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Viral fusion proteins undergo dramatic conformational transitions during membrane fusion. For viruses that
enter through the endosome, these conformational rearrangements are typically pH sensitive. Here, we pro-
vide a comprehensive review of the molecular interactions that govern pH-dependent rearrangements and
introduce a paradigm for electrostatic residue pairings that regulate progress through the viral fusion coor-
dinate. Analysis of structural data demonstrates a significant role for side-chain protonation in triggering
conformational change. To characterize this behavior, we identify two distinct residue pairings, which we
define as Histidine-Cation (HisCat) and Anion-Anion (AniAni) interactions. These side-chain pairings destabi-
lize a particular conformation via electrostatic repulsion through side-chain protonation. Furthermore, two
energetic control mechanisms, thermodynamic and kinetic, regulate these structural transitions. This review
expands on the current literature by identification of these residue clusters, discussion of data demonstrating
their function, and speculation of how these residue pairings contribute to the energetic controls.
Both cells and enveloped viruses are surrounded by phos-

pholipid bilayers that act as physical barriers between the

cellular and viral genomes. Viruses have evolved efficient mech-

anisms to circumvent this barrier by fusing their membrane with

that of the host (Kielian and Rey, 2006; Weissenhorn et al., 2007;

Harrison, 2008;White et al., 2008). This process results in the for-

mation of a pore in themembrane, allowing the virus to deliver its

genetic material to the cell (Figure 1) (Chernomordik and Kozlov,

2008). Although fusion of two lipidmembranes is an energetically

favorable process, there is a large activation barrier due to

electrostatic repulsion between the polar head groups of the

phospholipids (Chernomordik et al., 2006; Kozlov et al., 2010).

This energetic barrier is overcome by glycoproteins embedded

in the viral envelope. These proteins generally adopt at least

three distinct conformational states during the membrane fusion

process: (1) the prefusion state, (2) the extended intermediate

state, and (3) the postfusion state (Figure 1) (Chernomordik and

Kozlov, 2008; Harrison, 2008; Kielian and Rey, 2006; White

et al., 2008). The pre- and postfusion states of many envelope

glycoproteins have been characterized with high resolution by

X-ray crystallography and with low resolution by various

methods. However, evidence of the extended intermediate has

been largely indirect (Jiang et al., 1993; Miller et al., 2011; Pessi

et al., 2012). Two recent reports have provided direct information

about the extended intermediates in paramyxoviruses (Kim

et al., 2011) and avian sarcoma leukosis virus (ASLV) (Cardone

et al., 2012; Matsuyama et al., 2004). At present, no extended in-

termediate conformation from any virus has been characterized

in high resolution.
Str
Many viruses enter the cell through the endocytic pathway

where vesicle acidification triggers progression through the viral

fusion cascade (Lozach et al., 2011; Mercer et al., 2010). Thus,

the viral envelope proteins function as pH sensors, sensing the

pH decrease, to approximately pH 5, which is encountered as

the endocytic vesicles mature (Huotari and Helenius, 2011).

From a chemical perspective, differential side-chain protonation

likely triggers the conformational rearrangements. Of the func-

tional groups in canonical proteins, only three amino acid side

chains (Asp, Glu, and His) titrate in the necessary pH range to

function as candidate sensors. Indeed, numerous structural

studies have demonstrated the critical role of histidines in these

conformational changes (Boo et al., 2012; Carneiro et al., 2003,

2006; Chanel-Vos and Kielian, 2004; Huang et al., 2002; Kamp-

mann et al., 2006; Liu and Kielian, 2009; Mueller et al., 2008; Qin

et al., 2009; Schowalter et al., 2009; Stauffer et al., 2007),

whereas the role of anionic side chains has only recently been

elucidated (Chang et al., 2012; Harrison et al., 2011, 2012; Liu

and Kielian, 2009). Therefore, electrostatic changes provide

some of the forces behind these conformational changes. Note

that in contrast, the hydrophobic effect—not electrostatics—is

the dominant stabilizing force for protein folding (Baldwin,

2007; Dill, 1990).

pH-Dependent Residue Pairs
Mutational data from many pH-dependent viral fusion systems

have implicated two discrete residue pairings as potential pH-

sensitive elements. These residue pairs function by destabilizing

a conformation at a particular pH through electrostatic repulsion.
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Figure 1. Schematic of Viral Fusion Reaction Coordinate
In the prefusion state, the fusion proteins exist in a stable conformation on the
surface of the virus. After a triggering step, which varies among viruses, the
extended intermediate is formed. This transient conformation collapses to
form the final postfusion structure where lipid mixing can occur. First, in
hemifusion, only the outer membranes have mixed. Finally, when the fusion
pore is formed, the inner membranes can mix, and the virus can enter the cell.

1086 Structure 21, July 2, 2013 ª2013 Elsevier Ltd All rights reserved

Structure

Review
Undoubtedly, other intermolecular interactions can contribute to

pH-sensitive conformational rearrangements, such as hydrogen

bonds and salt bridges, but neither of these forces can provide a

destabilizing force like repulsion. Moreover, the concept of

repulsion influencing pH-dependent rearrangements provides

a plausible explanation for free energy changes between the pre-

fusion and postfusion conformation, discussed later.

The first pair, histidine-cation (HisCat), consists of an interac-

tion between a histidine residue and another cationic residue:

Lys, Arg, or His (Figure 2). The pKa of free histidine is 6.5; how-

ever, in the context of a folded protein’s microenvironment,

this value is commonly altered. As the pH decreases, the imid-

azole ring accepts a proton rendering this residue cationic

(Figure 2). In HisCat pairs, histidine residues are found in close

proximity, usually less then 7 Å, to another His or a basic residue

(Arg or Lys). When the His is protonated, these clusters acquire

cationic charge and repel, destabilizing the prefusion state,

contributing to the formation of the extended intermediate.

Recently, a HisCat interaction that is critical for pH triggering in

human metapneumovirus was dissected with mutagenesis

(Chang et al., 2012). His435 is found clustered with basic resi-

dues, Lys295, Arg396, and Lys438, and variation of this histidine

to an arginine resulted in a hyperfusogenic glycoprotein (Chang

et al., 2012). Intriguingly, many HisCat pairs cluster at the inter-

faces between domains or subunits that undergo large spatial

rearrangements during the fusion coordinate. For example, mu-

tation of His3 from the Semliki Forest virus glycoprotein, which is

found at the trimer interface and contacts the cognate residue in

the other subunits, markedly decreased the pH requirement for

membrane fusion (Qin et al., 2009). The rapid change in electro-

static potential upon protonation may be a contributing force to

spatial reorganization in these proteins.

The second pH-dependent interaction occurs between the

side chains of two anionic residues (anion-anion [AniAni]), Asp

or Glu, in close proximity, often below 4 Å and as close as

2.5 Å (Figure 2). Asp and Glu side chains have pKa values of

3.9 and 4.2, respectively, but the pKa values of these residues

are often elevated in the context of a folded protein’s microenvi-

ronment (Harms et al., 2009). At neutral pH, Asp and Glu are

negatively charged; as the pH decreases, they are protonated

forming the conjugate acid. The proximity of these anionic side

chains in the postfusion conformation disfavors its formation at

neutral pH (Figure 2). However, as the pH decreases, this repul-

sion is relieved, thereby increasing the stability of the postfusion

conformation. For example, variation of Asp188, which is buried

in the trimer core of Semliki Forest virus, has profound effects on

the pH dependence of membrane fusion (Liu and Kielian, 2009).

AniAni interactions may provide a stabilizing force in the postfu-

sion conformation because they fulfill the theoretical definition of

low-barrier hydrogen bond partners (Cleland, 2000). This type of

interaction has been observed between Asp residues in aspartic

acid proteases (Northrop, 2001). This phenomenon may

contribute to the variation of the side-chain pKa, although

more extensive studies are necessary to demonstrate this effect.

To analyze the distribution of HisCat and AniAni interactions in

different conformations of viral fusion proteins, we used the Ro-

setta3 Scientific Benchmarking ChargeCharge feature reporter

(Leaver-Fay et al., 2013) to measure interatomic distances be-

tween chemical moieties on charged residues’ side chains in



Figure 2. Schematic of HisCat and AniAni
Interactions at Neutral and Endosomal pH
Two distinct residue pairings help control confor-
mational rearrangements in pH-sensitive viral
fusion proteins. For HisCat Interactions, at neutral
pH, these pairings are tolerated, but when the pH
decreases, the histidine acquires cationic char-
acter leading to electrostatic repulsion. For AniAni
Interactions, at neutral pH, these pairings are
repulsive, but as the pH decreases, the anionic
character is reduced, and these residues pairing
are tolerated.
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both the pre- and postfusion conformations of three model viral

fusion systems discussed in detail herein: hemagglutinin from

influenza A (HA), protein G from vesicular stomatitis virus (VSV-

G), and GP from filoviruses (GP). As a control, we analyzed a

reference homotrimer set assembled from the 3D complex data-

base with viral fusion proteins removed (Levy et al., 2006). All of

these data are normalized to report the number of pairs con-

tained within 100 amino acids, to account for differences in the

total number of residues in the various structures. The Protein

Data Bank (PDB) structures that were analyzed are indicated in

the legend for Figure 3. This analysis confirmed that HisCat pairs

are prevalent in the prefusion conformation of HA and VSV-G and

decrease as the postfusion conformation is assumed (Figure 3).

Because HisCat interactions are tolerated at neutral pH but not

at low pH, one explanation for their enrichment in prefusion con-

formations relative to postfusion conformations is that they are

required for destabilizing the prefusion state as the pH de-

creases. HisCat interactions are also found in the reference

sets because these interactions are tolerated at neutral pH. Inter-

estingly, HisCat pairs are rare in the prefusion state of filoviruses,

which is consistent with recent evidence indicating that forma-

tion of the extended intermediate is pH independent (Carette

et al., 2011). Therefore, low pH may not play a direct role in de-

stabilizing the prefusion conformation of GP by direct side-chain

protonation.

Our analysis revealed that AniAni pairs are significantly en-

riched in the postfusion state of the viral fusion proteins. These

residue pairs are very rarely found in both the reference data

set and the prefusion conformations of the viral fusion proteins.

One potential explanation for this observation is that AniAni inter-
Structure 21, July 2, 2013 ª
actions are destabilizing at neutral pH

and thus critical to preventing formation

of the postfusion state under neutral con-

ditions. Furthermore, AniAni interactions

may be involved in regulating the precise

timing of the collapse of the extended in-

termediate (Figure 3).

HisCat and AniAni pairs have a similar,

though opposite, contribution to the free

energy of folding of a protein: at one pH,

the pairing is tolerated, and at another

pH, the pair is repulsive. It is difficult to

calculate the energetic contribution that

electrostatic interactions have to the DG

of a protein fold, due to uncertainties

about desolvation energies, local dielec-
tric constants, and variations in side-chain pKa values. Studies

have found that electrostatic interactions can contribute as

much as �7 kcal/mol to DG, and as a consequence of Cou-

lomb’s law, repulsive forces are equally destabilizing (Kumar

and Nussinov, 2001). In general, protein folds are typically only

stabilized by DG values between �5 and �20 kcal/mol (Dill,

1990). What is clear is that repulsive interactions can substan-

tially destabilize a protein fold because there are often multiple

repulsive interactions found in each protein subunit.

Energetic Control Mechanisms
The reaction coordinates of viral fusion proteins are controlled by

two distinct energetic mechanisms: (1) kinetic control, where

there is a large activation barrier between the two conformations,

and this barrier decreases as a result of pH changes; or (2) ther-

modynamic control, where a protein can exist in two distinct

conformations, and the energy minima are dictated by the pH

(Figure 4) (Baker and Agard, 1994). Manifestations of these two

mechanisms can be observed experimentally, and these charac-

teristics help to classify which energetic paradigm controls the

conformational change. Fusion proteins regulated by thermody-

namic control can undergo reversible conformational changes

(Yao et al., 2003), whereas systems regulated by kinetic control

undergo irreversible conformational changes (Ruigrok et al.,

1986). The physical properties of HisCat and AniAni pairs

contribute to these control mechanisms. Kinetic control relies

on destabilization of the prefusion state, thereby decreasing

the kinetic barrier that traps viral fusion proteins in the prefusion

state (Figure 4). Thermodynamic control, on the other hand, re-

lies upon destabilizing the postfusion state at neutral pH and
2013 Elsevier Ltd All rights reserved 1087



Figure 3. Histogram of Median Interactions
in Viral Proteins and in Reference Data Sets
Using the Rosetta3 Scientific Benchmarking
ChargeCharge feature reporter, we cataloged the
number of HisCat and AniAni interactions in both
the pre- and postfusion states of HA, VSV-G, and
GP. The virus data set includes the following PDB
numbers: HA prefusion (clade) 1JSD (H9); 1JSM
(H5); 1RU7 (H1); 1RUY (H1); 1RVT (H1); 1RUZ
(H1); 2WRH (H1); 3EYJ (H1); 3HTO (H1); 3KU3
(H2); 3LZG (H1); 3M5G (H7); 3QQB (H2); 3S11
(H5); 3SDY (H3); 3VUN (H3); 4F23 (H16); 4FNK
(H3); 2YP7 (H3); influenza postfusion 1HTM;
VSV-G prefusion 2J6J biological assembly; VSV-
G postfusion 2CMZ; GP prefusion 3CSY; and GP
postfusion 2EBO and 4G2K. All ligands and other
proteins were removed from these PDB numbers
prior to analysis. We analyzed a reference homo-
trimer data set for comparison. The distance cut-
offs for HisCat and AniAni interactions were 6.5
and 4 Å, respectively, and the number of in-
teractions was normalized per 100 amino acids.

Structure

Review
the prefusion state at low pH, allowing these proteins to function

as a reversible switch. Here, there is a prominent role for both

HisCat and AniAni interactions to destabilize the respective

states. Exactly how these pairings contribute to kinetic and ther-

modynamic controls is still unclear though, and further studies

are warranted. Below, we examine how HisCat and AniAni

interactions function in three systems: HA under kinetic control,

VSV-G under thermodynamic control, and GP for which the

mechanism is uncertain.

Influenza A Virus HA
Influenza A is a member of the Orthomyxoviridae family and

causes respiratory tract infection in mammals and birds (Beigel

et al., 2005). Influenza A contains two glycoprotein subunits,

HA1 (surface) andHA2 (transmembrane), which facilitate viral en-

try. These proteins exist as a trimer of heterodimers (HA1/HA2) in

the prefusion conformation. HA1 contains a glycan binding site

that recognizes the influenza receptor, sialic acid, whereas HA2

is embedded in the membrane and contains the fusogenic sub-

unit that promotes membrane fusion (Wilson et al., 1981). Unlike

other viral proteins, receptor binding yields little conformational

change and instead promotes viral endocytosis (Ha et al.,

2001). Once inside the endosome, HA2 undergoes a dramatic

reorganization (Doms et al., 1985). Upon exposure to acidic

pH,HA2 forms a highly stable extended a helix, with a particularly

impressive loop-to-helix transition in the hinge of the central stalk

(Figure 6) (Bullough et al., 1994). In the prefusion state, HA2 is a

compacted a helix kinetically trapped by its association with

HA1. HA2 conformational changes can be triggered in the

absence of low pH by the addition of mild denaturants or heat,

providing further support for the kinetic model (Ruigrok et al.,

1986). Moreover, HA2 cannot adopt the prefusion conformation

in the absence of HA1, again consistent with the kinetic model

(Swalley et al., 2004). A consequence of the kinetic mechanism
1088 Structure 21, July 2, 2013 ª2013 Elsevier Ltd All rights reserved
is that formation of the postfusion state

is irreversible; therefore; it has been pro-

posed that pH change predominantly de-

stabilizes the HA1 interactions with itself

andwith HA2 (Huang et al., 2002). Indeed,
as the virus enters the endosome and the vesicle matures, HA1 is

predicted to acquire a greater cationic charge, destabilizing the

HA1/HA1 interface and the interactions with HA2 (Kampmann

et al., 2006; Mueller et al., 2008). Identifying precise residues

that destabilize HA1 is challenging because of sequence drift in

this highly mutable virus and limited structural data for each HA

subtype. There are 17 known subtypes of influenza A HA, and

these subtypes can be divided into four clades based on evolu-

tionary similarity. We generated consensus sequences for each

HA subtype by aligning all available sequences in the Influenza

Virus Resource (Bao et al., 2008) using the MUSCLE algorithm,

then aligned each consensus sequence (Figure 5) (Edgar,

2004). This consensus sequence alignment coupled with solved

structures of various HA subtypes, indicated in the legend for

Figure 5, allowed us to identify various HisCat interactions that

are conserved, as well as HisCat pairs that are subtype unique.

The first HisCat cluster is located at the head of the molecule

adjacent to the HA1/HA1 interface (Figure 5A). Two cationic re-

sides, His186 and Arg220, are absolutely conserved in all sub-

types, and these residues are between 4 and 6 Å of one another

in various HA structures. Mutation of Arg220 to Ser increases the

pH at which HA is triggered (Vanderlinden et al., 2010). Further-

more, mutations around this interface have been discovered that

both increase and decrease the pH dependence of the confor-

mational change, demonstrating the interplay between stabiliza-

tion and destabilization of the prefusion state (Daniels et al.,

1985; Steinhauer et al., 1996). In most influenza strains, this His-

Cat cluster is surrounded by additional cations; a His is highly

conserved at position 185, and other cations often cluster

around this region (Figure 5A). Indeed, this HisCat cluster lies

at the HA1/HA1 interface, and molecular dynamics simulations

have predicted that as the pH decreases, the HA1/HA1 interface

is destabilized, opening a channel for water to solvate HA2

(Huang et al., 2002, 2009; Korte et al., 2007).



Figure 4. Schematic of the Thermodynamic
and Kinetic Control Models for pH-
Dependent Conformational
Rearrangements
Viral fusion proteins are proposed to be regulated
by two energetic control mechanisms. In the
Kinetic Control model, a large kinetic barrier pre-
vents formation of the postfusion state. As the pH
decreases, this barrier is reduced, likely by
destabilization of the prefusion state. In the
Thermodynamic Control model, the pre- and
postfusion states are in equilibrium, and the pH
dictates which conformation is favored.
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The second HisCat interaction is found at the base of HA2. An

a-helical segment that contains a conserved Lys or Arg at posi-

tion 153 and a conserved His is found in a loop at position 26

(Figure 5F). During the transition to the postfusion conformation,

this a-helical segment is dislodged and undergoes a large spatial

rearrangement (Bullough et al., 1994). The electrostatic repulsive

force from this HisCat cluster could provide some of the neces-

sary force to translocate these a-helical segments during the

structural rearrangement, although further analysis is necessary

to confirm the role of this HisCat interaction in the fusion

pathway.

The remaining HisCat clusters are found at various locations

midway through the glycoprotein (Figures 5B and 5C). Interest-

ingly, the location of these HisCat pairs is subtype specific,

and we identified at least four different HisCat clusters in the

various structures. Indeed, mutational studies in several HA sub-

types have uncovered subtype-specific pH-sensing mecha-

nisms. For example, the H1 clade contains two histidines,

His12 and His32, with side chains within 4 Å (Figure 5C). Muta-

tional studies that have varied His12 to Gln decrease the pH

for which HA undergoes conformational rearrangement,

whereas the addition of a His at position 23, normally a Tyr, in-

creases the pH requirement (Reed et al., 2009, 2010). The H3

and H7 clades of the virus, on the other hand, contain a HisCat

interaction between the side chains of Lys51 and His106 at the

coiled-coil interface of HA2 (4 Å). Variation of either of these res-

idues results in a decrease in the pH of fusion (Thoennes et al.,
Structure 21, July 2, 2013 ª
2008). The H1 and H9 clades contain a

cation at position 106, but this residue is

oriented away from residue 51 (Thoennes

et al., 2008).

Additionally, we identified several sub-

type-specific HisCat clusters that have

not been characterized experimentally.

The H1 and H9 subtypes contain a large

HisCat cluster in HA1 in the region sur-

rounding the hinge. This cluster contains

between two and five cationic residues

in the different subtypes, although the

exact location of these residues varies in

subtypes (Figure 5B, H1 and H9). H1 con-

tains three cationic residues, His41,

Lys286, and His299, within 5 Å, whereas

the side chains of His41 and Arg/Lys286

are found less then 3.5 Å of each other

in the H9 subtype (Figure 5B, H1 and
H9). Sequence alignments suggest that this interaction is also

found in the H4 and H14 subtypes for which crystal structures

are not available. Both the H1 and H9 subtypes contain an addi-

tional conserved HisCat interaction surrounding this region that

is also subtype specific. Lys44 and His276, found in H1, are

within 6 Å, and His38 and His296, from H9, are within 6 Å. We

identified an additional HisCat cluster found in several of the

H1 andH9 clades at the base of HA2 between Arg/Lys at position

127 and His159 (Figure 5E). The different subtypes of HA are

triggered at different threshold pH values, and the subtype vari-

ability of these HisCat clusters may contribute to these differ-

ences. Moreover, this deviation underscores the importance of

additional structural and functional studies to pinpoint specific

pH-sensing regions of influenza HA proteins.

Loop to a Helix Transition of the Hinge
The most dynamic structural transition in HA2 as it proceeds

along the reaction coordinate occurs in the hinge region

(Figure 6). In the prefusion state, this 17 amino acid segment ex-

ists as an unstructured loop that makes extensive contacts with

HA1. In the postfusion conformation, the hinge forms an a helix in

the central triple-stranded bundle. This interaction has been

studied with a 33 amino acid peptide derived from this region

(Carr and Kim, 1993). At neutral pH, these peptides are unstruc-

tured monomers, but at pH 5, they form highly stable trimers. A

single AniAni pair between two conserved anions, Glu69 and

Glu74 (2.6 Å), is hypothesized to account for this pH dependence
2013 Elsevier Ltd All rights reserved 1089



Figure 5. HisCat and AniAni Interactions in Influenza HA
HA is depicted in the prefusion state, HA1 is colored gold, and HA2 is colored green. The prefusion state of HA contains numerous HisCat interactions, some of
which are conserved, whereas others are subtype specific. The residues occupying the position of the identified HisCat clusters, according to consensus
sequence alignments generated for each HA subtype, are displayed in the tables on the right, and residues that can participate in HisCat pairs are shaded blue.
The numbering is consistent with the H1 clade and was determined from alignments to 1RU7.
(A) A conserved HisCat cluster at the head of HA1 found in all clades (1RU7).
(B) The H1 HisCat cluster is found in HA1 around the hinge (4F3Z; H1). The interaction between Lys44 and H276 is only found in the H1 subtype and for simplicity,
is not included in the table. The H9HisCat cluster is found in HA1 around the hinge (H9). The interaction between His38 and His296 is only found in the H9 subtype
and for simplicity, is not included in the table (1JSD).
(C) A HisCat interaction between His12 and His32, surrounding the fusion peptide pocket that is found in several H1 clade viruses (1RUY).
(D) A HisCat cluster between Lys51 and His106 between the HA2 helices. This HisCat cluster is conserved in H3 and H7 clade viruses (4FNK).
(E) A HisCat cluster at the base of HA2 between His127 and Lys/Arg159 found in several H1 and H9 clade viruses (4FNK).
(F) A HisCat interaction at the base of HA2 between His26 and Lys/Arg153. This HisCat pair is conserved in all HA subtypes (1JSD).
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(Carr and Kim, 1993). Consequently, the behavior of the isolated

hinge is more consistent with the thermodynamic model of

conformational control, indicating that not all of the structural re-

arrangements can be well classified into one energetic model.

Additional support for this notion comes from the Tm increase

in HA2, �15�C, as the pH decreases, indicating that the postfu-

sion state is stabilized at low pH (Chen et al., 1995). However, the
1090 Structure 21, July 2, 2013 ª2013 Elsevier Ltd All rights reserved
stability of the postfusion conformation at neutral pH largely sup-

ports kinetic control.

Salt bridges between HA1 and HA2 have also been implicated

in the pH-dependent conformational changes of HA (Racha-

konda et al., 2007). Again, HA1 functions to kinetically trap

HA2 in the prefusion arrangement, and the hinge lies at the

HA1/HA2 interface. The hinge region has a strong anionic



Figure 6. Hinge Structural Conformations in the Prefusion and
Postfusion Conformation of Influenza HA
In Hinge Prefusion, the pH-sensitive hinge (cyan) is depicted in the prefusion
state interacting with HA1. A salt bridge between Glu69 of HA2 and Arg120 of
HA1 is shown that stabilizes the heterodimer interface (1JSD) In Hinge
Postfusion, the hinge adopts an a-helical configuration where an AniAni
interaction is formed between Glu69 and Glu74 on the adjacent chain (1HTM).
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character. A salt bridge between Glu69, which forms an AniAni

interaction in the postfusion state, and Lys/Arg at position 120

on the cationic HA1 face stabilizes this interface. As the pH de-

creases, the anionic character of the hinge decreases, and this

weakens the HA1/HA2 interface (Figure 6). Indeed, many muta-

tions at the HA1/HA2 interface have been identified that alter the

pH dependence of this conformational change (Daniels et al.,

1985; Godley et al., 1992; Korte et al., 2007; Rachakonda

et al., 2007; Steinhauer et al., 1996). These observations demon-

strate that the HA1/HA2 complex is thermodynamically tuned to

function as a sensitive pH switch, and variations to theGibbs free

energy of either the pre- or postfusion state have functional con-

sequences.

VSV-G
VSV is a member of the Rhabdoviridae family of viruses that

causes vesiculation and ulceration in the oral and nasal mucosa

of cattle, horses, pigs, and rarely other mammals (Letchworth

et al., 1999). VSV-G is the fusion protein that allows VSV to enter

cells, and conformational changes in this protein are regulated

by thermodynamic control. VSV-G undergoes reversible

changes in response to pH variation, unlike the irreversible

change displayed by HA. Indeed, VSV infectivity can be inacti-

vated by low pH and then subsequently recovered when

exposed to neutral pH (Gaudin, 2000). VSV-G is composed of

four domains and arranged as a trimer in the prefusion state on

the viral surface, adopting the canonical class III glycoprotein

fold (Roche et al., 2007). Domain 1 (DI) is composed of b sheets,

domain 2 (DII) is a helical, domain 3 (DIII) contains a pleckstrin

homology fold, and domain 4 (DIV) contains the fusion peptide

(Figure 7). Furthermore, DII can be divided into three sections

that are noncontinuous in the primary sequence: the N-heptad

repeat (NHR), the middle heptad repeat (MHR), and the C-hep-

tad repeat (CHR). The MHR, CHR, and portions of the NHR are
Str
unstructured in the prefusion conformation and adopt the canon-

ical six a helix bundle in the postfusion conformation (Figure 7).

In its prefusion state, VSV-G is compact, and there are exten-

sive interactions among the four domains. Both DI and DII share

large interfaces with DIV. It is well established that histidines are

critical for the pH-dependent conformational changes in VSV-G

and other class III viruses (Boo et al., 2012; Carneiro et al., 2003;

Chang et al., 2012; Stauffer et al., 2007). The prefusion state of

VSV also contains numerous clusters of HisCat pairs. Many of

these clusters localize to interfaces between domains, in partic-

ular the interfaces between DIV and DI and DII. His407 and

His409, from the unstructured region of the CHR of DII, are found

3.4 and 5.5 Å away from His162 and His60, respectively, from

DIV (Figure 7A). Another HisCat pair is located between Lys93

and His168 in DIV (4 Å) (Figure 7B). Likewise, Lys15 in DI is found

nestled between His132 and His133 of DIV (5.2 Å) (Figure 7C).

The final HisCat interaction is intersubunit located at the trimer

interface; the side chains of His22 from the unstructured NHR

and His396 of the unstructured CHR are found 3.5 Å apart

from one another (Figure 7D). Interactions that could destabilize

the trimer interface of VSV-G are compelling in light of recent re-

ports of a monomeric intermediate during the transition from the

prefusion to the postfusion trimer (Albertini et al., 2012). Further-

more, molecular dynamics studies have also identified His132/

Lys15 and His162/His407 as crucial repulsive interactions facil-

itating this pH-dependent conformational rearrangement of

VSV-G (Rücker et al., 2012).

VSV-G undergoes a striking reorganization in response to the

decreases in pH encountered in the endosome (Figure 7). DI,

which occupies the interior of the protein at neutral pH, relocates

to the exterior. DII, which is predominantly unstructured in the

prefusion conformation, folds into a highly stable six a-helical

bundle (Roche et al., 2006). The NHR and MHR form the

extended three-helix core of the bundle, constituting the postfu-

sion trimer interface, and the CHR packs into the newly formed

grooves. DIII, which occupies the base of the prefusion structure,

packs against DII. Finally, DIV protrudes toward the host

membrane, disengaging from DI and DII, eliminating many of

the HisCat pairs. There is an increase in the number of AniAni

interactions found in the postfusion conformation (Figure 3).

Four AniAni interactions are formed per subunit, all found in

DII, two of which are found at the trimer interface. Both

Asp286 and Glu268 of the MHR and NHR respectively contact

the cognate residue in the opposing subunits (Figures 7E and

7H). Another two AniAni interactions occur between the core

three-helix bundle and the outer three a helices. Asp274 and

Glu276 of the NHR respectively pair with Asp395 and Asp393

from the CHR (Figures 7F and 7G). Given the exquisite stability

of viral six-helix bundles, mechanisms that disfavor this confor-

mation at neutral pH are likely. Furthermore, AniAni interactions

are found at the trimer interface, providing another compelling

reason for the oligomeric change in protein G as it progresses

through the reaction coordinate (Albertini et al., 2012).

In the postfusion state, VSV-G also contains a number of pH-

dependent salt bridges between His and Asp or Glu. One such

interaction is of particular note because it occurs between His

residues that were involved in a HisCat interaction in the prefu-

sion conformation. His132 and His133 participate in a salt bridge

with D145 of DIV in the low pH conformation. Mechanisms that
ucture 21, July 2, 2013 ª2013 Elsevier Ltd All rights reserved 1091



Figure 7. HisCat and AniAni Interactions in VSV-G
In the Prefusion state, DI is red, DII is blue/green, DIII is orange, and DIV is yellow. DII can be divided into three sections that are noncontinuous in the primary
sequence: the NHR, indicated in blue; the MHR, shown in cyan; and the CHR, presented in green. In the compacted prefusion state, a number of HisCat in-
teractions are found, often between domains, and they are depicted in (A)–(D) (2J6J biological assembly). In thePostfusion state, VSV-G elongates, losingmany of
the HisCat interactions found in the prefusion state. In the postfusion state, many AniAni interactions form, occurring in DII, and they are depicted in (E)–(H)
(2CMZ).
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take advantage of stabilizing interactions in both the prefusion

and postfusion states could provide VSV-G with its unique ability

to undergo reversible conformational changes.

Filovirus GP
Filoviruses, comprised of Ebolaviruses and Marburgviruses, are

extremely pathogenic, causing a highly fatal hemorrhagic fever in

humans and nonhuman primates (Miller and Chandran, 2012).

Embedded in the membrane of the filamentous viral particle is

the fusion machinery, glycoprotein GP, comprised of the sub-

units GP1 and GP2. These proteins are arranged as the obligate

trimer of dimers. Two natural genetic filovirus isolates have been

characterized structurally: Zaire Ebolavirus (EBOV) and Lake

Victoria Marburgvirus (MARV). Filoviruses have a distinct fusion

mechanism from the aforementioned viruses; the prefusion state

is not destabilized by acidic pH, even though the virus has been

demonstrated to enter the endosome (Nanbo et al., 2010; Ta-

kada et al., 1997). This may provide an explanation for the rarity

of HisCat interactions in the prefusion conformation of GP

(Figure 3). Once inside the endosome, GP1 is cleaved by endo-

somal proteases (Chandran et al., 2005). In the prefusion state,

GP resembles a chalice, and upon triggering, GP2 adopts a short

six-helix bundle (Figure 8) (Lee et al., 2008). Acidic pH alone is

not sufficient to trigger the cleaved intermediate; although recent

work suggests that cleaved GP treated with acidic pH and dena-

turants or heat can induce membrane binding in purified, soluble

ectodomain protein (Brecher et al., 2012). Thus, the prefusion
1092 Structure 21, July 2, 2013 ª2013 Elsevier Ltd All rights reserved
state is not metastable, in the classical sense, and some other

triggering mechanism is required. Recently, an endosomal re-

ceptor for EBOV has been identified, Niemann Pick Complex

1, suggesting that receptor binding triggers the first transition

in the reaction coordinate: formation of the extended intermedi-

ate (Carette et al., 2011).

Despite evidence that the prefusion conformation is not desta-

bilized by endosomal pH, acidic pH does indeed play a promi-

nent role in filovirus fusion. Previously, it was thought that low

pH was only necessary to promote proteolytic cleavage (i.e.,

low pH does not play a direct role onGP conformation); however,

there is now evidence demonstrating that low pH has a signifi-

cant role in stabilizing the postfusion state. A designed six-helix

bundle derived from EBOV and the full-length GP2 protein from

MARV are both stabilized in acidic pH (Tm increase of �40�C as

the pH decreases from 6.1 to 4.8) (Harrison et al., 2011, 2012).

These pH effects are predominantly the result of AniAni interac-

tions. In EBOV GP2, an AniAni pair is found between Asp614 in

the CHR and Glu564 in the NHR (Figure 8A). Intriguingly, EBOV

GP2 has been crystallized in the postfusion state at both neutral

and acidic pH. At neutral pH, the GCN4 trimerization tag was ap-

pended to the N terminus of GP2 to promote trimerization and

stability (Malashkevich et al., 1999; Weissenhorn et al., 1998).

The majority of these two crystal structures superimpose very

well, with an rmsd score of 1.08 Å between the helical bundles.

Of note, however, the last helical turn, where the AniAni interac-

tion is found, does not overlay well, and the rmsd for this



Figure 8. AniAni Interactions in GP2
Postfusion Conformations
In EBOV GP2, the six-helix bundle of Ebola GP2 is
depicted, the CHR is colored gold, and the NHR
is colored green (2EBO). (A) An AniAni interaction
is found between the CHR and the NHR. In gray is
an overlay of the neutral pH structure (1EBO) and
the low pH structure (2EBO). In MARV GP2, the
MARV GP2 postfusion state is colored akin to
EBOV GP2, with the GCN4 trimerization tag
colored gray (4G2K). AniAni pairs that make up the
anionic stripe can be seen in (B) and (C).
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segment alone is 1.85 Å (Figure 8A). In the neutral pH structure,

the oxygens on the side chains of these two acidic groups are

0.7 Å further apart than at neutral pH (Figure 8). There is also a

salt bridge between His613 and Asp614 that is displaced by

0.7 Å in neutral pH crystal structure, further implicating a role

for pH-dependent salt bridges at low pH. When these anionic

residues are removed from the designed six-helix bundle, the

pH-dependent stability was completely abrogated (Harrison

et al., 2011). Full-length MARV GP2 was shown to have identical

pH-dependent behavior (40�C increase in thermal stability from

pH 6.3 to 4.8). By varying both Glu579 and Glu580 to the neutral

analog glutamine, the stability of GP2 at neutral pH increased by

22�C, although this variant still displayed greater thermostability

at low pH (Figures 8B and 8C) (Harrison et al., 2012). Examination

of the recently determined crystal structure of MARV GP2

reveals that these residues are found among an anionic stripe

running across the midsection of the GP2 bundle, with Glu580

facing the trimer interface, interacting with the cognate amino

acid. Additionally, Glu579 forms an AniAni interaction

with Glu614 in the CHR (Figure 8B) (Koellhoffer et al., 2012). Sur-

prisingly, varying either of these residues alone to their neutral

counterparts did not increase the thermostability at neutral pH,

suggesting that a concerted mechanism is responsible for these

pH effects (Harrison et al., 2012).

The fusion peptide from EBOV has been shown to undergo

pH-dependent conformational rearrangements as well. Filovi-
Structure 21, July 2, 2013 ª
ruses contain an internal fusion peptide,

which is found one helical turn upstream

of Glu564 in the NHR. A peptide derived

from this region displayed a marked in-

crease in a helicity at pH 5.5 and induced

rapid fusion of liposomes at this pH

(Gregory et al., 2011). The lowest-energy

NMR representations of the peptide at

the two different pHs show that the

a-helical region is flanked by two anionic

residues, Glu540 and Glu545, which are

much closer spatially, 12–5 Å, as the pep-

tide is compacted at low pH (Gregory

et al., 2011). Taken together, these results

suggest that pH plays a critical role in the

formation of the postfusion conformation

of GP2, but there is no evidence that pH is

a factor in the transition from the prefu-

sion state to the extended intermediate.

Indeed, the structurally related ASLV is
known to undergo a unique two-step fusion mechanism: recep-

tor binding triggers the first step, likely formation of the prefusion

intermediate, whereas the second step, collapse of the prefusion

intermediate, is triggered by pH change (Cardone et al., 2012;

Matsuyama et al., 2004).

The energetic mechanism that regulates the GP2 conforma-

tional change is still unclear. It is interesting that the postfusion

state is stabilized by acidic pH, which is consistent with the ther-

modynamic mechanism, but that the pH change is not sufficient

to trigger the conformational change in the glycoprotein—recep-

tor binding and proteolysis are also required. The GP reaction

coordinate demonstrates that the two energetic controls may

not be mutually exclusive, and individual steps along the

pathway may have different energetic controls.

Conclusions
Here, we outline the role of electrostatic interactions that govern

transitions through the reaction coordinate of pH-dependent

viral fusion proteins. Analysis of three-dimensional structures

coupled with mutational data present a unique paradigm: HisCat

interactions found in the prefusion state destabilize this confor-

mation as the pH decreases, whereas AniAni interactions pre-

vent formation of the postfusion state until the appropriate pH

is encountered. Yet, there are still a number of unanswered

questions concerning the details of these mechanisms. Eluci-

dating the thermodynamic contributions of these pairs is
2013 Elsevier Ltd All rights reserved 1093
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required to clarify the role of electrostatics in facilitating these

conformational changes. This may be challenging because

fusion studies are often performed with viruses, and mutating

conserved residues in the glycoproteins often result in fusion-

incompetent viruses. Viral fusion proteins are segregated by

two energetic mechanisms, thermodynamic and equilibrium,

that govern these conformational changes. However, the exact

contribution of these residue pairings to these two mechanisms

is, at this point, speculative. Taken together, HisCat and AniAni

interactions, in addition to pH-dependent salt bridges, form the

basis for the pH-sensitive switching mechanisms observed in

viral fusion proteins. This paradigm will serve to guide future

structural studies aimed at uncovering the thermodynamic re-

quirements of pH-sensitive switching in viral fusion proteins.
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