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Abstract 

 

The ability to predict building energy consumption in an urban environment context, using a variety of performance 
metrics for different building categories and granularities, across varying geographic scales, is critical for future 
energy scenario planning. The increased quantity and quality of data collected across urban districts facilitates the 
utilization of data-driven approaches, thereby realizing the potential for energy prediction as a complementary or 
alternative option to the more traditional physics based approaches. The majority of research to date that exploits 
data-driven approaches, has mainly focused on analysis at an individual building level. There are few examples in 
the literature of studies that utilize data-driven models for building energy prediction at an urban scale. The current 
paper provides a literature review of the recent applications of data-driven models at an urban scale, underlining the 
opportunities for further research in this context. 
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1 Introduction 
 

1.1 Background and context. 
The issues surrounding building energy consumption in the urban context has grown steadily in the last few decades 
due  to  growth  in  the  urban  population,  improvement  of  building  services,  associated  comfort  levels  and  the 
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increased time occupants spend inside buildings [1]. Reports on the energy end-use consumption in the EU 27 for 

 

2011 show that residential and commercial buildings account for 40% of total energy consumption of the built 
environment and about 14% of greenhouse gas emissions [2]. Buildings, as a large part of the overall energy system, 
represent one of the major contributors to energy inefficiency. Given the proposed ambitious EU, national and local 
energy goals, there is an increasing requirement for fast, reliable and accessible simulation tools. Such tools need to 
provide decision makers with information regarding individual and collective building energy and pollution footprints 
at different levels of granularity in urban areas [3]. The construction sector has the largest potential for delivering 
long term significant and cost effective greenhouse gas emission reductions, through both retrofitting of the existing 
building stock and the implementation of new innovative energy efficient strategies for new buildings [4]. However, 
to make this change possible, major efforts are required to go beyond existing technical and economic barriers. These 
include the ability to represent the energy consumption of the entire building portfolio, while at the same time 
identifying energy reduction opportunities at the building level, thereby improving urban planning strategies for the 
entire building portfolio life-cycle (feasibility, design and operational). As such, the reduction of cost barriers for 
energy efficient solutions and the improvement of reliable indicators to measure building energy performance at a 
city scale are important contributions for achieving urban sustainability targets [5]. By creating solutions that start 
at the city scale, but address both districts and buildings, the potential for the  uptake of synergistic and scalable 
solutions is significant. 

 
1.2 Motivation and problem identification. 
The advantages of performing large scale energy prediction through simulation are many, for example, the 
identification of (i) energy resources (e.g., waste power or heat) in districts of a city or in different buildings of the 
same district [6], (ii) energy outliers [7], (iii) demand side management operations and local balancing [8], (iv) 
candidates for retrofit intervention [9], (v) large benchmarking analysis engaging whole communities [10, 11], (vi) 
peak power demand [12] and (vi) better urban planning in a specified area. To analyze energy at an urban scale, the 
available information and the level of granularity of the data must be evaluated. The quantity of data which is 
possible to collect from single buildings has increased in the last few years due to the penetration of smart metering, 
greater access and understanding of utility data and the implementation of Building Management Systems (BMS). 
However, even if data is theoretically available for analysis, privacy and protection policies may exclude them as 
sources of information. Aggregation or anonymization techniques are therefore required, sometimes compromising 
the quality of the datasets [13]. Further to this, the evaluation of large scale building energy consumption can be 
extremely time-consuming if performed with single building simulation approaches, due to data gathering processes, 
simulation and monitoring techniques and estimation of uncertainties [14]. In this context, the identification of new 
methods to collect and use real building data in a time efficient manner while maintaining a high level of granularity 
that does not compromise the final outcome is a significant contribution for tools that will aid decision support. 

 
1.3 Current paper aim. 
Using existing approaches for the modelling of single buildings as a reference baseline [14], it is possible to categorize 
building energy simulation methods into three high-level categories as follows: (i) physics-based approaches, (ii) 
data-driven approaches and (iii) hybrid approaches. At a building level, these categories are often classified as 
white, black-box or grey-box approaches, respectively [15, 16]. The current paper is concerned with a review of the 
state of the art of data driven approaches applied to building energy analysis at an urban scale. The paper is 
motivated by the need to identify the research opportunities and points of departure for urban level analysis of building 
energy performance using data-driven approaches. Cognisance will be taken of variety of issues including: varying 
building types and end-use, different energy performance metrics, multiple levels of granularity and urban scales. 

 
2 Large scale buildings energy prediction methods 

 
2.1 White-box based approaches. 
The development of white-box models for an entire urban building stock would require a considerable amount of 
time for the simulation of each individual building and the collection of detailed information required to ensure that 
the  simulated  Building Energy Models (BEM)  are of sufficient accuracy.  The urban energy building portfolio    is 
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described as a white-box based approach for the simulation of representative buildings, called archetypes; these are 
developed after an accurate identification of the most common characteristics of different groups of  similar buildings 
[15-17]. This method analyses a smaller part of the building stock, producing BEMs in detail, which still retain the 
ability to adequately characterize the energy performance of the entire building portfolio. Furthermore, the 
classification of the building stock with representative buildings, allows for the creation of accurate benchmarking 
models at a local level. Another important advantage of this approach, is the possibility to assess the potential of 
deep retrofit Energy Conservation Measures (ECM’s) and corresponding what if scenarios for the entire city [16, 
18]. This is achieved through total energy results aggregation. Enhancing the building stock classification makes it 
then possible to provide approximate information for the single building, boosting accurate energy mapping and 
profiling possibilities at individual building level also. Nevertheless, such kind of representation requires dedicated 
simulation engines and large amounts of data to correctly represent the building population of a given city. 

 
2.2 Grey-box based approaches. 
Grey-box based approaches [19-22] combine prior physical knowledge with information from data sources. Usually 
grey-box models have a hybrid structure combining first principle physics and data driven approaches. They have 
some advantages but also limitations of the white and black-box models. In the majority of large scale models the 
building stock is represented based on analogy with an electrical circuit, where a reduced order resistance- capacitance 
(RC) circuit is able to describe the energy behaviour of the building [23]. 

 
2.3 Black-box based approaches. 
Large scale black-box based models use building level data-analysis and data-mining tools to predict and forecast 
energy consumption at a larger scale than the single building level. While black-box models are widely used for 
prediction and forecasting of energy use, based on the selection of hierarchically important inputs [24-26], there are 
fewer examples of the application these approaches at large scale [27, 28]. The most popular black-box approaches 
for prediction and forecasting at building level are [29]: simple regression model (SRM), multiple linear regression 
(MLR), decision trees (DT), artificial neural networks (ANN) and support vector machine (SVM). Data driven 
models rely on the availability of prior data to forecast energy behaviour. For this reason it is important to   establish 
a database to train the models, however data privacy policy and economic interests make the data collection process 
difficult, often compromising the quality of the final results. Geographic information system (GIS) is increasingly an 
important resource to develop large scale building energy models, since they give the possibility to allocate and 
visualize contextual building energy information in a user-friendly mode [14, 30-35], however very few city GIS 
databases contain the information relevant for understanding the energy performance of a city. Other relevant datasets 
include: census [14], national resources [14, 31], normative [14, 31], national and local surveys [14, 30-35], 
questionnaires [30] and meteorological data. Recently, other innovative sources of information such as crowd data 
sourcing techniques have been used to develop and populate entire city database [36]. Depending on the energy 
estimation methodology, different information needs to be collected, the most relevant being: construction period, 
use, area, shape, perimeter, height, form factor (surface/volume), windows area, surface/glazing factor, envelope 
materials, number of floors, orientation, solar shading, typical efficiency system plants, energy consumption data at 
building level or aggregated level, energy bills information and meteorological data. 

 
3 Data driven methods: large scale techniques 

 
Black-box based models have been used to address different large scale building energy related problems, e.g. 
mapping urban energy consumption, forecasting and prediction, benchmarking, profiling, and initial clustering 
analysis for selection of parameters to develop archetypes. Table 1 summarizes the literature review for this topic 
and related techniques. To achieve forecasting capabilities, data-driven models must be trained on large detailed 
(hourly or sub-hourly readings) dataset, collected by smart metering systems and/or BMS. At building level when 
smart metering systems and BMS data are available, black-box models achieve a high level of prediction [37, 38]. 
At large scale, studies are typically carried out on building groups, university campuses or entire districts [39] and 
the training procedure is accomplished on aggregated measured data [40] which is often deficient due to the high 
costs of metering. This limits the scope of a data-driven framework for energy consumption prediction and forecasting. 
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Table 1. Literature review of data driven models for large scale building energy-related applications 

 

Data-driven model 
Forecasting 
prediction 

Benchmarking 
Energy 

mapping 
 

Profiling 

Statistical and 
regression based 

[41] [14, 15] [7, 14, 33, 42]  

ANN [27, 41] [43, 44]   
SVM [24, 27, 41] [45]   

Clustering based [46, 47] [15, 48-51] [34, 52, 53] [25, 54-56] 

 
There have been several attempts to use available urban data to classify energy performance for the entire building 
stock or part of it [14, 57, 58]. Benchmark models have been developed following the three main approaches, i.e., 
black box, grey-box and white-box methods [59, 60]. The choice of method is dictated by operational requirements, 
available inputs, available monitoring data, and modeller experience. Among data driven models used for 
benchmarking, it is possible to find: multiple linear regression, support vector regression, gaussian process regression, 
artificial neural networks and decision trees. Neural networks show good results for benchmarking purposes 
with high prediction capability after the  selection  of  important  model  input  parameters  [43,  44]. Energy mapping 
methods, usually multi-layered GIS-based models, consider data-driven techniques both for pre- and post-processing 
operations. Among large scale techniques to estimate building energy consumption are: modified degrees day method 
[30, 32, 33], archetype based simulation [61] and multiple linear regression [7, 33]. 
Building energy profiling is concerned with the accurate characterization of energy consumption of a building over a 
period of time. The provision of information regarding the energy consumption profile is important for demand side 
management, energy resources estimations, renewables energy integration, energy saving scenarios and accurate 
energy mapping. Assimilating profile information is not an easy task at building level, due to  uncertainties connected 
with unpredictable events (e.g. occupant behaviour, weather) and difficulties in gathering exact information connected 
with the building. There are few examples in the literature of profiling techniques at large scale [54] and they are 
usually developed by mixing data-driven approaches and detailed building simulation [62]. 
Clustering is an unsupervised data-analysis technique with the aim to discover hidden information structures in an 
unlabelled set of data [54]. Clustering algorithms divide a group of objects into sub-groups, where every element  in 
a given group is similar to another in the same cluster but different from the elements in the other clusters [63]. 
Clustering techniques have been used as starting points to create benchmarking models to identify common features 
of representative buildings for use as a comparison baseline [50, 51]. Clustering of the building sector has been 
widely used in the literature to perform a first step in finding representative buildings (centroids) and develop 
archetypes [48]. Although clustering is very well documented, it is mostly used to perform classification on a 
specific category of buildings [49, 50, 64] and there are few studies conducted at urban level [65, 66]. Most common 
clustering algorithms include: k-means, model based clustering, hierarchical agglomerative clustering and k- medoids. 

 
4 Conclusions 

 
Several efforts have been made to develop city scale building energy consumption models at different level of 
granularity and functionality. A range of different techniques have been developed to this end. Data-driven models 
offer a good balance between reducing the time taken to create the model while maintaining an adequate level of 
accuracy [37, 38]. The described techniques are widely used at building level but there are fewer examples of their 
application at large scale. The review process, summarized in Table1, underlined the possible level of granularity 
achievable with data driven approaches at urban level which is directly connected with data availability. It has 
emerged that combinations of different techniques are employed at large scale for predicting the  energy consumption 
and to overcome the lack of available data. The review process showed that some well-known data driven models 
such as ANN and SVM are still not employed at large scale to provide detailed information on the building stock 
(building profiling). This is reasonable considering the high level of detail of single building data 
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which is required to develop these models. A city level data driven framework requires a large penetration of metering 
systems and possibilities to explore private data of the entire building stock; these conditions are still not easily 
accessible. Future research works on possibilities of using large scale data driven models is required in order to answer 
questions such as: (i) what is the achievable level of accuracy that data-driven based approaches can produce 
when widespread penetration of metering systems is absent?, (ii) how is it possible to provide detailed information 
(building energy profiling) for buildings characterized by different levels of available data?, and (iii) which 
combined techniques need to be taken into account to achieve the desired level of granularity? 
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