—'" (129) mice survived this and a higher dose
(10° PFU/mouse) of virus. It has previously been described that mice on
the 129 background are less susceptible than C57BL/6 mice to CVB3
(Wang et al., 2010; Zaragoza et al,, 1999). The present study and the
work by Wang et al. (2010) showed that the virus replicates less
efficiently in organs from 129/Sv] mice compared to those from C57BL/
6 mice. Moreover, our histopathological analyses revealed that both wt
and mda-5—/~ mice on the C57BL/6 background suffer from more tissue
damage than 129/Sv] mice. Others have reported a correlation between
the degree of hepatitis/liver damage and mortality after CVB infections
(Wang et al,, 2010; Wessely et al., 2001). Thus, the severe hepatitis
observed in both wt and mda-5—/~ mice on a C57BL/6 background
could explain the high mortality in this strain. It is also of interest that an
important role for mda-5 in host survival was uncovered only on the
C57BL/6 background. The explanation to this is at present not known.
Genes other than mda-5 influence the outcome of CVB infections
(Flodstrom-Tullberg et al., 2005; Negishi et al., 2008; Richer et al., 2009)
and it is possible that differences in the function or expression of these or
other genes between the two strains of mice could explain this
somewhat unexpected observation.
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The present finding that MDA-5 is an important factor in the
immune response to CVB3 is in line with a recently published study
(Wang et al., 2010). Wang et al. reported that MDA-5 deficient mice
on a 129/Sv] background have an increased susceptibility to infection
with CVB3. The present study adds further to the understanding of the
function of MDA-5 in several ways. For example, Wang et al. reported
that mda-5—'" 129/Sv] mice suffered from increased tissue damage
early after infection. Here we confirmed and extended this finding by
using MDA-5 deficient mice on both the 129/Sv] and C57BL/6
backgrounds. Importantly, by expanding the studies to a time point
after which the virus was cleared, the present study also demon-
strated that the increased early tissue damage observed in mice
lacking MDA-5 had long-term consequences resulting in chronic
damage to the pancreatic acinar tissue. Furthermore, one of the most
important and novel findings in the present study was that MDA-5
limited early viral replication. Finally, by using a non-lethal infection
with CVB3 our study also clearly highlighted the role of other viral
sensors in the induction of type 1 IFNs during CVB3 infection.

Enterovirus infections (e.g. Coxsackieviruses) have been associat-
ed with the development of the autoimmune disease type 1 diabetes
(Dotta et al., 2007; Jaidane and Hober, 2008; Richardson et al., 2009;
Richer and Horwitz, 2009a). Recent findings link certain polymorph-
isms in the human mda-5 gene to an increased risk for development of
type 1 diabetes (Grant et al., 2009; Nejentsev et al., 2009; Smyth et al.,
2006). The present study together with the recent study by Wang et
al. (2010) now firmly establish that MDA-5 plays an important role in
the host response to a type of virus that has been associated with the
development of this disease. These findings encourage further studies
on the link between mda-5 and type 1 diabetes.

In summary, we show that MDA-5 is involved in the recognition of
CVB3. A lack of MDA-5 allows unbridled virus replication early after
infection. This results in enhanced inflammation and increased tissue
damage in organs such as the pancreas and liver. In the pancreas, the
damage persists even after the virus is cleared. Our findings also
suggest that MDA-5 is not solely responsible for the systemic increase
in IFN-o¢ observed early after infection. Furthermore, they indicate
that MDA-5 is dispensable for the induction of type 1 IFN and IFN-
stimulated genes on the tissue level. Future studies will show how
MDA-5 together with other PRRs orchestrates the host anti-viral
response.

Materials and methods
Mice and animal husbandry

In the present study we used mice deficient in MDA-5. Mda-5 was
targeted in SSC#10 (129/Sv]) ES cells and some mice were maintained
on a pure 129/Sv] background (here denoted “129”). The mutation was
also backcrossed onto a C57BL/6 background (here denoted “B6”),
facilitated by genome-wide screening of polymorphic microsatellite
markers at 10-centimorgan intervals at each generation (performed by
the Rheumatology Speed Congenics Core Laboratory at Washington
University School of Medicine, St Louis, USA). The mda5~'~ B6
mice used for these experiments were >99% C57BL/6. Wild-type (wt)
C57BL/6 and 129/Sv] mice were used as controls. The mice were breed
and housed under specific pathogen free conditions at a facility of the
Washington University School of Medicine, St. Louis, USA. All animals
were matched for genetic background, sex and age. The animal
experiments were conducted in accordance with institutional guide-
lines for animal care and use.

Virus
CVB3 strain “Nancy” was originally obtained from G. Frisk

(Uppsala University, Sweden) and propagated and titered in HeLa
cells, as previously described (Hiihn et al., 2008).

Infections, organ recovery and virus titration

Mice aged 8 to 10 weeks were infected with one intra-peritoneal
(i.p.) injection of CVB3 (10 or 10° PFU/mouse in 200 ul PBS). In
experiments measuring viral titers the mice were sacrificed by
cervical dislocation at the indicated time points, and organs removed
under aseptic conditions. One part of the removed organs was frozen
immediately for later virus recovery and another part fixed in 4%
formalin for histology. Viral titers were determined by standard
plaque assay on Hela cell cultures. Titers were quantitated as PFU/g
wet tissue and presented as logqo (PFU/g tissue). For RNA isolation
small biopsies from the pancreas and liver were immersed in RNAlater
(Qiagen, Stockholm, Sweden) and stored at —20 °C.

Blood glucose determination

Venous blood glucose levels of non-fasting mice were measured
using a Contour blood glucose meter (Bayer, Stockholm, Sweden).

RNA isolation

Organs were removed from RNAlater, grinded and homogenized
with a genteIMACS dissociator using M-tubes and the RNA_02
program (Miltenyi Biotech, Bergisch Gladbach, Germany). Total RNA
was isolated with a RNeasy Kit (Qiagen, Stockholm, Sweden)
according to the manufacturer's protocol. RNA was quantified using
a NanoDrop ND-1000 (Thermo Scientific, Stockholm, Sweden).

Reverse transcription and real-time PCR

cDNA was prepared by treating 1 pg RNA with Turbo DNase (Applied
Biosystems, Stockholm, Sweden) before reverse transcription using
SuperScript III First Strand Synthesis Kit and random hexamers for
priming (Invitrogen, Stockholm, Sweden). Real time (RT-) PCR for
CXCL10, 2-5 OAS1a and HPRT was performed with TagMan Gene
Expression Assays (Mm00445235_m1, MmO00836412_m1 and
Mm00446968_m1 respectively) and MasterMix (all Applied Biosystems,
Stockholm, Sweden) and for IFN- and IFN-vy (published in (Kallewaard
etal.,, 2009) using RT2 SYBR Green/ROX (SABiosciences distributed by In
vitro Sweden AB, Stockholm, Sweden). All experiments were performed
on a ABI 7500 Real Time system (Applied Biosystems, Stockholm,
Sweden) and expression was normalized to HPRT using the AAC
method. In samples that did not show any measurable gene expression
Ct values were set to 41.

Measurement of IFN-c serum levels

Animals were infected with 10° PFU CVB3, serum collected after
24 and 48 h and IFN-a was measured using ELISA (PBL Biomedical
Laboratory, New Brunswick, NJ, USA), according to the manufacturer's
protocol.

Histology and immunohistochemistry

Paraffin sections (4 pm) were stained with hematoxylin and eosin
(H&E) or with the following primary antibodies purchased from
DAKO Cytomation, Stockholm, Sweden: guinea pig anti-insulin
(1:5500), rat anti-glucagon (1:2500) or mouse anti-VP1 (biotinylated
in-house; 1:50), as previously described (Flodstrom-Tullberg et al.,
2005). Tris-EDTA Buffer (10 mM Tris Base, 1 mM EDTA, pH 9.0) was
used for heat induced epitope retrieval to improve detection of VP1.
Trichrome staining was done using the Artisan staining system (DAKO
Cytomation, Stockholm, Sweden) according to the manufacturer's
instruction.
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Statistical analysis

Statistical analysis was done with GraphPad Prism version 5
(GraphPad Software Inc., San Diego, CA). A p-value <0.05 was
considered statistically significant. Survival was analyzed using Log-
rank (Mantel-Cox) test, viral titers and gene expression using two-
way repeated measurement ANOVA and ANOVA, respectively,
followed by a Bonferroni post-test.
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