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In this paper we establish a Gröbner–Shirshov bases theory for
Lie algebras over commutative rings. As applications we give
some new examples of special Lie algebras (those embeddable
in associative algebras over the same ring) and non-special Lie
algebras (following a suggestion of P.M. Cohn (1963) [28]). In
particular, Cohn’s Lie algebras over the characteristic p are non-
special when p = 2,3,5. We present an algorithm that one can
check for any p, whether Cohn’s Lie algebras are non-special. Also
we prove that any finitely or countably generated Lie algebra is
embeddable in a two-generated Lie algebra.
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1. Introduction

Gröbner bases and Gröbner–Shirshov bases were invented independently by A.I. Shirshov [47,50]
for ideals of free (commutative, anti-commutative) non-associative algebras, free Lie algebras [48,50]
and implicitly free associative algebras [48,50] (see also [2,5]), by H. Hironaka [33] for ideals of the
power series algebras (both formal and convergent), and by B. Buchberger [19] for ideals of the poly-
nomial algebras.

The Shirshov’s Composition-Diamond lemma and Buchberger’s theorem is the corner stone of the
theories. This proposition says that in appropriate free algebra Ak(X) over a field k with a free gen-
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erating set X and a fixed monomial ordering, the following conditions on a subset S of Ak(X) are
equivalent:

(i) Any composition (s-polynomial) of polynomials from S is trivial;
(ii) If f ∈ Id(S), then the maximal monomial f̄ contains some maximal monomial s̄, where s ∈ S (for

Lie algebra case, f̄ means the maximal associative word of Lie polynomial f );
(iii) The set Irr(S) of all (non-associative in general) words in X , which do not contain any maximal

word s̄, s ∈ S , is a linear k-basis of the algebra A(X |S) = A(X)/Id(S) with generators X and
defining relations S (for Lie algebra case, Irr(S) is the set of Lyndon–Shirshov Lie words whose
associative supports do not contain maximal associative words of polynomials from S).

The set S is called a Gröbner–Shirshov basis of the ideal Id(S) of Ak(X) generated by S if one of
the conditions (i)–(iii) holds.

Gröbner bases and Gröbner–Shirshov bases theories have been proved to be very useful in different
branches of mathematics, including commutative algebra and combinatorial algebra, see, for example,
the books [1,18,20,21,29,30], the papers [2,4,5], and the surveys [7,15–17].

Up to now, different versions of Composition-Diamond lemma are known for the following classes
of algebras apart those mentioned above: (color) Lie super-algebras [38–40], Lie p-algebras [39],
associative conformal algebras [14], modules [34,26] (see also [24]), right-symmetric algebras [11],
dialgebras [9], associative algebras with multiple operators [13], Rota–Baxter algebras [10], and so on.

It is well-known Shirshov’s result [46,50] that every finitely or countably generated Lie algebra
over a field k can be embedded into a two-generated Lie algebra over k. Actually, from the technical
point of view, it was a beginning of the Gröbner–Shirshov bases theory for Lie algebras (and associa-
tive algebras as well). Another proof of the result using explicitly Gröbner–Shirshov bases theory is
refereed to L.A. Bokut, Yuqun Chen and Qiuhui Mo [12].

A.A. Mikhalev and A.A. Zolotykh [41] prove the Composition-Diamond lemma for a tensor product
of a free algebra and a polynomial algebra, i.e., they establish Gröbner–Shirshov bases theory for
associative algebras over a commutative algebra. L.A. Bokut, Yuqun Chen and Yongshan Chen [8] prove
the Composition-Diamond lemma for a tensor product of two free algebras. Yuqun Chen, Jing Li and
Mingjun Zeng [25] prove the Composition-Diamond lemma for a tensor product of a non-associative
algebra and a polynomial algebra.

In this paper, we establish the Composition-Diamond lemma for free Lie algebras over a polynomial
algebra, i.e., for “double free” Lie algebras. It provides a Gröbner–Shirshov bases theory for Lie algebras
over a commutative algebra.

Let k be a field, K a commutative associative k-algebra with identity, and L a Lie K -algebra.
Let LieK (X) be the free Lie K -algebra generated by a set X . Then, of course, L can be presented as
K -algebra by generators X and some defining relations S ,

L = LieK (X |S) = LieK (X)/Id(S).

In order to define a Gröbner–Shirshov basis for L, we first present K in a form

K = k[Y |R] = k[Y ]/Id(R),

where k[Y ] is a polynomial algebra over the field k, R ⊂ k[Y ]. Then the Lie K -algebra L has the
following presentation as a k[Y ]-algebra

L = Liek[Y ](X |S, Rx, x ∈ X)

(cf. E.S. Chibrikov [26], see also [24]).
Now by definition, a Gröbner–Shirshov basis for L = LieK (X |S) is Gröbner–Shirshov basis (in the

sense of the present paper) of the ideal Id(S, Rx, x ∈ X) in the “double free” Lie algebra Liek[Y ](X).
As an application of our Composition-Diamond lemma (Theorem 3.12), a Gröbner–Shirshov basis

of L gives rise to a linear basis of L as a k-algebra.
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We give applications of Gröbner–Shirshov bases theory for Lie algebras over a commutative alge-
bra K (over a field k) to the Poincaré–Birkhoff–Witt theorem. Recent survey on PBW theorem see in
P.-P. Grivel [31]. A Lie algebra over a commutative ring is called special if it is embeddable into an
(universal enveloping) associative algebra. Otherwise it is called non-special. There are known classi-
cal examples by A.I. Shirshov [45] and P. Cartier [22] of Lie algebras over commutative algebras over
GF(2) that are not embeddable into associative algebras. Shirshov and Cartier used ad hoc methods
to prove that some elements of corresponding Lie algebras are not zero though they are zero in the
universal enveloping algebras, i.e., they proved non-speciality of the examples. Here we find Gröbner–
Shirshov bases of these Lie algebras and then use our Composition-Diamond lemma to get the result,
i.e., we give a new conceptual proof.

P.M. Cohn [28] gave the following examples of Lie algebras

L p = LieK (x1, x2, x3 | y3x3 = y2x2 + y1x1)

over truncated polynomial algebras

K = k
[

y1, y2, y3
∣∣ yp

i = 0, 1 � i � 3
]
,

where k is a filed of characteristic p > 0. He conjectured that L p is non-special Lie algebra for any p.
L p is called the Cohn’s Lie algebra. Using our Composition-Diamond lemma we have proved that
L2, L3 and L5 are non-special Lie algebras. We present an algorithm that one can check for any p,
whether Cohn’s Lie algebras are non-special.

We give new class of special Lie algebras in terms of defining relations (Theorem 4.6). For example,
any one relator Lie algebra LieK (X | f ) with a k[Y ]-monic relation f over a commutative algebra K is
special (Corollary 4.7). It gives an extension of the list of known special Lie algebras (ones with valid
PBW Theorems) (see P.-P. Grivel [31]). Let us give this list:

1. L is a free K -module (G. Birkhoff [3], E. Witt [53]),
2. K is a principal ideal domain (M. Lazard [35,36]),
3. K is a Dedekind domain (P. Cartier [22]),
4. K is over a field k of characteristic 0 (P.M. Cohn [28]),
5. L is K -module without torsion (P.M. Cohn [28]),
6. 2 is invertible in K and for any x, y, z ∈ L, [x[yz]] = 0 (Y. Nouaze and P. Revoy [42]).

P. Higgins [32] unified the cases 1–3 and gave homological invariants of special Lie algebras in-
spired by results of R. Baer, see also P. Revoy [44].

As a last application we prove that every finitely or countably generated Lie algebra over an arbi-
trary commutative algebra K can be embedded into a two-generated Lie algebra over K .

We thank Yu Li and Jiapeng Huang for some comments.

2. Preliminaries

We start with some concepts and results from the literature concerning the Gröbner–Shirshov
bases theory of a free Lie algebra Liek(X) generated by X over a field k.

Let X = {xi | i ∈ I} be a well-ordered set with xi > x j if i > j for any i, j ∈ I . Let X∗ be the free
monoid generated by X . For u = xi1 xi2 · · · xim ∈ X∗ , let the length of u be m, denoted by |u| = m.

We use two linear orderings on X∗:

(i) (lex ordering) 1 > t if t �= 1 and, by induction, if u = xiu′ and v = x j v ′ then u > v if and only if
xi > x j or xi = x j and u′ > v ′;

(ii) (deg-lex ordering) u � v if |u| > |v|, or |u| = |v| and u > v .
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We regard Liek(X) as the Lie subalgebra of the free associative algebra k〈X〉, which is generated
by X under the Lie bracket [u, v] = uv − vu. Given f ∈ k〈X〉, denote by f̄ the leading word of f with
respect to the deg-lex ordering; f is monic if the coefficient of f̄ is 1.

Definition 2.1. (See [37,46].) w ∈ X∗ \ {1} is an associative Lyndon–Shirshov word (ALSW for short) if

(∀u, v ∈ X∗, u, v �= 1
)

w = uv ⇒ w > vu.

We denote the set of all ALSW’s on X by ALSW(X).
We cite some useful properties of ALSW’s ([37,46], see also, for example, [6,16–18,43,51]):

(I) if w ∈ ALSW(X) then an arbitrary proper prefix of w cannot be a suffix of w;
(II) if w = uv ∈ ALSW(X), where u, v �= 1 then u > w > v;

(III) if u, v ∈ ALSW(X) and u > v then uv ∈ ALSW(X);
(IV) an arbitrary associative word w can be uniquely represented as w = c1c2 . . . cn , where

c1, . . . , cn ∈ ALSW(X) and c1 � c2 � · · · � cn;
(V) if u′ = u1u2 and u′′ = u2u3 are ALSW’s then u = u1u2u3 is also an ALSW;

(VI) if an associative word w is represented as in (IV) and v is an associative Lyndon–Shirshov
subword of w , then v is a subword of one of the words c1, c2, . . . , cn;

(VII) if an ALSW w = uv and v is its longest proper ALSW, then u is an ALSW as well.

Definition 2.2. (See [23,46].) A non-associative word (u) in X is a non-associative Lyndon–Shirshov
word (NLSW for short), denoted by [u], if

(i) u is an ALSW;
(ii) if [u] = [(u1)(u2)] then both (u1) and (u2) are NLSW’s (from (I) it then follows that u1 > u2);

(iii) if [u] = [[[u11][u12]][u2]] then u12 � u2.

We denote the set of all NLSW’s on X by NLSW(X).
In fact, NLSW’s may be defined as Hall–Shirshov words relative to lex ordering (for definition of

Hall–Shirshov words see [49], also [52]).
By [37,46,50], for an ALSW w , there is a unique bracketing [w] such that [w] is NLSW: [w] = w if

|w| = 1 and [w] = [[u][v]] if |w| > 1, where v is the longest proper associative Lyndon–Shirshov end
of w and by (VII) u is an ALSW. Then by induction on |w|, we have [w].

It is well known that the set NLSW(X) forms a linear basis of Liek(X), see [37,46,50].
Considering any NLSW [w] as a polynomial in k〈X〉, we have [w] = w (see [46,50]). This implies

that if f ∈ Liek(X) ⊂ k〈X〉 then f̄ is an ALSW.

Lemma 2.3. (See Shirshov [46,50].) Suppose that w = aub, where w, u ∈ ALSW(X). Then

[w] = [
a[uc]d]

,

where b = cd and possibly c = 1. Represent c in the form

c = c1c2 . . . cn,

where c1, . . . , cn ∈ ALSW(X) and c1 � c2 � · · · � cn. Replacing [uc] by [. . . [[u][c1]] . . . [cn]] we obtain the
word [w]u = [a[. . . [[[u][c1]][c2]] . . . [cn]]d] which is called the special bracketing of w relative to u. We have

[w]u = w.
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Lemma 2.4. (See Chibrikov [27].) Let w = aub be as in Lemma 2.3. Then [uc] = [u[c1][c2] . . . [cn]], that is

[w] = [
a
[
. . .

[
u[c1]

]
. . . [cn]

]
d
]
.

Lemma 2.5. (See [18,27].) Suppose that w = aubvc, where w, u, v ∈ ALSW(X). Then there is some bracketing

[w]u,v = [
a[u]b[v]d]

in the word w such that

[w]u,v = w.

More precisely,

[w]u,v =
{ [a[up]uq[vs]vl] if [w] = [a[up]q[vs]l],

[a[u[c1] · · · [ct]v · · · [cn]]u p] if [w] = [a[u[c1] · · · [ct] · · · [cn]]p] with v a subword of ct .

3. Composition-Diamond lemma for Liek[Y ](X)

Let Y = {y j | j ∈ J } be a well-ordered set and [Y ] = {y j1 y j2 · · · y jl | y j1 � y j2 � · · · � y jl , l � 0}
the free commutative monoid generated by Y . Then [Y ] is a k-linear basis of the polynomial alge-
bra k[Y ].

Let the set X be a well-ordered set, and let the lex ordering < and the deg-lex ordering ≺X on X∗
be defined as before.

Let Liek[Y ](X) be the “double” free Lie algebra, i.e., the free Lie algebra over the polynomial algebra
k[Y ] with generating set X .

From now on we regard Liek[Y ](X) ∼= k[Y ]⊗Liek(X) as the Lie subalgebra of k[Y ]〈X〉 ∼= k[Y ]⊗k〈X〉
the free associative algebra over polynomial algebra k[Y ], which is generated by X under the Lie
bracket [u, v] = uv − vu.

Let

T A = {
u = uY u X

∣∣ uY ∈ [Y ], u X ∈ ALSW(X)
}

and

T N = {[u] = uY [
u X ] ∣∣ uY ∈ [Y ], [

u X ] ∈ NLSW(X)
}
.

By the previous section, we know that the elements of T A and T N are one-to-one corresponding
to each other.

Remark. For u = uY u X ∈ T A , we still use the notation [u] = uY [u X ] where [u X ] is a NLSW on X .
Let kT N be the linear space spanned by T N over k. For any [u], [v] ∈ T N , define

[u][v] =
∑

αiu
Y vY [

w X
i

]
,

where αi ∈ k, [w X
i ]’s are NLSW’s and [u X ][v X ] = ∑

αi[w X
i ] in Liek(X).

Then k[Y ] ⊗ Liek(X) ∼= kT N as k-algebra and T N is a k-basis of k[Y ] ⊗ Liek(X).
We define the deg-lex ordering � on

[Y ]X∗ = {
uY u X

∣∣ uY ∈ [Y ], u X ∈ X∗}
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by the following: for any u, v ∈ [Y ]X∗ ,

u � v if
(
u X �X v X)

or
(
u X = v X and uY �Y vY )

,

where �Y and �X are the deg-lex ordering on [Y ] and X∗ respectively.

Remark. By abuse of notation, from now on, in a Lie expression like [[u][v]] we will omit the external
brackets, [[u][v]] = [u][v].

Clearly, the ordering � is “monomial” in a sense of [u][w] � [v][w] whenever w X �= u X for any
u, v, w ∈ T A .

Considering any [u] ∈ T N as a polynomial in k-algebra k[Y ]〈X〉, we have [u] = u ∈ T A .
For any f ∈ Liek[Y ](X) ⊂ k[Y ] ⊗ k〈X〉, one can present f as a k-linear combination of T N -words,

i.e., f = ∑
αi[ui], where [ui] ∈ T N . With respect to the ordering � on [Y ]X∗ , the leading word f̄ of f

in k[Y ]〈X〉 is an element of T A . We call f k-monic if the coefficient of f̄ is 1. On the other hand, f
can be presented as k[Y ]-linear combinations of NLSW(X), i.e., f = ∑

f i(Y )[u X
i ], where f i(Y ) ∈ k[Y ],

[u X
i ] ∈ NLSW(X) and u X

1 �X u X
2 �X . . . . Clearly f̄ X = u X

1 and f̄ Y = f1(Y ). We call f k[Y ]-monic if the
f1(Y ) = 1. It is easy to see that k[Y ]-monic implies k-monic.

Equipping with the above concepts, we rewrite Lemma 2.3 as follows.

Lemma 3.1. (See Shirshov [46,50].) Suppose that w = aub where w, u ∈ T A and a,b ∈ X∗ . Then

[w] = [
a[uc]d]

,

where [uc] ∈ T N and b = cd.
Represent c in a form c = c1c2 . . . cn, where c1, . . . , cn ∈ ALSW(X) and c1 � c2 � · · · � cn. Then

[w] = [
a
[
u[c1][c2] . . . [cn]

]
d
]
.

Moreover, the leading word of [w]u = [a[· · · [[[u][c1]][c2]] . . . [cn]]d] is exactly w, i.e.,

[w]u = w.

We still use the notion [w]u as the special bracketing of w relative to u in Section 2.
Let S ⊂ Liek[Y ](X) and Id(S) be the k[Y ]-ideal of Liek[Y ](X) generated by S . Then any element of

Id(S) is a k[Y ]-linear combination of polynomials of the following form:

(u)s = [c1][c2] · · · [cn]s[d1][d2] · · · [dm], m,n � 0

with some placement of parentheses, where s ∈ S and ci,d j ∈ ALSW(X). We call such (u)s an s-word
(or S-word).

Now, we define two special kinds of S-words.

Definition 3.2. Let S ⊂ Liek[Y ](X) be a k-monic subset, a,b ∈ X∗ and s ∈ S . If as̄b ∈ T A , then by
Lemma 3.1 we have the special bracketing [as̄b]s̄ of as̄b relative to s̄. We define [asb]s̄ = [as̄b]s̄|[s̄]�→s
to be a normal s-word (or normal S-word).

Definition 3.3. Let S ⊂ Liek[Y ](X) be a k-monic subset and s ∈ S . We define the quasi-normal s-word,
denoted by �u�s , where u = asb, a,b ∈ X∗ (u is an associative S-word), inductively.

(i) s is quasi-normal of s-length 1;
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(ii) If �u�s is quasi-normal with s-length k and [v] ∈ NLSW(X) such that |v| = l, then [v]�u�s when
v > �u�X

s and �u�s[v] when v < �u�X
s are quasi-normal of s-length k + l.

From the definition of the quasi-normal s-word, we have the following lemma.

Lemma 3.4. For any quasi-normal s-word �u�s = (asb), a,b ∈ X∗ , we have �u�s = as̄b ∈ T A .

Remark. It is clear that for an s-word (u)s = [c1][c2] · · · [cn]s[d1][d2] · · · [dm], (u)s is quasi-normal if
and only if (u)s = c1c2 · · · cns̄d1d2 · · ·dm .

Now we give the definition of compositions.

Definition 3.5. Let f , g be two k-monic polynomials of Liek[Y ](X). Denote the least common multiple
of f̄ Y and ḡY in [Y ] by L = lcm( f̄ Y , ḡY ).

If ḡ X is a subword of f̄ X , i.e., f̄ X = aḡ X b for some a,b ∈ X∗ , then the polynomial

C1〈 f , g〉w = L

f̄ Y
f − L

ḡY
[agb]ḡ

is called the inclusion composition of f and g with respect to w , where w = L f̄ X = Laḡ X b.
If a proper prefix of ḡ X is a proper suffix of f̄ X , i.e., f̄ X = aa0, ḡ X = a0b, a,b,a0 �= 1, then the

polynomial

C2〈 f , g〉w = L

f̄ Y
[ f b] f̄ − L

ḡY
[ag]ḡ

is called the intersection composition of f and g with respect to w , where w = L f̄ X b = Laḡ X .
If the greatest common divisor of f̄ Y and ḡY in [Y ] is not 1, then for any a,b, c ∈ X∗ such that

w = La f̄ X bḡ X c ∈ T A , the polynomial

C3〈 f , g〉w = L

f̄ Y

[
af bḡ X c

]
f̄ − L

ḡY

[
a f̄ X bgc

]
ḡ

is called the external composition of f and g with respect to w .
If f̄ Y �= 1, then for any normal f -word [af b] f̄ , a,b ∈ X∗ , the polynomial

C4〈 f 〉w = [
a f̄ X b

][af b] f̄

is called the multiplication composition of f with respect to w , where w = a f̄ X ba f̄ b.

Immediately, we have that Ci〈−〉w ≺ w , i ∈ {1,2,3,4}.

Remark.

1) When Y = ∅, there are no external and multiplication compositions. This is the case of Shirshov’s
compositions over a field.

2) In the cases of C1 and C2, the corresponding w ∈ T A by the property of ALSW’s, but in the case
of C4, w /∈ T A .

3) For any fixed f , g , there are finitely many compositions C1〈 f , g〉w , C2〈 f , g〉w , but infinitely many
C3〈 f , g〉w , C4〈 f 〉w .
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Definition 3.6. Given a k-monic subset S ⊂ Liek[Y ](X) and w ∈ [Y ]X∗ (not necessary in T A ), an
element h ∈ Liek[Y ](X) is called trivial modulo (S, w), denoted by h ≡ 0 mod(S, w), if h can be
presented as a k[Y ]-linear combination of normal S-words with leading words less than w , i.e.,
h = ∑

i αiβi[ai sibi]s̄i , where αi ∈ k, βi ∈ [Y ], ai,bi ∈ X∗ , si ∈ S , and βiai s̄ibi ≺ w .
In general, for p,q ∈ Liek[Y ](X), we write p ≡ q mod(S, w) if p − q ≡ 0 mod(S, w).
S is a Gröbner–Shirshov basis in Liek[Y ](X) if all the possible compositions of elements in S are

trivial modulo S and corresponding w .

If a subset S of Liek[Y ](X) is not a Gröbner–Shirshov basis then one can add all nontrivial com-
positions of polynomials of S to S . Continuing this process repeatedly, we finally obtain a Gröbner–
Shirshov basis SC that contains S . Such a process is called Shirshov’s algorithm. SC is called Gröbner–
Shirshov complement of S .

Lemma 3.7. Let f be a k-monic polynomial in Liek[Y ](X). If f̄ Y = 1 or f = g f ′ where g ∈ k[Y ] and f ′ ∈
Liek(X), then for any normal f -word [af b] f̄ , a,b ∈ X∗ , (u) f = [a f̄ X b][af b] f̄ has a presentation:

(u) f = [
a f̄ X b

][af b] f̄ =
∑

�ui� f �(u) f

αiβi�ui� f ,

where αi ∈ k, βi ∈ [Y ].

Proof. Case 1. f̄ Y = 1, i.e., f̄ = f̄ X . By Lemma 3.1 and since ≺ is monomial, we have [a f̄ b] = [af b] f̄ −∑
βi vi≺a f̄ b αiβi[vi], where αi ∈ k, βi ∈ [Y ], vi ∈ ALSW(X). Then

(u) f = [a f̄ b][af b] f̄ = [af b] f̄ [af b] f̄ +
∑

βi vi≺a f̄ b

αiβi[af b] f̄ [vi] =
∑

βi vi≺a f̄ b

αiβi[af b] f̄ [vi].

The result follows since vi ≺ a f̄ b and each [af b] f̄ [vi] is quasi-normal.

Case 2. f = g f ′ , i.e., f̄ X = f̄ ′ . Then we have

(u) f = [
a f̄ ′b

][af b] f̄ = g
([

a f̄ ′b
][

af ′b
]

f̄ ′
)
.

The result follows from Case 1. �
The following lemma plays a key role in this paper.

Lemma 3.8. Let S be a k-monic subset of Liek[Y ](X) in which each multiplication composition is trivial. Then
for any quasi-normal s-word �u�s = (asb) and w = as̄b = �u�s , where a,b ∈ X∗ , we have

�u�s ≡ [asb]s̄ mod(S, w).

Proof. For w = s̄ the lemma is clear.
For w �= s̄, since either �u�s = (asb) = [a1](a2sb) or �u�s = (asb) = (asb1)[b2], there are two cases

to consider.
Let

δ(asb) =
{ |a1| if (asb) = [a1](a2sb),

s-length of (asb1) if (asb) = (asb1)[b2].
The proof will be proceeding by induction on (w, δ(asb)), where (w ′,m′) < (w,m) ⇔ w ≺ w ′ or w =
w ′ , m′ < m (w, w ′ ∈ T A,m,m′ ∈ N).
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Case 1. �u�s = (asb) = [a1](a2sb), where a1 > a2 s̄X b, a = a1a2 and (a2sb) is quasi-normal s-word.
In this case, (w, δ(asb)) = (w, |a1|).

Since w = as̄b = a1a2 s̄b � a2 s̄b, by induction, we may assume that (a2sb) = [a2sb]s̄ +∑
αiβi[ci sidi]s̄i , where βici s̄idi ≺ a2 s̄b, a1,a2, ci,di ∈ X∗ , si ∈ S , αi ∈ k and βi ∈ [Y ]. Thus,

�u�s = (asb) = [a1][a2sb]s̄ +
∑

αiβi[a1][ci sidi]s̄i .

Consider the term [a1][ci sidi]s̄i .
If a1 > ci s̄X

i di , then [a1][ci sidi]s̄i is quasi-normal s-word with a1ci s̄idi ≺ w . Note that βia1ci s̄idi ≺ w ,
then by induction, βi[a1][ci sidi]s̄i ≡ 0 mod(S, w).

If a1 < ci s̄X
i di , then [a1][ci sidi]s̄i = −[ci sidi]s̄i [a1] and [ci sidi]s̄i [a1] is quasi-normal s-word with

βici s̄idia1 ≺ βia2 s̄ba1 ≺ βia1a2 s̄b = w .
If a1 = ci s̄X

i di , then there are two possibilities. For si
Y = 1, by Lemma 3.7 and by induction on w

we have βi[a1][ci sidi]s̄i ≡ 0 mod(S, w). For si
Y �= 1, [a1][ci sidi]s̄i is the multiplication composition,

then by assumption, it is trivial mod(S, w).
This shows that in any case, βi[a1][ci sidi]s̄i is a linear combination of normal s-words with leading

words less than w , i.e., βi[a1][ci sidi]s̄i ≡ 0 mod(S, w) for all i.
Therefore, we may assume that �u�s = (asb) = [a1][a2sb]s̄ and a1 > w X > a2 s̄X b.
If either |a1| = 1 or [a1] = [[a11][a12]] and a12 � a2 s̄X b, then �u�s = [a1][a2sb]s̄ is already a normal

s-word, i.e., �u�s = [a1][a2sb]s̄ = [a1a2sb]s̄ = [asb]s̄ .
If [a1] = [[a11][a12]] and a12 > a2 s̄X b, then

�u�s = [a1][a2sb]s̄ = [[a11][a12]
][a2sb]s̄ = [a11]

[[a12][a2sb]s̄
] + [[a11][a2sb]s̄

][a12].
Let us consider the second summand [[a11][a2sb]s̄][a12]. Then by induction on w and by noting

that [a11][a2sb]s̄ is quasi-normal, we may assume that [a11][a2sb]s̄ = ∑
αiβi[ci sidi]s̄i , where βici s̄idi �

a11a2 s̄b, si ∈ S , αi ∈ k, βi ∈ [Y ], ci,di ∈ X∗ . Thus,

[[a11][a2sb]s̄
][a12] =

∑
αiβi[ci sidi]s̄i [a12],

where a11 > a12 > a2 s̄X b, w = a11a12a2 s̄b.
If a12 < ci s̄X

i di , then [ci sidi]s̄i [a12] is quasi-normal with w ′ = βici s̄idia12 � βia11a2 s̄ba12 ≺ w . By
induction, βi[ci sidi]s̄i [a12] ≡ 0 mod(S, w).

If a12 > ci s̄X
i di , then [ci sidi]s̄i [a12] = −[a12][ci sidi]s̄i and [a12][ci sidi]s̄i is quasi-normal with w ′ =

βia12ci s̄idi � βia12a11a2 s̄b ≺ w . Again we can apply the induction.
If a12 = ci s̄X

i di , then as discussed above, it is either the case in Lemma 3.7 or the multiplication
composition and each is trivial mod(S, w).

These show that [[a11][a2sb]s̄][a12] ≡ 0 mod(S, w).
Hence,

�u�s ≡ [a11]
[[a12][a2sb]s̄

]
mod(S, w),

where a11 > a12 > a2 s̄X b.
Noting that [a11][[a12][a2sb]s̄] is quasi-normal and now (w, δ[a11][[a12][a2sb]s̄])= (w, |a11|)<(w, |a1|),

the result follows by induction.
Case 2. �u�s = (asb) = (asb1)[b2] where as̄X b1 > b2, b = b1b2 and (asb1) is quasi-normal s-word.

In this case, (w, δ(asb)) = (w,m) where m is the s-length of (asb1).
By induction on w , we may assume that

�u�s = (asb) = [asb1]s̄[b2] +
∑

αiβi[ci sidi]s̄i [b2],

where βici s̄idi ≺ as̄b1, si ∈ S , αi ∈ k, βi ∈ [Y ], ci,di ∈ X∗ .
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Consider the term βi[ci sidi]s̄i [b2] for each i.
If b2 < ci s̄X

i di , then [ci sidi]s̄i [b2] is quasi-normal s-word with βici s̄idib2 ≺ w .
If b2 > ci s̄X

i di , then [ci sidi]s̄i [b2] = −[b2][ci sidi]s̄i and [b2][ci sidi]s̄i is quasi-normal s-word with
βib2ci s̄idi ≺ βib2as̄b1 ≺ βias̄b1b2 = w .

If b2 = ci s̄X
i di , then as above, by Lemma 3.7 and induction on w or by assumption, βi[ci sidi]s̄i [b2] ≡

0 mod(S, w).
These show that for each i, βi[ci sidi]s̄i [b2] ≡ 0 mod(S, w).
Therefore, we may assume that �u�s = (asb) = [asb1]s̄[b2], a,b ∈ X∗ , where b = b1b2 and

as̄X b1 > b2.
Noting that for [asb1]s̄ = s or [asb1]s̄ = [a1][a2sb1]s̄ with a2 s̄X b1 � b2 or [asb1]s̄ = [asb11]s̄[b12]

with b12 � b2, �u�s is already normal. Now we consider the remained cases.
Case 2.1. Let [asb1]s̄ = [a1][a2sb1]s̄ with a1 > a1a2 s̄X b1 > a2 s̄X b1 > b2. Then we have

�u�s = [[a1][a2sb1]s̄
][b2] = [[a1][b2]

][a2sb1]s̄ + [a1]
[[a2sb1]s̄[b2]

]
.

We consider the term [[a1][b2]][a2sb1]s̄ .
By noting that a1 > b2, we may assume that [a1][b2] = ∑

ui�a1b2
αi[ui] where αi ∈ k, ui ∈

ALSW(X). We will prove that [ui][a2sb1]s̄ ≡ 0 mod(S, w).
If ui > a2 s̄X b1, then [ui][a2sb1]s̄ is quasi-normal s-word with w ′ = uia2 s̄b1 � a1b2a2 s̄b1 ≺ w =

a1a2 s̄b1b2.
If ui < a2 s̄X b1, then [ui][a2sb1]s̄ = −[a2sb1]s̄[ui] and [a2sb1]s̄[ui] is quasi-normal s-word with w ′ =

a2 s̄b1ui � a2 s̄b1a1b2 ≺ w , since a1a2 s̄b1 is an ALSW.
If ui = a2 s̄X b1, then as above, by Lemma 3.7 and induction on w or by assumption, [ui][a2sb1]s̄ ≡

0 mod(S, w).
This shows that

�u�s ≡ [a1]
[[a2sb1]s̄[b2]

]
mod(S, w).

By noting that a1 > a2 s̄X b1 > b2, the result now follows from the Case 1.
Case 2.2. Let [asb1]s̄ = [asb11]s̄[b12] with as̄X b11 > as̄X b11b12 > b12 > b2. Then we have

�u�s = [[asb11]s̄[b12]
][b2] = [[asb11]s̄[b2]

][b12] + [asb11]s̄
[[b12][b2]

]
.

Let us first deal with [[asb11]s̄[b2]][b12]. Since as̄b11b2 < as̄b11b12, we may apply induction on w
and have that

[[asb11]s̄[b2]
][b12] =

∑
αiβi[ci sidi]s̄i [b12],

where βici s̄idi � as̄b11b2, w = as̄b11b12b2.
If b12 < ci s̄X

i di , then [ci sidi]s̄i [b12] is quasi-normal s-word with w ′ = βici s̄idib12 ≺ w .
If b12 > ci s̄X

i di , then [ci sidi]s̄i [b12] = −[b12][ci sidi]s̄i and [b12][ci sidi]s̄i is a quasi-normal s-word
with w ′ = βib12ci s̄idi � βib12as̄b11b2 ≺ as̄b11b12b2 = w .

If b12 = ci s̄X
i di , then as above, by Lemma 3.7 and induction on w or by assumption,

βi[ci sidi]s̄i [b12] ≡ 0 mod(S, w).
These show that

�u�s ≡ [asb11]s̄
[[b12][b2]

]
mod(S, w).

Let [b12][b2] = [b12b2] + ∑
ui≺a1b2

αi[ui] where αi ∈ k, ui ∈ ALSW(X). By noting that as̄X b11 >

b12b2, we have [asb11]s̄[ui] ≡ 0 mod(S, w) for any i. Therefore,

�u�s ≡ [asb11]s̄[b12b2] mod(S, w).
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Noting that [asb11]s̄[b12b2] is quasi-normal and now (w, δ[asb11]s̄[b12b2]) < (w, δ[asb1]s̄[b2]), the result
follows by induction.

The proof is complete. �
Lemma 3.9. Let S be a k-monic subset of Liek[Y ](X) in which each multiplication composition is trivial.
Then any element of the k[Y ]-ideal generated by S can be written as a k[Y ]-linear combination of normal
S-words.

Proof. Note that for any h ∈ Id(S), h can be presented by a k[Y ]-linear combination of S-words of
the form

(u)s = [c1][c2] · · · [ck]s[d1][d2] · · · [dl] (1)

with some placement of parentheses, where s ∈ S , c j,d j ∈ ALSW(X), k, l � 0. By Lemma 3.8 it suffices
to prove that (1) is a linear combination of quasi-normal S-words. We will prove the result by induc-
tion on k + l. It is trivial when k + l = 0, i.e., (u)s = s. Suppose that the result holds for k + l = n. Now
let us consider

(u)s = [cn+1]
([c1][c2] · · · [ck]s[d1][d2] · · · [dn−k]

) = [cn+1](v)s.

By inductive hypothesis, we may assume without loss of generality that (v)s is a quasi-normal
s-word, i.e., (v)s = �v�s = (csd) where cs̄d ∈ T A, c,d ∈ X∗ . If cn+1 > cs̄X d, then (u)s is quasi-normal.
If cn+1 < cs̄X d then (u)s = −�v�s[cn+1] where �v�s[cn+1] is quasi-normal. If cn+1 = cs̄X d then by
Lemma 3.8, (u)s = [cn+1](csd) ≡ [cn+1][csd]s̄ . Now the result follows from the multiplication compo-
sition and Lemma 3.7. �
Lemma 3.10. Let S be a k-monic subset of Liek[Y ](X) in which each multiplication composition is trivial. Then
for any quasi-normal S-word �asb�s = [a1][a2] · · · [ak]�v�s[b1][b2] · · · [bl] with some placement of paren-
theses, the three following S-words are linear combinations of normal S-words with the leading words less
than as̄b:

(i) w1 = �asb�s|[ai ]�→[c] where c ≺ ai ;
(ii) w2 = �asb�s|[b j ]�→[d] where d ≺ b j ;

(iii) w3 = �asb�s|�v�s �→�v ′�s where �v ′�s ≺ �v�s .

Proof. We first prove (iii). For k + l = 1, for example, �asb�s = �v�s[b1], it is easy to see that the
result follows from Lemmas 3.9 and 3.7 since either �v ′�s[b1] or [b1]�v ′�s is quasi-normal or w3 is
the multiplication composition. Now the result follows by induction on k + l.

We now prove (i), and (ii) is similar. For k + l = 1, �asb�s = [a1]�v�s and then w1 = [c]�v�s . Then
either �v�s[c] or [c]�v�s is quasi-normal or w1 is equivalent to the multiplication composition with
respect to w = �v�X

s �v�s . Again by Lemmas 3.9 and 3.7, the result holds. For k + l � 2, it follows
from (iii). �

Let s1, s2 ∈ Liek[Y ](X) be two k-monic polynomials in Liek[Y ](X). If as̄X
1 bs̄X

2 c ∈ ALSW(X) for some

a,b, c ∈ X∗ , then by Lemma 2.5, there exits a bracketing way [as̄X
1 bs̄X

2 c]s̄X
1 ,s̄X

2
such that [as̄X

1 bs̄X
2 c]s̄X

1 ,s̄X
2

=
as̄X

1 bs̄X
2 c. Denote

[as1bs̄2c]s̄1,s̄2 = s̄Y
2

[
as̄X

1 bs̄X
2 c

]
s̄X

1 ,s̄X
2

∣∣[s̄X
1 ]�→s1

,
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[as̄1bs2c]s̄1,s̄2 = s̄Y
1

[
as̄X

1 bs̄X
2 c

]
s̄X

1 ,s̄X
2

∣∣[s̄X
2 ]�→s2

,

[as1bs2c]s̄1,s̄2 = [
as̄X

1 bs̄X
2 c

]
s̄X

1 ,s̄X
2

∣∣[s̄X
1 ]�→s1,[s̄X

2 ]�→s2
.

Thus, the leading words of the above three polynomials are as̄1bs̄2c = s̄Y
1 s̄Y

2 as̄X
1 bs̄X

2 c.
The following lemma is also essential in this paper.

Lemma 3.11. Let S be a Gröbner–Shirshov basis in Liek[Y ](X). For any s1, s2 ∈ S, β1, β2 ∈ [Y ],a1,a2,b1,b2 ∈
X∗ such that w = β1a1 s̄1b1 = β2a2 s̄2b2 ∈ T A , we have

β1[a1s1b1]s̄1 ≡ β2[a2s2b2]s̄2 mod(S, w).

Proof. Let L be the least common multiple of s̄Y
1 and s̄Y

2 . Then wY = β1 s̄Y
1 = β2 s̄Y

2 = Lt for some
t ∈ [Y ], w X = a1 s̄X

1 b1 = a2 s̄X
2 b2 and

β1[a1s1b1]s̄1 − β2[a2s2b2]s̄2 = t

(
L

s̄Y
1

[a1s1b1]s̄1 − L

s̄Y
2

[a2s2b2]s̄2

)
.

Consider the first case in which s̄X
2 is a subword of b1, i.e., w X = a1 s̄X

1 as̄X
2 b2 for some a ∈ X∗ such

that b1 = as̄X
2 b2 and a2 = a1 s̄X

1 a. Then

β1[a1s1b1]s̄1 − β2[a2s2b2]s̄2 = t

(
L

s̄Y
1

[
a1s1as̄X

2 b2
]

s̄1
− L

s̄Y
2

[
a1 s̄X

1 as2b2
]

s̄2

)

= tC3〈s1, s2〉w ′

if L �= s̄Y
1 s̄Y

2 , where w ′ = Lw X . Since S is a Gröbner–Shirshov basis, C3〈s1, s2〉 ≡ 0 mod(S, Lw X ). The
result follows from w = tLw X = t w ′ .

Suppose that L = s̄Y
1 s̄Y

2 . By noting that 1
s̄Y

1

[a1 s̄1as2b2]s̄1,s̄2 and 1
s̄Y

2

[a1s1as̄2b2]s̄1,s̄2 are quasi-normal,

by Lemma 3.8 we have

[a1s1as̄2b2]s̄1,s̄2 ≡ s̄Y
2

[
a1s1as̄X

2 b2
]

s̄1
mod

(
S, w ′),

[a1 s̄1as2b2]s̄1,s̄2 ≡ s̄Y
1

[
a1 s̄X

1 as2b2
]

s̄2
mod

(
S, w ′).

Thus, by Lemma 3.10, we have

β1[a1s1b1]s̄1 − β2[a2s2b2]s̄2

= t
(
s̄Y

2

[
a1s1as̄X

2 b2
]

s̄1
− s̄Y

1

[
a1 s̄X

1 as2b2
]

s̄2

)
= t

((
s̄Y

2

[
a1s1as̄X

2 b2
]

s̄1
− [a1s1as̄2b2]s̄1,s̄2

) + ([a1s1as2b2]s̄1,s̄2 − [a1s1as̄2b2]s̄1,s̄2

)
− ([a1s1as2b2]s̄1,s̄2 − [a1 s̄1as2b2]s̄1,s̄2

) − (
s̄Y

1

[
a1 s̄X

1 as2b2
]

s̄2
− [a1 s̄1as2b2]s̄1,s̄2

))
= t

((
s̄Y

1

[
a1s1as̄X

2 b2
]

s̄1
− [a1s1as̄2b2]s̄1,s̄2

) + [
a1

(
s1 − [s̄1]

)
as2b2

]
s̄1,s̄2

− [
a1s1a

(
s2 − [s̄2]

)
b2

]
s̄1,s̄2

− (
s̄Y

1

[
a1 s̄X

1 as2b2
]

s̄2
− [a1 s̄1as2b2]s̄1,s̄2

))
≡ 0 mod(S, w).
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Second, if s̄X
2 is a subword of s̄X

1 , i.e., s̄X
1 = as̄X

2 b for some a,b ∈ X∗ , then [a2s2b2]s̄2 = [a1as2bb1]s̄2 .
Let w ′ = Ls̄X

1 . Thus, by noting that [a1[as2b]s̄2 b1] is quasi-normal and by Lemmas 3.8 and 3.10,

β1[a1s1b1]s̄1 − β2[a2s2b2]s̄2

= t

(
L

s̄Y
1

[a1s1b1]s̄1 − L

s̄Y
2

[a1as2bb1]s̄2

)

= t

(
L

s̄Y
1

[a1s1b1]s̄1 − L

s̄Y
2

[a1s1b1]s̄1 |s1 �→[as2b]s̄2

)
− L

s̄Y
2

([a1as2bb1]s̄2 − [a1s1b1]s̄1 |s1 �→[as2b]s̄2

)

= t

[
a1

(
L

s̄Y
1

s1 − L

s̄Y
2

[as2b]s̄2

)
b1

]
− L

s̄Y
2

([a1as2bb1]s̄2 − [
aX

1 [as2b]s̄2 b1
])

= t
[
a1C1〈s1, s2〉w ′b1

] − L

s̄Y
2

([a1as2bb1]s̄2 − [
a1[as2b]s̄2 b1

])

≡ 0 mod(S, w).

One more case is possible: A proper suffix of s̄X
1 is a proper prefix of s̄X

2 , i.e., s̄X
1 = ab and s̄X

2 = bc
for some a,b, c ∈ X∗ and b �= 1. Then abc is an ALSW. Let w ′ = Labc. Then by Lemmas 3.8 and 3.10,
we have

β1[a1s1b1]s̄1 − β2[a2s2b2]s̄2

= t

(
L

s̄Y
1

[a1s1cb2]s̄1 − L

s̄Y
2

[a1as2b2]s̄2

)

= t
L

s̄Y
1

([a1s1cb2]s̄1 − [
a1[s1c]s̄1 b2

]) − t
L

s̄Y
2

([a1as2b2]s̄2 − [
a1[as2]s̄2 b2

]) + t
[
a1C2〈s1, s2〉w ′b2

]

≡ 0 mod(S, w).

The proof is complete. �
Theorem 3.12 (Composition-Diamond lemma for Liek[Y ](X)). Let S ⊂ Liek[Y ](X) be a nonempty set of k-
monic polynomials and Id(S) be the k[Y ]-ideal of Liek[Y ](X) generated by S. Then the following statements
are equivalent.

(i) S is a Gröbner–Shirshov basis in Liek[Y ](X).
(ii) f ∈ Id(S) ⇒ f̄ = βas̄b ∈ T A for some s ∈ S, β ∈ [Y ] and a,b ∈ X∗ .

(iii) Irr(S) = {[u] | [u] ∈ T N , u �= βas̄b, for any s ∈ S, β ∈ [Y ], a,b ∈ X∗} is a k-basis for Liek[Y ](X |S) =
Liek[Y ](X)/Id(S).

Proof. (i) ⇒ (ii). Let S be a Gröbner–Shirshov basis and 0 �= f ∈ Id(S). Then by Lemma 3.9 f has
an expression f = ∑

αiβi[ai sibi]s̄i , where αi ∈ k, βi ∈ [Y ], ai,bi ∈ X∗ , si ∈ S . Denote wi = βi[ai sibi]s̄i ,
i = 1,2, . . . . Then wi = βiai s̄ibi . We may assume without loss of generality that

w1 = w2 = · · · = wl � wl+1 � wl+2 � · · ·

for some l � 1.
The claim of the theorem is obvious if l = 1.
Now suppose that l > 1. Then β1a1 s̄1b1 = w1 = w2 = β2a2 s̄2b2. By Lemma 3.11,
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α1β1[a1s1b1]s̄1 + α2β2[a2s2b2]s̄2 = (α1 + α2)β1[a1s1b1]s̄1 + α2
(
β2[a2s2b2]s̄2 − β1[a1s1b1]s̄1

)
≡ (α1 + α2)β1[a1s1b1]s̄1 mod(S, w1).

Therefore, if α1 + α2 �= 0 or l > 2, then the result follows from the induction on l. For the case
α1 + α2 = 0 and l = 2, we use the induction on w1. Now the result follows.

(ii) ⇒ (iii). For any f ∈ Liek[Y ](X), we have

f =
∑

βi [ai sibi ]s̄i
� f̄

αiβi[ai sibi]s̄i +
∑

[u j ]� f̄

α′
j[u j],

where αi,α
′
j ∈ k, βi ∈ [Y ], [u j] ∈ Irr(S) and si ∈ S . Therefore, the set Irr(S) generates the algebra

Liek[Y ](X)/Id(S).
On the other hand, suppose that h = ∑

αi[ui] = 0 in Liek[Y ](X)/Id(S), where αi ∈ k, [ui] ∈ Irr(S).
This means that h ∈ Id(S). Then all αi must be equal to zero. Otherwise, h̄ = u j for some j which
contradicts (ii).

(iii) ⇒ (i). For any f , g ∈ S , we have

Cτ ( f , g)w =
∑

βi [ai sibi ]s̄i
≺w

αiβi[ai sibi]s̄i +
∑

[u j ]≺w

α′
j[u j].

For τ = 1,2,3,4, since Cτ ( f , g)w ∈ Id(S) and by (iii), we have

Cτ ( f , g)w =
∑

βi [ai sibi ]s̄i
≺w

αiβi[ai sibi]s̄i .

Therefore, S is a Gröbner–Shirshov basis. �
4. Applications

In this section, all algebras (Lie or associative) are understood to be taken over an associative and
commutative k-algebra K with identity and all associative algebras are assumed to have identity.

Let L be an arbitrary Lie K -algebra which is presented by generators X and defining relations S ,
L = LieK (X |S). Let K have a presentation by generators Y and defining relations R , K = k[Y |R]. Let
�Y and �X be deg-lex orderings on [Y ] and X∗ respectively. Let R X = {rx | r ∈ R, x ∈ X}. Then as
k[Y ]-algebras,

L = Liek[Y |R](X |S) ∼= Liek[Y ](X |S, R X).

As we know, the Poincaré–Birkhoff–Witt theorem cannot be generalized to Lie algebras over an ar-
bitrary ring (see, for example, [31]). This implies that not any Lie algebra over a commutative algebra
has a faithful representation in an associative algebra over the same commutative algebra. Following
P.M. Cohn (see [31]), a Lie algebra with the PBW property is said to be “special”. The first non-special
example was given by A.I. Shirshov in [45] (see also [50]), and he also suggested that if no nonzero
element of K annihilates an absolute zero-divisor, then a faithful representation always exits. Another
classical non-special example was given by P. Cartier [22]. In the same paper, he proved that each Lie
algebra over Dedekind domain is special. In both examples the Lie algebras are taken over commu-
tative algebras over GF(2). Shirshov and Cartier used ad hoc methods to prove that some elements
of corresponding Lie algebras are not zero though they are zero in the universal enveloping algebras.
P.M. Cohn [28] proved that any Lie algebra over k K , where char(k) = 0, is special. Also he claimed
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that he gave an example of non-special Lie algebra over a truncated polynomial algebra over a filed
of characteristic p > 0. But he did not give a proof.

Here we find Gröbner–Shirshov bases of Shirshov and Cartier’s Lie algebras and then use Theo-
rem 3.12 to get the results and we give proof for P.M. Cohn’s example of characteristics 2,3 and 5.
We present an algorithm that one can check for any p, whether Cohn’s conjecture is valid.

Note that if L = LieK (X |S), then the universal enveloping algebra of L is U K (L) = K 〈X |S(−)〉
where S(−) is just S but substituting all [u, v] by uv − vu.

Example 4.1. (See Shirshov [45,50].) Let the field k = GF(2) and K = k[Y |R], where

Y = {yi, i = 0,1,2,3}, R = {y0 yi = yi (i = 0,1,2,3), yi y j = 0 (i, j �= 0)}.

Let L = LieK (X |S1, S2), where X = {xi, 1 � i � 13}, S1 consists of the following relations

[x2, x1] = x11, [x3, x1] = x13, [x3, x2] = x12,

[x5, x3] = [x6, x2] = [x8, x1] = x10,

[xi, x j] = 0 (for any other i > j),

and S2 consists of the following relations

y0xi = xi (i = 1,2, . . . ,13),

x4 = y1x1, x5 = y2x1, x5 = y1x2, x6 = y3x1, x6 = y1x3,

x7 = y2x2, x8 = y3x2, x8 = y2x3, x9 = y3x3,

y3x11 = x10, y1x12 = x10, y2x13 = x10,

y1xk = 0 (k = 4,5, . . . ,11,13), y2xt = 0 (t = 4,5, . . . ,12),

y3xl = 0 (l = 4,5, . . . ,10,12,13).

Then L is not special.

Proof. L = LieK (X |S1, S2) = Liek[Y ](X |S1, S2, R X). We order Y and X by yi > y j if i > j and xi > x j
if i > j respectively. It is easy to see that for the ordering � on [Y ]X∗ as before, S = S1 ∪ S2 ∪ R X ∪
{y1x2 = y2x1, y1x3 = y3x1, y2x3 = y3x2} is a Gröbner–Shirshov basis in Liek[Y ](X). Since x10 ∈ Irr(S)

and Irr(S) is a k-basis of L by Theorem 3.12, x10 �= 0 in L.
On the other hand, the universal enveloping algebra of L has a presentation:

U K (L) = K
〈
X |S(−)

1 , S2
〉 ∼= k[Y ]〈X |S(−)

1 , S2, R X
〉
,

where S(−)
1 is just S1 but substituting all [uv] by uv − vu.

But the Gröbner–Shirshov complement (see Mikhalev and Zolotykh [41]) of S(−)
1 ∪ S2 ∪ R X in

k[Y ]〈X〉 is

SC = S(−)
1 ∪ S2 ∪ R X ∪ {y1x2 = y2x1, y1x3 = y3x1, y2x3 = y3x2, x10 = 0}.

Thus, L is not special. �
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Example 4.2. (See Cartier [22].) Let k = GF(2), K = k[y1, y2, y3 | y2
i = 0, i = 1,2,3] and L =

LieK (X |S), where X = {xij, 1 � i � j � 3} and

S = {[xii, x jj] = x ji (i > j), [xij, xkl] = 0 (otherwise), y3x33 = y2x22 + y1x11
}
.

Then L is not special.

Proof. Let Y = {y1, y2, y3}. Then

L = LieK (X |S) ∼= Liek[Y ]
(

X |S, y2
i xkl = 0 (∀i,k, l)

)
.

Let yi > y j if i > j and xij > xkl if (i, j) >lex (k, l) respectively. It is easy to see that for the ordering �
on [Y ]X∗ as before, S ′ = S ∪ {y2

i xkl = 0 (∀i,k, l)} ∪ S1 is a Gröbner–Shirshov basis in Liek[Y ](X), where
S1 consists of the following relations

y3x23 = y1x12, y3x13 = y2x12, y2x23 = y1x13, y3 y2x22 = y3 y1x11,

y3 y1x12 = 0, y3 y2x12 = 0, y3 y2 y1x11 = 0, y2 y1x13 = 0.

The universal enveloping algebra of L has a presentation:

U K (L) = K
〈
X |S(−)

〉 ∼= k[Y ]〈X |S(−), y2
i xkl = 0 (∀i,k, l)

〉
.

In U K (L), we have (cf. [22])

0 = y2
3x2

33 = (y2x22 + y1x11)
2 = y2

2x2
22 + y2

1x2
11 + y2 y1[x22, x11] = y2 y1x12.

On the other hand, since y2 y1x12 ∈ Irr(S ′), y2 y1x12 �= 0 in L. Thus, L is not special. �
Conjecture 4.3. (See Cohn [28].) Let K = k[y1, y2, y3 | yp

i = 0, i = 1,2,3] be the algebra of truncated
polynomials over a field k of characteristic p > 0. Let

L p = LieK (x1, x2, x3 | y3x3 = y2x2 + y1x1).

Then L p is not special. We call L p the Cohn’s Lie algebra.

Remark. (See [28].) In U K (L p) we have

0 = (y3x3)
p = (y2x2)

p + Λp(y2x2, y1x1) + (y1x1)
p = Λp(y2x2, y1x1),

where Λp is a Jacobson–Zassenhaus Lie polynomial. P.M. Cohn conjectured that Λp(y2x2, y1x1) �= 0
in L p .

Theorem 4.4. Cohn’s Lie algebras L2 , L3 and L5 are not special.

Proof. Let Y = {y1, y2, y3}, X = {x1, x2, x3} and S = {y3x3 = y2x2 + y1x1, yp
i x j = 0, 1 � i, j � 3}.

Then L p ∼= Liek[Y ](X |S) and U K (L p) ∼= k[Y ]〈X |S〉. Suppose that SC is a Gröbner–Shirshov complement
of S in Liek[Y ](X). Let S

X
p ⊂ L p be the set of all the elements of SC whose X-degrees do not exceed p.

First, we consider p = 2 and prove the element Λ2 = [y2x2, y1x1] = y2 y1[x2x1] �= 0 in L2.
Then by Shirshov’s algorithm we have that S X2 consists of the following relations
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y3x3 = y2x2 + y1x1, y2
i x j = 0 (1 � i, j � 3), y3 y2x2 = y3 y1x1, y3 y2 y1x1 = 0,

y2[x3x2] = y1[x3x1], y3 y1[x2x1] = 0, y2 y1[x3x1] = 0.

Thus, Λ2 is in the k-basis Irr(SC ) of L2.
Now, by the above remark, L2 is not special.
Second, we consider p = 3 and prove the element Λ3 = y2

2 y1[x2x2x1] + y2 y2
1[x2x1x1] �= 0 in L3.

Then again by Shirshov’s algorithm, S X3 consists of the following relations

y3x3 = y2x2 + y1x1, y3
i x j = 0 (1 � i, j � 3), y2

3 y2x2 = y2
3 y1x1, y2

3 y2
2 y1x1 = 0,

y2[x3x2] = −y1[x3x1], y2
3 y1[x2x1] = 0, y2

2 y1[x3x1] = 0,

y3 y2
2[x2x2x1] = y3 y2 y1[x2x1x1], y3 y2

2 y1[x2x1x1] = 0, y3 y2 y1[x2x2x1] = y3 y2
1[x2x1x1].

Thus, y2
2 y1[x2x2x1], y2 y2

1[x2x1x1] ∈ Irr(SC ), which implies Λ3 �= 0 in L3.
Third, let p = 5. Again by Shirshov’s algorithm, S X5 consists of the following relations

1) y3x3 = y2x2 + y1x1,

2) y5
i x j = 0, 1 � i, j � 3,

3) y4
3 y2x2 = −y4

3 y1x1,

4) y4
3 y4

2 y1x1 = 0,

5) y2[x3x2] = −y1[x3x1],
6) y4

3 y1[x2x1] = 0,

7) y4
2 y1[x3x1] = 0,

8) y3
3 y2

2[x2x2x1] = y3
3 y2 y1[x2x1x1],

9) y3
3 y4

2 y1[x2x1x1] = 0,

10) y3
3 y2 y1[x2x2x1] = y3

3 y2
1[x2x1x1],

11) y1[x3x2x3x1] = 0,

12) y1[x3x1x2x1] = 0,

13) y1[x3x2x2x1] = −y1[x3x2x1x2],
14) y2[x3x1x2x1] = 0,

15) y2
3 y3

2[x2x2x2x1] = 2y2
3 y2

2 y1[x2x2x1x1] − y2
3 y2 y2

1[x2x1x1x1],
16) y3

3 y3
2 y2

1[x2x1x1x1] = 0,

17) y2
3 y2

2 y1[x2x2x2x1] = 2y2
3 y2 y2

1[x2x2x1x1] − y2
3 y3

1[x2x1x1x1],
18) y2

3 y4
2 y2

1[x2x1x1x1] = 0,

19) y2
3 y4

2 y1[x2x2x1x1] = 1

2
y2

3 y3
2 y2

1[x2x1x1x1],
20) y3

3 y2
1[x2x2x1x2x1] = 0,

21) y3
3 y2 y1[x2x1x2x1x1] = 0,
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22) y3
3 y2

1[x2x1x2x1x1] = 0,

23) y3
3 y2

2[x2x1x2x1x1] = 0,

24) y2
3 y2

2 y1[x2x2x1x2x1] = −y2
3 y2 y2

1[x2x1x2x1x1],
25) y2

3 y2 y2
1[x2x2x1x2x1] = −y2

3 y3
1[x2x1x2x1x1],

26) y2
3 y4

2 y2
1[x2x1x2x1x1] = 0,

27) y3 y4
2[x2x2x2x2x1] = 3y3 y3

2 y1[x2x2x2x1x1] − y3 y3
2 y1[x2x2x1x2x1] − 3y3 y2

2 y2
1[x2x2x1x1x1]

− 2y3 y2
2 y2

1[x2x1x2x1x1] + y3 y2 y3
1[x2x1x1x1x1],

28) y3 y3
2 y1[x2x2x2x2x1] = 3y3 y2

2 y2
1[x2x2x2x1x1] − y3 y2

2 y2
1[x2x2x1x2x1] − 3y3 y2 y3

1[x2x2x1x1x1]
− 2y3 y2 y3

1[x2x1x2x1x1] + y3 y4
1[x2x1x1x1x1],

29) y3 y4
2 y3

1[x2x1x1x1x1] = 0,

30) y2
3 y3

2 y3
1[x2x1x1x1x1] = 0,

31) y3 y4
2 y2

1[x2x2x1x1x1] = −2

3
y3 y4

2 y2
1[x2x1x2x1x1] + 1

3
y3 y3

2 y3
1[x2x1x1x1x1],

32) y3 y4
2 y1[x2x2x2x1x1] = 1

3
y3 y4

2 y1[x2x2x1x2x1] + y3 y3
2 y2

1[x2x2x1x1x1]

+ 2

3
y3 y3

2 y2
1[x2x1x2x1x1] − 1

3
y3 y2

2 y3
1[x2x1x1x1x1],

33) y3
2 y2

1[x3x3x1x3x1] = 0,

34) y3
2 y2

1[x3x1x3x1x1] = 0,

35) y3
3 y2

2 y3
1[x2x1x1x1x1] = 0,

36) y2
3 y3

2 y2
1[x2x2x1x1x1] = −2

3
y2

3 y3
2 y2

1[x2x1x2x1x1] + 2

3
y2

3 y2
2 y3

1[x2x1x1x1x1].

Thus, Λ5(y2x2, y1x1) = y4
2 y1[x2x2x2x2x1] ∈ Irr(SC ), which implies Λ5 �= 0 in L5. �

Remarks. Note that the Jacobson–Zassenhaus Lie polynomial Λp(y2x2, y1x1) is of X-degree p. Then
Λp(y2x2, y1x1) ∈ Irr(SC ) if and only if Λp(y2x2, y1x1) ∈ Irr(S X p ). Since the defining relation of L p is
homogeneous on X , S X p is a finite set. By Shirshov’s algorithm, one can compute S X p for L p .

Now we give some examples which are special Lie algebras.

Lemma 4.5. Suppose that f and g are two polynomials in Liek[Y ](X) such that f is k[Y ]-monic and g = rx,
where r ∈ k[Y ] and x ∈ X, is k-monic. Then each inclusion composition of f and g is trivial modulo { f } ∪ r X .

Proof. Suppose that f̄ = [axb] for some a,b ∈ X∗ , f = f̄ + f ′ and g = r̄x + r′x. Then w = r̄axb and

C1〈 f , g〉w = r̄ f − [
a[rx]b]

r̄x

= r̄ f ′ − r′[axb]
= r f ′ − r′ f

≡ 0 mod
({ f } ∪ r X, w

)
. �
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Theorem 4.6. For an arbitrary commutative k-algebra K = k[Y |R], if S is a Gröbner–Shirshov basis in
Liek[Y ](X) such that for any s ∈ S, s is k[Y ]-monic, then L = LieK (X |S) is special.

Proof. Assume without loss of generality that R is a Gröbner–Shirshov basis in k[Y ]. Note that L ∼=
Liek[Y ](X |S, R X). By Lemma 4.5, S ∪ R X is a Gröbner–Shirshov basis in Liek[Y ](X).

On the other hand, in U K (L) ∼= k[Y ]〈X |S(−), R X〉, S(−) ∪ R X is a Gröbner–Shirshov basis in k[Y ]〈X〉
in the sense of the paper [41].

Thus for any u ∈ Irr(S ∪ R X) in Liek[Y ](X), we have ū ∈ Irr(S(−) ∪ R X) in k[Y ]〈X〉. This completes
the proof. �
Corollary 4.7. Any Lie K -algebra L = LieK (X | f ) with one monic defining relation f = 0 is special.

Proof. Let K = k[Y |R], where R is a Gröbner–Shirshov basis in k[Y ]. We can regard f as a k[Y ]-monic
element in Liek[Y ](X). Note that any subset of Liek[Y ](X) consisting of a single k[Y ]-monic element is
a Gröbner–Shirshov basis. Thus by Theorem 4.6, L = LieK (X | f ) ∼= Liek[Y ](X | f , R X) is special. �
Corollary 4.8. (See [3,53].) If L is a free K -module, then L is special.

Proof. Let X = {xi, i ∈ I} be a K -basis of L and [xi, x j] = ∑
αl

i j xl , where αl
i j ∈ K and i, j ∈ I . Then

L = LieK (X |[xi, x j]−∑
αl

i j xl, i > j, i, j ∈ I). Suppose that K = k[Y |R], where R is a Gröbner–Shirshov

basis in k[Y ]. Since S = {[xi, x j] − ∑
αl

i j xl, i > j, i, j ∈ I} is a k[Y ]-monic Gröbner–Shirshov basis in
Liek[Y ](X), by Theorem 4.6, L = LieK (X |S) ∼= Liek[Y ](X |S, R X) is special. �

Now we give other applications.

Theorem 4.9. Suppose that S is a finite homogeneous subset of Liek(X). Then the word problem of LieK (X |S)

is solvable for any finitely generated commutative k-algebra K .

Proof. Let SC be a Gröbner–Shirshov complement of S in Liek(X). Clearly, SC consists of homoge-
neous elements in Liek(X) since the compositions of homogeneous elements are homogeneous. Since
K is finitely generated commutative k-algebra, we may assume that K = k[Y |R] with R a finite
Gröbner–Shirshov basis in k[Y ]. By Lemma 4.5, SC ∪ R X is a Gröbner–Shirshov basis in Liek[Y ](X).
For a given f ∈ LieK (X), it is obvious that after a finite number of steps one can write down all the
elements of SC whose X-degrees do not exceed the degree of f̄ X . Denote the set of such elements
by S f̄ X . Then S f̄ X is a finite set. By Theorem 3.12, the result follows. �
Theorem 4.10. Every finitely or countably generated Lie K -algebra can be embedded into a two-generated Lie
K -algebra, where K is an arbitrary commutative k-algebra.

Proof. Let K = k[Y |R] and L = LieK (X |S) where X = {xi, i ∈ I} and I is a subset of the set of nature
numbers. Without loss of generality, we may assume that with the ordering � on [Y ]X∗ as before,
S ∪ R X is a Gröbner–Shirshov basis in Liek[Y ](X).

Consider the algebra L′ = Liek[Y ](X,a,b|S ′) where S ′ = S ∪ R X ∪ R{a,b} ∪ {[aabiab] − xi, i ∈ I}.
Clearly, L′ is a Lie K -algebra generated by a,b. Thus, in order to prove the theorem, by using

our Theorem 3.12, it suffices to show that with the ordering � on [Y ](X ∪ {a,b})∗ as before, where
a � b � xi , xi ∈ X , S ′ is a Gröbner–Shirshov basis in Liek[Y ](X,a,b).

It is clear that all the possible compositions of multiplication, intersection and inclusion are trivial.
We only check the external compositions of some f ∈ S and ra ∈ Ra: Let w = Lu1 f̄ X u2au3 where
L = L( f̄ Y , r̄) and u1 f̄ X u2au3 ∈ ALSW(X,a,b). Then

C3〈 f , ra〉w = L

f̄ Y
[u1 f u2au3] f̄ − L

r̄

[
u1 f̄ X u2(ra)u3

]

1
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=
(

L

f̄ Y
1

[u1 f u2au3] f̄ − r
L

r̄

[
u1 f̄ X u2au3

]
f̄ X

)

−
(

L

r̄

[
u1 f̄ X u2(ra)u3

] − r
L

r̄

[
u1 f̄ X u2au3

]
f̄ X

)

=
([

u1

(
L

f̄ Y
1

f

)
u2au3

]
f̄
−

[
u1

(
r

L

r̄
f̄ X

)
u2au3

]
f̄ X

)

− r
L

r̄

([
u1 f̄ X u2au3

] − [
u1 f̄ X u2au3

]
f̄ X

)

≡ [
u1C3〈 f , rx〉w ′ u2au3

]
mod

(
S ′, w

)

for some x occurring in f̄ X and w ′ = L f̄ X . Since S ∪ R X is a Gröbner–Shirshov basis in Liek[Y ](X),
C3〈 f , rx〉w ′ ≡ 0 mod(S ∪ R X, w ′). Thus by Lemma 3.10, [u1C3〈 f , rx〉w ′ u2au3] ≡ 0 mod(S ′, w). �
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