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0. Introduction

Let k be a field and G a group k-scheme of finite type. We say that G is a quasi-abelian variety
if OG(G) = k. Examples include abelian varieties, their universal vector extensions (in characteristic 0
only) and certain semi-abelian varieties. The main motivation to study quasi-abelian varieties is the
fact that the classification of group schemes over fields is essentially reduced to the classification of
quasi-abelian varieties and of affine group schemes. In fact one has (Theorem 2.1):

Theorem 0.1 (Structure of algebraic groups). Every connected smooth k-scheme in groups G decomposes as

G � (G × A)/H

where G is an affine connected group without finite quotients, A is a quasi-abelian variety and H is an affine
commutative group k-scheme satisfying:

– H is contained in the center of G.
– Aaff ⊂ H ⊂ A and H/Aaff is finite, with Aaff = affine part of A.
– H is submerged in G × A through the diagonal morphism.

This decomposition is unique up to isomorphisms of G and A.

This theorem is essentially contained in the work of Rosenlicht [Ro56] over an algebraically closed
field. One can extend it to arbitrary fields using the results of [BLR90]. We have added the uniqueness
of the decomposition, in view to state it as a classification result. We include a proof in order to be
self-contained.

This result reduces the classification of algebraic groups to the classification of affine groups and
quasi-abelian varieties and motivates the aim of this paper: the structure and classification of quasi-
abelian varieties. A second motivation comes from the problem of classification of homogeneous
varieties. This problem is essentially solved in the proper case (see [Sa03]). The next step is to deal
with the anti-affine case (anti-affine means that the variety has only constant global functions). This
case seems accessible because these varieties are rigid (as we show in Theorem 1.7). It is convenient
to study first the case of groups. Firstly, because they are a particular case of homogeneous variety.
Secondly, because this study should be useful to understand the structure of the automorphism group
of these varieties (notice that in the proper case this group is almost classifying).

Despite its interest, the study of quasi-abelian varieties is limited in the literature; they only ap-
pear implicitly in work of Rosenlicht and Serre (see [Ro58,Ro61,Se58a]). In Analytic Geometry there
exists a notion of quasi-abelian variety (see [AK01]) which is stronger than the algebraic one. This
means an algebraic variety which has no non-constant global functions as an analytic variety. Clearly
these varieties are quasi-abelian in the algebraic sense, but the converse is not true. For example, the
universal vectorial extensions of abelian varieties are quasi-abelian in the algebraic sense but they
have non-constant analytical global functions because they are Stein.

Here we obtain the structure of quasi-abelian varieties and we reduce their classification to that
of abelian varieties.

With respect to the structure of quasi-abelian varieties one first notices that Chevalley’s theorem
implies that a quasi-abelian variety is a principal bundle over an abelian variety A with affine, com-
mutative and connected structure group G . We shall prove that the classification of quasi-abelian
varieties as groups is equivalent to their classification as principal bundles. That is, two quasi-abelian
varieties are isomorphic (as group schemes) if and only if they are isomorphic as principal bundles
over isomorphic abelian varieties with isomorphic structure groups (see Theorem 3.4 and Corol-
lary 3.5). This will be a consequence of the rigidity of quasi-abelian varieties. In this direction, we
shall give a general rigidity theorem for anti-affine schemes, which, as mentioned above, has its in-
terest in the classification of anti-affine homogeneous varieties.
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Next we deal with the classification of principal bundles over an anti-affine scheme Y with affine
and commutative structure group G . We shall always assume that a principal bundle has a rational
point (see Remark 3.1). Let us denote Prin(G, Y ) the set of isomorphism classes of principal G-bundles
over Y and Prin(G, Y )ant the set of isomorphism classes of anti-affine principal G-bundles over Y .
If Y is an abelian variety, let us denote Prin(G, Y )st

ant the set of isomorphism classes of anti-affine
principal G-bundles over Y which are stable under translations on Y (see Definition 3.3). Theorem 3.4
says that the quotient of Prin(G, Y )st

ant by the automorphism group of G × Y coincides with the set
of isomorphism classes of quasi-abelian varieties with affine part isomorphic to G and abelian part
isomorphic to Y .

The key point for our classification of principal bundles will be its relation with the Cartier dual
of G and the Picard scheme of Y , that we explain now. Let π : P → Y be a principal G-bundle. Each
character χ of G determines an invertible subsheaf Lχ of π∗O P , namely the subsheaf of functions of
P over which G acts by that character; hence, the principal G-bundle π : P → Y defines a morphism
of functors of groups G D → Pic(Y ), where G D is the Cartier dual (functor) of G . We shall prove that
this morphism classifies the bundle (see Theorem 4.10 for the precise statement). Once Prin(G, Y ) is
determined, we deal with Prin(G, Y )ant and Prin(G, Y )st

ant (see Theorems 4.14, 4.15 and 4.17).
From here, making use of the knowledge of G D for either a unipotent or a multiplicative type

G and the structure of Pic(Y ), we shall obtain a full description of Prin(G, Y ), Prin(G, Y )ant and
Prin(G, Y )st

ant (see Theorems 4.18, 4.24, 4.25 and 4.27). In particular, we obtain the known classifi-
cation theorems of principal bundles over an abelian variety whose structure group is either a vector
space or the multiplicative group (see [MM74,Se59,Ro58]). This “Cartier-perspective” will be also very
useful for the classification of anti-affine homogeneous varieties, since it is not difficult to prove that
these varieties are principal bundles over proper homogeneous varieties.

From this perspective we obtain our main result (Theorem 4.28) that classifies quasi-abelian vari-
eties over an arbitrary field k:

Theorem 0.2. Let us denote ks the separable closure of k. Then to give a quasi-abelian variety A over k with
affine part G and abelian part Y is equivalent to give the following data:

(1) A sublattice Λ ⊂ Pic0(Yks ), stable under the action of the Galois group G(ks/k).

(2) A linear subspace V ⊂ H1(Y , OY ),

such that Λ � X(Gks ) and V � Addit(G), where Addit(G) is the vector space of additive functions of G and
X(Gks ) is the group of characters of Gks . These data are given up to group automorphisms of Y .

This classification was obtained in [Sa01], with similar techniques, when k is an algebraically closed
field. It has also been proved independently by M. Brion (see [Br, Theorem 2.7]).

As a consequence of the classification theorem we obtain that every quasi-abelian variety over a
field of positive characteristic is semi-abelian. One also obtains that, over an arbitrary base field, the
affine part of a quasi-abelian variety is smooth.

Notation and conventions. Throughout this article, k is a field with separable closure ks and algebraic
closure k.

By a scheme, we mean a scheme of finite type over k, unless otherwise specified; a point of a
scheme will always mean a valued point. Morphisms of schemes are understood to be k-morphisms,
and products are taken over k. A variety is a separated and geometrically integral scheme. A functor is
always a functor from the category of k-schemes (or k-algebras) to the category of sets. The functor
of points of a scheme X is still denoted by X .

As in [Br] we say that a scheme X is anti-affine if O X (X) = k.
We shall use a boldface type to denote functors like Aut, Pic, Hom, etc. (functor of automorphisms,

Picard functor, functor of homomorphisms, etc.) and for the schemes representing them (when they
exist). We shall use a non-boldface type like Aut, Pic, Hom, etc. for the sets of automorphisms, Picard
group, homomorphisms, etc.
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By an algebraic group we mean a smooth group scheme G , possibly non-connected. An abelian
variety is a connected and complete algebraic group. For these, we refer to [Mu70], and to [Bo91]
for affine algebraic groups. For any group scheme G , a G-scheme means a scheme endowed with an
action of G on it. A group G is of multiplicative type if Gk is diagonalizable. A torus is a smooth group
of multiplicative type.

For any group G , X(G) denotes the group of characters of G , i.e., X(G) = Homgroups(G, Gm).
It is well known that any commutative affine group G has a unique multiplicative type subgroup K

such that G/K = U is unipotent. We say that K (resp. U ) is the multiplicative type part of G (resp. the
unipotent part of G). It is not true in general that G = U × K, but it holds when k is perfect.

For any connected group scheme G we denote by Gaff the smallest normal connected affine sub-
group such that the quotient G/Gaff is an abelian variety. We shall call Gaff (resp. G/Gaff) the affine
part of G (resp. the abelian part of G). The existence of Gaff is due to Chevalley in the setting of alge-
braic groups over algebraically closed fields; in this case Gaff is an algebraic group as well, see [Ro56,
Ch60]. Chevalley’s theorem easily implies the existence of Gaff for any connected group scheme G , see
[Ra70, Lem. IX.2.7] or [BLR90, Theorem 9.2.1]. If G is an algebraic group and k is perfect, then Gaff is
also an algebraic group. If k is not perfect, then Gaff is connected but it might be non-smooth. We do
not know if Gaff can be non-reduced. In any case, it is immediate that Gaff is quasi-reduced. By this
we mean

Definition 0.3. We say that a group scheme G is quasi-reduced if for any subgroup H ⊂ G such that
Hred = Gred one has H = G . If G is connected, this is equivalent to say that G does not admit finite
quotients.

Remark 0.4. Let G be a group of multiplicative type. Then, for any n ∈ N, the multiplication G
·n−→ G

is an isogeny. Moreover, if n = |Gk/(Gk)red|, then nG is smooth and connected. Hence nG coincides
with the reduced and connected component at the origin of G . In conclusion, if G is a connected and
quasi-reduced group of multiplicative type, then it is a torus.

1. Quasi-abelian part of a group scheme. Basic properties of quasi-abelian varieties: Rigidity

In this section we establish known results about quasi-abelian varieties and we generalize the
rigidity theorem of proper varieties to anti-affine schemes.

The following results, stated here without proof, can be found in [DG70, Section III.3.8].

Theorem 1.1. If G is a quasi-abelian variety then it is smooth and connected.

If G is a group scheme, then A = H0(G, OG) is a Hopf k-algebra and one has a natural morphism
of groups:

πaff : G → Aff(G)

where Aff(G) = Spec A.
This affine group Aff(G) is called the affinization group of G and it satisfies trivially the universal

property:

Homgroups(G, H) = Homgroups
(
Aff(G), H

)
for any affine group H .

Definition 1.2. For each group scheme G we denote Gqa = kerπaff and we call it the quasi-abelian part
of G . One has G/Gqa = Aff(G).



C. Sancho de Salas, F. Sancho de Salas / Journal of Algebra 322 (2009) 2751–2772 2755
Proposition 1.3. The quasi-abelian part of G is a quasi-abelian variety.

Theorem 1.4. Let G be a quasi-abelian variety and H a connected group. If f : G → H is a morphism of
schemes such that f (e) = e, then

(1) f is a morphism of groups,
(2) f takes values in the center of H,
(3) f takes values in Hqa .

Theorem 1.5. If G is a quasi-abelian variety then its group structure is unique (once the neutral point is fixed)
and it is commutative. Moreover if G is a subgroup of a group H, then it is contained in the center of H.

The latter two theorems can be easily obtained from the rigidity theorem for anti-affine schemes
that we shall next prove. It generalizes the rigidity theorem of abelian varieties and it shows that
rigidity is not as much a consequence of properness but of anti-affinity.

Lemma 1.6. Let X be an anti-affine scheme and Y an affine scheme. Any morphism of schemes X → Y is
constant (i.e., it factors through a morphism Spec k → Y ).

Proof. Obvious. �
Theorem 1.7 (Rigidity of anti-affine schemes). Let X , Y and Z be schemes, X anti-affine with some rational
point, Y connected and Z separated. Let

f : X × Y → Z

be a morphism. If there existsa closed point y0 ∈ Y such that f |X×{y0} is a constant morphism, then f factors

X × Y
f

p2

Z

Y

g

where p2 is the second projection.

Proof. We shall fix a rational point x0 ∈ X . Let us define g : Y → Z as g(y) = f (x0, y). We claim that
f = g ◦ p2.

(a) Assume that Z is an affine scheme, Z = Spec A. Then f is constant on X , because to give
a morphism X × Y → Z is equivalent to give a morphism of k-algebras A → H0(X × Y , O X×Y ) =
H0(Y , OY ), i.e., a morphism Y → Z .

(b) If the morphism f0 : (X × Y )top → Ztop , between the underlying topological spaces, factors
through g0 : Ytop → Ztop (i.e. f0 = g0 ◦ (p2)0), then f factors. Indeed, for each affine open sub-scheme
U ⊂ Z , let V = g−1

0 (U ). One has f −1
0 (U ) = X × V . Then f maps X × V into U and the morphism

f : X × V → U factors through g : V → U (by (a)). So if Z = ⋃
i U i is an affine open covering, then

X × Y = ⋃
i f −1(Ui) is an open covering and f factors over each f −1(Ui).

(c) We can assume that Y is irreducible. Indeed, let Y = Y0 ∪ · · · ∪ Yn be a decomposition on
irreducible components such that y0 ∈ Y0. Let Yi be another component meeting Y0. If the claim
holds when Y is an irreducible scheme, then f is constant along fibers over Y0. So, f is constant
along fibers over Y0 ∩ Yi , and then along fibers over Y0 ∪ Yi . By recurrence, f is constant along fibers
over the whole Y .
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Now let T ⊂ X × Y be the sub-scheme of points t such that f (t) = (g ◦ p2)(t). Since Z is separated,
T is a closed sub-scheme.

(d) T contains a open neighborhood of X × {y0}. Indeed, let O be the local ring of Y at y0, m

its maximal ideal and let us denote Xn = X × Spec O/mn ⊂ X × Y . It is clear that f (Xn) is a finite
sub-scheme of Z (supported on z0). Then f (Xn) is an affine scheme and, by (a), f |Xn

factors through
Spec O/mn , i.e. it is equal to g ◦ p2. Hence T ⊃ Xn for all n. Since

⋂
n mn = 0, we conclude that T

contains a neighborhood of X × {y0} in X × Y .
Now, since Y is irreducible, each irreducible component of X × Y maps surjectively on Y . So, all

of them cut X × {y0}. By (d) T contains a non-empty open subset of each one. Since T is closed, it
contains all irreducible components of X × Y . So Ttop = (X × Y )top and we conclude by (b). �
2. Structure of algebraic groups

We give a structure theorem for algebraic groups that sums up results of Chevalley, Rosenlicht,
Demazure–Gabriel and [BLR90].

Theorem 2.1 (Structure of algebraic groups). Every connected algebraic group G decomposes as

G � (G × A)/H

where G is an affine connected quasi-reduced group (see Definition 0.3), A is a quasi-abelian variety and H is
an affine commutative group scheme satisfying:

– H ⊂ Z(G).
– Aaff ⊂ H ⊂ A and H/Aaff is finite.
– H is submerged in G × A through the diagonal morphism.

This decomposition is unique up to isomorphisms of G and A.

Proof. If we denote G = Gaff, A = Gqa, H = Gaff ∩ Gqa, then one has the desired decomposition. In-
deed: the quotient of G by Gaff · Gqa is trivial because it is a quotient of the abelian variety G/Gaff
and a group quotient of the affine group G/Gqa and so it is an abelian variety and an affine group.
Hence G = Gaff · Gqa. Moreover A/H ↪→ G/Gaff is abelian and so Aaff ⊂ H and H/Aaff ⊂ A/Aaff is
closed and affine (because H ⊂ Gaff is affine) and then it is finite.

Conversely, if G � (G × A)/H as in the theorem hypothesis, then G and A are normal connected
subgroups of G , H = G ∩ A, G is affine quasi-reduced and A is a quasi-abelian variety. Moreover
G/G � A/H is an abelian variety (because A/H is a quotient of A/Aaff, an abelian variety) and G/A
is affine because it is a quotient of G . Hence G = Gaff, A = Gqa and then H = Gaff ∩ Gqa. �

This theorem says that the classification of algebraic groups is essentially reduced to the classifi-
cation of affine groups and quasi-abelian varieties.

We can refine this result when the base field is perfect in the following way (see also [Br], Sec-
tions 3.2 and 3.3, for related results):

Proposition 2.2. Let G be a connected algebraic group over a perfect field k. Then there exist a reduced, con-
nected and affine group G̃, a quasi-abelian variety A and an isogeny

φ : (G̃ × A)/U → G

such that φ|G̃
and φ|A are injective morphisms, where U is the unipotent part of Aaff and U → G̃ × A is

the diagonal morphism induced by an immersion U ↪→ Z(G̃). Moreover, with these conditions, G̃ and A are
unique up to isomorphisms. In fact A � Gqa and G̃ is a quasi-complement of the multiplicative part of Aaff
in Gaff .
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Proof. Let us take A = Gqa and let us denote by S the multiplicative part of Aaff. By Theorem 2.1 it
suffices to show that S has a quasi-complement in Gaff. This is well known if Gaff is reductive. For the
general case, let G ′ be a quasi-complement of S in Gaff/Ru , where Ru is the unipotent radical of Gaff .
If π : Gaff → Gaff/Ru is the quotient map, then G̃ = π−1(G ′) is a quasi-complement of S in Gaff .

The uniqueness of G̃ and A is not difficult. �
3. Quasi-abelian varieties as principal bundles

As we have seen, a quasi-abelian variety A is a commutative group (Theorem 1.5). Moreover there
exists a connected and affine subgroup G ⊂ A such that the quotient A/G exists and it is an abelian
variety (Chevalley’s structure theorem). Therefore a quasi-abelian variety may be thought of as an
extension of an abelian variety by an affine commutative group, or as a principal bundle on an abelian
variety with affine and commutative structure group. Recall that a principal bundle over a scheme Y
with structure group G is a G-scheme P together with a morphism of G-schemes P → Y (where G
acts trivially on Y ) such that the natural map

G × P → P ×Y P

(g, p) �→ (g · p, p)

is an isomorphism. For short, we say that P → Y is a principal G-bundle.

Remark 3.1 (Extra hypothesis). We shall always assume that a principal G-bundle P over Y has a
rational point, since this is the case when P is a quasi-abelian variety. As we shall see, this implies
(in our hypothesis, i.e., G a commutative affine group and Y an anti-affine scheme with some rational
point) that a principal G-bundle over Y is locally split: there exists a Zariski open covering Ui of Y
such that P |Ui = Ui × G . This is why we have used the terminology of principal bundles (which is more
common in differential geometry) instead of torsors.

A morphism f : P → P ′ of principal G-bundles over Y is a morphism of G-schemes over Y .
We denote by Prin(G, Y ) the set of isomorphism classes of principal G-bundles over Y and by

Prin(G, Y )ant the set of isomorphism classes of anti-affine principal G-bundles over Y . If Y is an
abelian variety, we shall denote by Prin(G, Y )st

ant the set of isomorphism classes of anti-affine principal
G-bundles over Y which are stable under translations on Y (see Definition 3.3).

It is clear that Autgroups(G) and Autschemes(Y ) act on Prin(G, Y ), Prin(G, Y )ant and Prin(G, Y )st
ant .

We say that two quasi-abelian varieties are isomorphic if they are isomorphic as group schemes.
Two isomorphic quasi-abelian varieties have isomorphic affine parts and isomorphic abelian parts. We
shall denote by Quasiabel(G, Y ) the set of isomorphism classes of quasi-abelian varieties whose affine
part is isomorphic to G and whose abelian part is isomorphic to Y . The aim of this section is to prove
that

Prin(G, Y )st
ant/Autgroups(G × Y ) = Quasiabel(G, Y ).

The key point is to show that if P is an anti-affine principal G-bundle over an abelian variety Y and
it is stable under translations on Y , then P admits a (essentially unique) group structure such that P
is a quasi-abelian variety with affine part G and abelian part Y . This will be done in Theorem 3.4.

Lemma 3.2. Let G be a commutative group scheme and π : P → Y a principal G-bundle. Let us denote
AutG

Y (P ) the functor of automorphisms of principal G-bundles of P . One has

AutG
Y (P ) = Homschemes(Y , G).

In particular, if G is affine and Y is anti-affine, then AutG
Y (P ) = G.
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Proof. Since G is commutative, it is clear that AutG-schemes(G) = G and then AutG-schemes(Z) = G for
every G-scheme Z on which G acts free and transitively. Then one has a morphism

AutG
Y (P ) → Homk-schemes(Y , G)

τ �→ fτ

where fτ (y) is the automorphism of G induced by τ in the fiber of the (valued) point y. Conversely,
given f : Y → G , one has a G-automorphism τ f : P → P , τ f (p) = f (p) · p. We conclude immedi-
ately. �
Definition 3.3. Let Y be a group scheme and G an affine commutative group. A principal G-bundle
π : P → Y is said to be stable under translations on Y if for each point y : Z → Y there exist a
faithfully flat base change Z ′ → Z and a morphism of G-schemes ϕy : P × Z ′ → P × Z ′ such that the
diagram:

P × Z ′ ϕy

π

P × Z ′

π

Y × Z ′ τy

Y × Z ′

is commutative, where τy is the translation by y.

More briefly, a principal G-bundle P → Y is stable under translations on Y if any translation on Y
extends (up to a faithfully flat base change) to an automorphism of G-schemes of P .

For example, if A is a quasi-abelian variety with affine part G and abelian part Y , then A is a
principal G-bundle over Y and it is obviously stable under translations on Y . We now see that the
converse also holds.

Theorem 3.4. Let Y be an abelian variety, G an affine commutative group scheme and π : P → Y a principal
G-bundle. Then P → Y is stable under translations on Y if and only if P admits a group structure such that:

(i) π : P → Y is a morphism of groups,
(ii) the kernel of π is isomorphic to G as a G-scheme, and

(iii) the translations by points of P commute with the action of G.

Moreover, this group structure is unique (once the neutral point on the fiber of 0 ∈ Y is fixed), and it is
commutative. If in addition P is anti-affine, then it is a quasi-abelian variety.

Proof. Assume that P has a group structure satisfying (i)–(iii). First notice that P is commutative;
indeed, let G0, P0 be the connected components through the origin of G, P , respectively. It is clear
that G · P0 = P and then it is enough to prove that P0 is commutative. So, replacing P , G by P0, G0,
we can suppose that P is connected. On the one hand the quotient of P by its quasi-abelian part is
affine and then the quotient by its center subgroup is also affine; on the other hand this quotient is
a quotient of P/G = Y (because G is in the center of P ) and then it is proper. Hence the quotient
of P by its center is trivial and P is commutative. Now let us see that π : P → Y is stable under
translations on Y , i.e., each translation on Y lifts to an automorphism of G-schemes on P (after a
faithfully flat base change). Indeed, since P → Y is a faithfully flat morphism, each point y of Y has
some point in its fiber by π (after a faithfully flat base change). So it is enough to define on P the
translation morphism by any point of this fibre.
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Assume now that P is stable under translations on Y . Let AutY (P/Y ) be the functor
AutY (P/Y )(Z) = {automorphisms ϕ : P Z → P Z of G-schemes which descend to a translation on Y Z }.
One has an exact sequence of functors of groups:

0 → G → AutY (P/Y )
p−→ Y → 0

where p is the morphism that maps each automorphism ϕ to the induced translation on Y . The
surjectivity of p (for the faithfully flat topology) is due to the hypothesis, i.e., π : P → Y being stable
under translations, and the kernel of p is G by Lemma 3.2. AutY (P/Y ) acts freely on P . Moreover this
action is transitive: indeed, given two points p1, p2 of P there exists a translation on Y transforming
π(p1) on π(p2), so we can assume that π(p1) = π(p2). One concludes the transitivity because G
acts transitively on the fibres of π . Now let us fix a rational point e ∈ π−1(0). Transforming e by
AutY (P/Y ) we obtain that AutY (P/Y ) � P and so P has a group structure satisfying the required
conditions.

Uniqueness: the translations on P define a group immersion P ↪→ AutY (P/Y ), whose composition
with the isomorphism AutY (P/Y ) � P is the identity. So the group structure of P is the one induced
by the isomorphism AutY (P/Y ) � P . �
Corollary 3.5. Two quasi-abelian varieties are isomorphic (as groups) if and only if their affine parts and their
abelian parts are respectively isomorphic and they are isomorphic as principal bundles. In other words, one has
a bijection

Prin(G, Y )st
ant/Autgroups(G × Y ) = Quasiabel(G, Y ).

Remark 3.6. As we have seen in the proof of Theorem 3.4, the existence and the uniqueness of the
group structure of a principal G-bundle over a group Y only needs that Homschemes(Y , G) = G; that is,
it only needs that any morphism of schemes Y → G is constant. Hence Theorem 3.4 can be extended
to different cases. For example, for the calculation of the extensions of unipotent groups (smooth
and connected but possibly non-commutative) by multiplicative type groups. In particular, this would
reduce the classification of affine abelian groups (over an arbitrary field) to the classification of unipo-
tent groups and of their principal bundles with multiplicative type structure group.

4. Cartier dual and classification of principal bundles

In this section we obtain the classification of principal G-bundles over an anti-affine scheme Y ,
with G an affine commutative group scheme. It generalizes well-known results about the subject in
the particular cases when the structure group G is either a torus or a vector space (see [MM74,Se59,
Ro58]). Moreover this result allows us to see that the differences between these cases (torus and
vector space) come only from the different structure of the respective Cartier dual groups (local and
discrete, respectively).

4.1. i-component of linear representations

Let G = Spec A be an affine group k-scheme. Let us denote

I = set of finite sub-coalgebras of A.

For each i ∈ I , Ai denotes the sub-coalgebra indexed by i.
It is well known that A = lim−→ Ai . Then A∗ = lim←− A∗

i is a profinite algebra. If E is a G-module (i.e.,
a linear representation of G) then it is an A∗-module. Moreover, if we denote Ei = HomA∗-mod(A∗

i , E),
then Ei is an A∗

i -module (acting on A∗
i by the right) and E = lim Ei as A∗-modules. Conversely, if E
−→
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is an A∗-module such that E = lim−→ Ei , then E is a G-module. Moreover, if E = lim−→ Ei and E = lim−→ Ei ,
then

HomG-mod(E, E) = HomA∗-mod(E, E).

Definition 4.1. Let E be a G-module. We shall call i-component of E to

Ei = HomA∗-mod
(

A∗
i , E

)
with the G-module structure induced by the right translations of G on A∗

i , i.e., g acts on A∗
i by R∗∗

g−1 ,

where R g : G → G is the right translation by g , R∗
g : Ai → Ai the induced morphism and R∗∗

g : A∗
i → A∗

i
the dual one.

Note that:

Ei = HomA∗-mod
(

A∗
i , E

) = HomG-mod
(

A∗
i , E

) = (E ⊗
k

Ai)
G .

In particular, the assignation E �→ Ei satisfies:

(1) It is functorial, i.e, a morphism of G-modules induces a morphism between its i-components.
(2) It commutes with base change, i.e.,

(E ⊗
k

B)i = Ei ⊗
k

B

for each base change k → B .

Let E be a G-module and

φ : E → E ⊗
k

A = Hom(G, E)

the structure morphism, i.e., [φ(e)](g) = g · e. This is a morphism of G-modules acting on the latter
by the A factor. By the above said, one has that

Ei = φ−1(E ⊗ Ai). (4.1)

4.2. Classification of principal G-bundles

Let G = Spec A be an affine commutative group scheme. We consider the G-module in A given by:
(g · f )(g) = f (g−1 · g). Let us denote G D the dual group functor of G , i.e.,

G D(C) = HomC-groups
(
GC , (Gm)C

) = Group of characters of GC

for each k-algebra C .
Put as above A = lim−→ Ai . Then {A∗

i } is a projective system of finite commutative algebras and

Proposition 4.2. G D = lim Spec A∗
i (isomorphism of functors).
−→
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Proof. To give an element χC ∈ G D(C) is equivalent to give a character χC ∈ AC . Since AC =
lim−→ Ai ⊗k C , then χC ∈ Ai ⊗k C for some i and C · χ is a sub-C-coalgebra of Ai ⊗k C ; that is,
χ∗

C : A∗
i → C is a morphism of k-algebras, i.e. an element of (Spec A∗

i )(C). �
Denoting Zi = Spec A∗

i , one has then for any functor F

Homfunc
(
G D , F

) = lim←− Homfunc(Zi, F ) = lim←− F (Zi).

For each i, the immersion Zi ↪→ G D defines a character χi ∈ Ai ⊗k A∗
i ⊂ A ⊗k A∗

i . Through the isomor-
phism Ai ⊗k A∗

i = Endk(A∗
i ), χi corresponds to the identity of A∗

i .

Definition 4.3. The element χi ∈ G D(A∗
i ) will be called the universal i-character of G .

Remarks 4.4.

(1) By Proposition 4.2 a morphism of functors φ : G D → F is univocally determined by the images
φ(χi) of the universal i-characters of G .

(2) If χ is a C-valued character, then there exists an index i such that χ corresponds to a morphism
fχ : Spec C → Spec A∗

i and the induced morphism G D(A∗
i ) → G D(C) maps χi onto χ .

Definition 4.5. Let E be a G-module. For each character χ ∈ G D(C) let Eχ be the sub-C-module of
E ⊗k C defined as:

Eχ = {
e ∈ E ⊗

k
C : g · e = χ(g)e

}
i.e., Eχ = (E ⊗k(C · χ))G where C · χ is the sub-C-coalgebra of A ⊗k C generated by χ . We say that
Eχ is the χ -component of E .

Example 4.6. If E = A (ring of functions of G), then Aχ is the C-module generated by χ−1: Aχ �
C · χ−1. Analogously, if χi is the universal i-character, then (Ai)χi � A∗

i · χ−1
i .

Remark 4.7. If χ ∈ Ai ⊗k C , then Eχ = (Ei)χ . Indeed, from (4.1) one has that Eχ ⊂ E ⊗k Aχ ⊂
E ⊗k Ai ⊗k C = (E ⊗k A ⊗k C)i and then Eχ = (Eχ )i = (Ei)χ .

Lemma 4.8. If χi is the universal i-character of G, then

Eχi = HomG(Ai, E)

and therefore Eχi = HomG(Ai, Ei) = HomA∗
i
(Ai, Ei).

Proof. One has Eχi = (Ei)χi and (Ei)χi is the subspace of Ei ⊗k A∗
i = Homk(Ai, Ei) defined as Eχi =

{ f : Ai → Ei, f (g · b) = χi(g) · f (b)}. Now, by definition of χi , one has χi(g) · e = g · e for any e ∈ Ei .
Therefore f ∈ Eχi ⇔ f ∈ HomG(Ai, Ei) = HomG(Ai, E). �

Picard functor. Assume now that Y is an anti-affine scheme with some rational point p0. For each
scheme Z we denote p Z : Z → Y × Z the Z -valued point p Z (z) = (p0, z). Then the Picard functor
of Y is

Pic(Y )(Z) =
{

invertible sheaves L on Y × Z
such that L| is trivial

}
.

p0×Z
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Since Y is anti-affine, a morphism λ : L → L′ between invertible sheaves is univocally determined by
the morphism between the fibres at p0: λp0 : L p0 → L′

p0
.

Let π : P → Y be a principal G-bundle. Since G is affine, π is an affine morphism. Let us denote
B = π∗O P . It is a sheaf of OY -algebras and GY -modules. For each character χ ∈ G D(C) let us denote
Bχ the χ -component of B, defined as in 4.5.

Proposition 4.9. Bχ is an invertible sheaf on YC .

Proof. One has Bχ = (BC ⊗C (C · χ))G . Hence Bχ is stable under flat base change of Y . Then we can
assume that P = G × Y and then Bχ = OYC · χ−1. �

Consequently, a principal G-bundle π : P → Y defines a morphism of functors of groups:

φπ : G D → Pic(Y )

χ �→ (π∗O P )χ

and one has the following:

Theorem 4.10 (Classification of principal G-bundles). Let Y be an anti-affine scheme with some rational point
and G a commutative affine group scheme. The set Prin(G, Y ) of isomorphism classes of principal G-bundles
over Y is canonically bijective to the set of morphisms of functors of groups G D → Pic(Y ). That is, the map:

ϕ : Prin(G, Y ) → Homgroups
(
G D ,Pic(Y )

)
π �→ φπ

is bijective.

Proof. Let φ : G D → Pic(Y ) be a morphism of functors of groups. One has to construct, in a functorial
way, a sheaf Bφ of OY -G-algebras such that πφ : Spec Bφ → Y is a principal G-bundle. We shall then
see that this construction is the inverse of ϕ .

Construction of Bφ as an OY -G-module: Let χi be the universal i-character of G and let Lχi be
the invertible sheaf on Y × Spec A∗

i (and so a locally free sheaf on Y ) corresponding to φ(χi) and
univocally determined by a fixed isomorphism of A∗

i -modules

ϕi : (Lχi
)

p0

∼−→ A∗
i .

For each inclusion morphism Spec A∗
i ↪→ Spec A∗

j we fix the restriction morphism si j : Lχ j → Lχi

as the only one that coincides with the projection A∗
j → A∗

i on the respective fibers over p0. Then
one has Lχ j ⊗A∗ A∗

i = Lχi . The family {Lχi , si j}i is now a projective system of O Y -modules and G-
modules. Put L̂ = lim←− Lχi ; one has L̂ ⊗A∗ Ai = Lχi ⊗A∗

i
Ai . Let us denote

B(i) = L̂ ⊗
A∗

Ai, Bφ = lim−→ B(i) = L̂ ⊗
A∗

A.

The isomorphisms ϕi : (Lχi )p0

∼−→ A∗
i yield isomorphisms B(i)

p0

∼−→ Ai and Bφ
p0

∼−→ A.
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Construction of the algebra structure of Bφ : Let us denote Zi = Spec A∗
i . For each i, j, let r be an index

such that the group structure morphism m : Zi × Z j → lim−→ Zs maps into Zr . Since φ is a morphism of
groups one has:

Lχr ⊗
A∗

r

(
A∗

i ⊗
k

A∗
j

) � Lχi ⊗
k

Lχ j (4.2)

and this isomorphism is unique, assuming that, in the fiber of p0, it coincides with the natural iso-
morphism A∗

r ⊗A∗
r
(A∗

i ⊗k A∗
j ) = A∗

i ⊗k A∗
j . Now we have a bilinear morphism:

B(i) ⊗
k

B( j) = (
Lχi ⊗

A∗
i

Ai
)⊗

k

(
Lχ j ⊗

A∗
j

A j
) = (

Lχi ⊗
k

Lχ j
) ⊗

A∗
i ⊗k A∗

j

(Ai ⊗
k

A j)

(4.2)� Lχr ⊗
A∗

r

(Ai ⊗
k

A j) → Lχr ⊗
A∗

r

Ar = B(r)

where Ai ⊗k A j → Ar is the multiplication morphism on A (which is a morphism of G-modules and
then of A∗

r -modules). This bilinear morphism is the only morphism of OY ×Zr -modules that coincides
with the morphism Ai ⊗k A j → Ar at the fibre of p0 × Zr . Taking direct limit we have a morphism (of
G-modules):

Bφ ⊗
OY

Bφ mφ−→ Bφ

and it is the only morphism of OY -G-modules that coincides with the algebra structure morphism
A ⊗k A → A at the fibre of p0. From the uniqueness of the construction it is not difficult to see that
mφ gives an algebra structure on Bφ (taking also into account that it is so for A ⊗k A → A).

Let us denote Pφ = Spec Bφ . One has a morphism of G-schemes πφ : Pφ → Y (G acts trivially
on Y ). Let us see that Pφ → Y is a principal G-bundle. First of all, it is easy to see that the con-
struction of Pφ is stable under base change. That is, let f : Y ′ → Y be a morphism of schemes (and
assume that Y ′ has a rational point p′

0 in the fiber of p0) and let φ′ : G D → Pic(Y ′) be the morphism
of functors obtained by the composition of φ with the natural morphism f ∗ : Pic(Y ) → Pic(Y ′) in-
duced by f . Let Bφ′

the associated OY ′ -G-algebra and Pφ′ = Spec Bφ′ → Y ′ the associated G-scheme
over Y ′ . Then one has a natural isomorphism of G-schemes over Y ′

Pφ′ = Pφ ×Y Y ′.

Consider now the particular case Y ′ = Pφ . It is easy to see that in this case φ′(χi) is the trivial
invertible sheaf on Y ′ × Spec A∗

i . It follows that Bφ′
is the trivial OY ′ -G-algebra, i.e., Pφ′ = Y ′ × G . In

other words

Pφ ×Y Pφ = Pφ × G

so Pφ → Y is a principal G-bundle.
It remains to prove that the assignments π �→ φπ and φ �→ πφ are inverse to each other.
Let φ : G D → Pic(Y ) be a morphism of functors and πφ : Pφ → Y the associated principal G-

bundle. Let us see that the morphism of functors associated to πφ coincides with φ. By Remark 4.4(1),
it suffices to see that both coincide on χi . That is, one has to prove that φ(χi) is the χi-component
of Bφ . Recall that Bφ = lim−→ B(i) , where B(i) = Lχi ⊗A∗

i
Ai and Lχi is the invertible sheaf representing

φ(χi). Assume that one has proved that B(i) is the i-component of Bφ . Then, by Remark 4.7, Bφ
χi =

B(i)
χi = (Lχi ⊗A∗ Ai)χi = Lχi (see Example 4.6 for the last equality) and we are done. So let us prove
i
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that the i-component of Bφ coincides with B(i) . Indeed, locally on Y (for the Zariski topology), one
has Lχ j � OY ⊗k A∗

j and then, if i � j, one has B( j) � OY ⊗k A j and then (B( j))i = B(i) . Taking direct
limit one concludes.

Now let π : P → Y be a principal G-bundle and φπ : G D → Pic(Y ) the associated morphism of
functors. We have to prove that Bφπ is canonically isomorphic to π∗O P (as OY -G-algebras). Let us de-
note B = π∗O P . By definition Bφπ = lim−→(Lχi ⊗A∗

i
Ai), where Lχi is the invertible sheaf corresponding

to φπ (χi), i.e., Lχi = Bχi . Since one has a canonical isomorphism of OY -G-modules Bi = Bχi ⊗A∗
i

Ai

(see Lemma 4.11 below) one concludes that Bφπ is canonically isomorphic to B as an OY -G-module.
From the uniqueness of the construction of the algebra structure of Bφπ it is not difficult to see that
this isomorphism is in fact an isomorphism of algebras. We are finished. �
Lemma 4.11. Let π : P → Y be a principal G-bundle and B = π∗O P . One has a canonical isomorphism of
OY -G-modules

Bi = Bχi ⊗
A∗

i

Ai .

Proof. By Lemma 4.8 one has Bχi = HomA∗
i
(Ai, Bi). Hence there is a natural evaluation morphism:

Bχi ⊗
A∗

i

Ai = HomA∗
i
(Ai, Bi) ⊗

A∗
i

Ai → Bi .

Let us see that it is an isomorphism. After localizing (for the flat topology) we can assume that
Y = Spec k and P = G and then B = A and Bi = Ai . In this situation one concludes because
HomA∗

i
(Ai, Ai) = HomA∗

i
(A∗

i , A∗
i ) = A∗

i . �
Corollary 4.12. Under the same hypothesis, every principal G-bundle P → Y is locally split, i.e., there exists
an open covering Ui of Y such that P |Ui � G × Ui .

Proof. There exists a “big enough” index j such that G D is generated by Z j (as a group). Let Ui be

an open covering of Y trivializing Lχ j , i.e., Lχ j
|Ui×Z j

� OUi×Z j . Then the composition G D → Pic(Y ) →
Pic(Ui) is trivial. This yields that B|Ui is the trivial OUi -G-algebra; that is, P |Ui � Ui × G . �
Remark 4.13. In the following theorems we shall make use of the following elementary fact: Let χ be
a C-valued character of G , i.e., χ ∈ G D(C). Let i be an index such that χ corresponds to a morphism
fχ : Spec C → Zi . The induced morphism G D(Zi) → G D(C) maps the universal i-character χi onto χ .
If φ : G D → Pic(Y ) is a morphism of functors and Lτ denotes the invertible sheaf representing φ(τ )

one has

(1 × fχ )∗Lχi = Lχ

where 1 × fχ : Y × Spec C → Y × Zi is the morphism induced by fχ .

Theorem 4.14. Let G = Spec A be a commutative group and Y an anti-affine Gorenstein scheme of dimen-
sion g. Let φ : G D → Pic(Y ) be a morphism and π : P → Y the associated principal G-bundle. Put A = lim−→ Ai ,
χi the universal i-character, Zi = Spec A∗

i and πi : Y × Zi → Zi the second projection. Then P is anti-affine if
and only if

R gπi∗
(
ωY ⊗

O
L−χi

) � kZi (0) for all i (4.3)

Y
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where ωY is the dualizing sheaf of Y over k, Lχ is the invertible sheaf representing φ(χ) and kZi (0) is the
“residual field of Zi at the trivial character 0 ∈ G D(k)” (i.e., kZi (0) = 0 if 0 /∈ Zi and kZi (0) = k if 0 ∈ Zi ).

Proof. Let us denote O∗
Y ×Zi

= HomOY -mod(OY ×Zi , OY ). With the same notations as in the proof of
Theorem 4.10, one has

B(i) = Lχi ⊗
A∗

i

Ai = Lχi ⊗
OY ×Zi

O∗
Y ×Zi

= HomOY ×Zi -mod
(

L−χi , O∗
Y ×Zi

)
.

Then

B = lim−→ B(i) = lim−→ HomOY ×Zi -mod
(

L−χi , O∗
Y ×Zi

)
and then

H0(P , O P ) = H0(Y , B) = lim−→ H0(Y , B(i)) = lim−→ H0(Y × Zi, HomOY ×Zi -mod
(

L−χi , O∗
Y ×Zi

))
.

Since O∗
Y ×Zi

is the dualizing sheaf of Y × Zi over Y , and ωY ⊗OY O∗
Y ×Zi

is the dualizing sheaf of
Y × Zi over k, duality gives

H0(Y × Zi, HomOY ×Zi -mod
(

L−χi , O∗
Y ×Zi

)) = H g(Y × Zi,ωY ⊗
OY

L−χi
)∗

= H0(Zi, R gπi∗
(
ωY ⊗

OY

L−χi
))∗

.

Hence P is anti-affine if and only if

lim−→ H0(Zi, R gπi∗
(
ωY ⊗

OY

L−χi
))∗ = k.

On the other hand, if i � j, the natural map

H0(Zi, R gπi∗
(
ωY ⊗

OY

L−χi
))∗ → H0(Z j, R gπ j∗

(
ωY ⊗

OY

L−χ j
))∗

is injective (use Remark 4.13 and standard properties of the highest direct image). Let 0 ∈ G D(k)

be the trivial character. For any i such that 0 ∈ Zi one has L−χi ⊗O Zi
k(0) = L−0 = OY (by Re-

mark 4.13). Since the highest direct image is stable under base change, one obtains that the fibre of
R gπi∗(ωY ⊗OY L−χi ) at 0 is k. Moreover one has a natural epimorphism

H0(Zi, R gπi∗
(
ωY ⊗

OY

L−χi
)) → R gπi∗

(
ωY ⊗

OY

L−χi
) ⊗

O Zi

k(0) = k.

Putting it all together one concludes. �
Theorem 4.15. Let π : P → Y be a principal G-bundle over an anti-affine scheme Y . If P is anti-affine then:

(1) the associated morphism φ : G D → Pic(Y ) is injective.
(2) If χ ∈ G D(k) is a non-trivial character, then H0(Y , Lχ ) = 0, where Lχ is the invertible sheaf representing

φ(χ).
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Proof. (1) If χ ∈ G D(C) is a character in the kernel of φπ , then (π∗O P )χ � OYC · χ (as GC -modules).
Then

H0(P , O P )⊗
k

C = H0(P C , O PC ) ⊃ C + H0(Y , (π∗O P )χ
) = C + C · χ.

Since H0(P , O P ) = k, χ must be trivial.
(2) Let i be an index such that χ ∈ Zi . Using Remark 4.13 and Theorem 4.14 one obtains

H0(Y , Lχ
) = H g(Y ,ωY ⊗ L−χ

)∗ = H0(Zi, R gπi∗
(
ωY ⊗

OY

L−χi
) ⊗

O Zi

k(χ)
)∗

= (
kZi (0) ⊗

O Zi

k(χ)
)∗ = 0. �

Notations. We shall denote

Hom
(
G D ,Pic(Y )

)
0 = {

φ ∈ Homgroups
(
G D ,Pic(Y )

)
satisfying (4.3)

}
.

Then we have proved

Prin(G, Y )ant = Hom
(
G D ,Pic(Y )

)
0

for any anti-affine Gorenstein scheme Y . If F , F ′ are two functors of groups we shall denote by
Immgroups(F , F ′) the set of injective morphisms (of functors of groups). We have also proved that

Prin(G, Y )ant ⊂ Immgroups
(
G D ,Pic(Y )

)
.

Corollary 4.16. An anti-affine principal G-bundle over Y does not admit principal sub-bundles whose structure
group is a strict subgroup H ⊂ G (strict means H �= G). In particular, a quasi-abelian variety does not have
strict subgroup schemes with the same abelian part.

Proof. Let i : H ↪→ G be a strict subgroup. One has a surjective and non-bijective morphism
i∗ : G D → H D . So, an immersion G D → Pic(Y ) cannot factor through i∗ . �

Assume now that Y is an abelian variety and denote by Prin(G, Y )st
ant the set of isomorphism

classes of anti-affine principal G-bundles over Y which are stable under translations on Y .

Theorem 4.17. Let Y be an abelian variety, G a connected commutative affine group and Prin(G, Y )st
ant the

set of isomorphism classes of anti-affine principal G-bundles over Y which are stable under translations on Y .
Then

Prin(G, Y )st
ant = Immgroups

(
G D ,Pic0(Y )

)
.

Proof. Since Y is an abelian variety, one knows that:

(1) Pic(Y ) is representable by a smooth scheme.
(2) Y ∗ = Pic0(Y ) is an abelian variety (the dual abelian variety of Y ).
(3) If P is the Poincaré invertible sheaf on Y × Y ∗ (the universal one) then R gπY ∗ P = kY ∗ (0) (and

then R gπY ∗ P −1 = kY ∗ (0)).
(4) PicI (Y ) = Pic0(Y ), where PicI (Y ) is the subgroup-scheme of Pic(Y ) of invertible sheaves that are

invariant under translation on Y .
(5) ωY � OY .
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Let φ : G D ↪→ Pic0(Y ) be an injective morphism of functors of groups. Since PicI (Y ) = Pic0(Y ), the
associated principal G-bundle π : P → Y is stable under translations on Y . Moreover
R gπi∗(ωY ⊗OY L−χi ) = (R gπY ∗ P −1)⊗OY ∗ O Zi = kY ∗ (0)⊗OY ∗ O Zi = kZi (0). By Theorem 4.14, P is
anti-affine. Conversely, assume that P is anti-affine. Then φ is injective by Theorem 4.15. More-
over, if π : P → Y is stable under translations on Y , then it is obvious that each finite sub-
scheme φ(Zi) ⊂ Pic(Y ) is also stable under translations and then φ : G D → Pic(Y ) takes values in
PicI (Y ) = Pic0(Y ). �
4.3. Multiplicative type case

Let G be an commutative group of multiplicative type. There exists a finite Galois extension K/k
such that G K is split (i.e., it is a diagonalizable K -group). Then G D

K = X(G K ), i.e., the Cartier-dual
functor group is the discrete scheme (over K ) associated to the group of characters of G K . Let us
denote G K/k the Galois group of k → K . It is clear that to give a morphism of functors G D → Pic(Y )

is equivalent to give a G K/k-equivariant morphism of groups X(G K ) → Pic(Y K ).

Theorem 4.18. If G is a multiplicative type group and Y is an anti-affine Gorenstein scheme then:

Prin(G, Y ) = HomG K/k-groups
(

X(G K ),Pic(Y K )
)

and

Prin(G, Y )ant = ImmG K/k-groups
(

X(G K ),Picwd(Y K )
)

where Picwd(Y K ) = {invertible sheaves L on Y K without associated effective divisors, i.e., such that either
L � OY K or H0(Y K , L) = 0}.

Proof. The first equality is due to Theorem 4.10 and the isomorphism G D
K = X(G K ). For the second

one, if π : P → Y is an anti-affine principal G-bundle, then the associated morphism φπ : X(G K ) →
Pic(Y K ) is injective and takes values in Picwd(Y K ), by Theorem 4.15. Conversely, if φ : X(G K ) →
Pic(Y K ) is injective and takes values in Picwd(Y K ), then it is easy to see that the associated prin-
cipal bundle satisfies conditions (4.3) of Theorem 4.14 and hence it is anti-affine. �
Theorem 4.19. If Y is an abelian variety and G is a multiplicative type group then:

Prin(G, Y )st
ant = ImmG K/k-groups

(
X(G K ),Pic0(Y K )

)
.

Proof. It follows from Theorem 4.17. �
4.4. Unipotent case

Let G = Spec A be a commutative affine group scheme and Ga the additive group. We denote

Addit(G) = Homgroups(G, Ga)

the additive functions over G . It is a vector subspace of A.

Proposition 4.20. Assume that char(k) = p �= 0 and let G be a unipotent group with dim G > 0. Then
dimk Addit(G) = ∞.
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Proof. Addit(Ga) = 〈x, xp, . . . , xpn
, . . .〉 ⊂ k[x] is an infinite dimensional vector space. Then, if

dim G > 0, there exists an epimorphism of groups f : G → Ga and then Addit(G) ⊃ Addit(Ga), so
Addit(G) has infinite dimension. �

It is well known that Addit(G) is canonically isomorphic to the tangent space Te(G D) of G D at the
origin, i.e., the set of elements of G D(k[ε]) that map onto the trivial element of G D(k). Moreover, if U
is the unipotent part of G , then Addit(G) = Addit(U ).

Theorem 4.21. Assume char(k) > 0 and let π : P → Y be an anti-affine principal G-bundle with
dimk H1(Y , OY ) < ∞. Then the unipotent part U of G is finite. In particular, if G is quasi-reduced (Defi-
nition 0.3) and connected, then G is a torus.

Proof. By Theorem 4.15, φπ : G D ↪→ Pic(Y ) is injective. Hence

Te
(
G D) → Te

(
Pic(Y )

) = H1(Y , OY )

is also injective. Then dimk Te(G D) � dimk H1(Y , OY ) < ∞ and dim U � 0.
If G is quasi-reduced and connected, then its unipotent part U is finite, quasi-reduced and con-

nected. So U is a local rational and finite scheme, i.e., it is trivial. Therefore G is of multiplicative type
and smooth (because it is quasi-reduced and connected; see Remark 0.4). �

If char(k) = 0 and G is commutative and unipotent, then G � E, where E is the additive group of
a finite dimensional vector space E , i.e., E = Spec S ·

k E∗ .
For any vector space V , let us denote k[V ] = S ·

k V and (V ) the ideal of k[V ] generated by V .
Assume now that G � E and let us denote A = k[E∗] and An = k⊕ E∗ ⊕· · ·⊕ Sn

k E∗ . It is a sub-coalgebra
of A. Since char(k) = 0, using Taylor expansion one can show that A∗

n = k[E]/(E)n (isomorphism of
algebras) where e1 · · · en ∈ k[E] is identified with ( ∂

∂e1
◦ · · · ◦ ∂

∂en
)0 ∈ A∗

n . Then:

Proposition 4.22. If char(k) = 0, then

ED = lim−→ Speck[E]/(E)n.

Let us denote V = H1(Y , OY ) and V∗ = Spec S ·
k V . Put V = lim−→ V i , where V i runs over the finite

dimensional subspaces of V . One has

V∗ = lim←− V∗
i

and then

(
V∗)D = lim−→

(
V∗

i

)D
.

Let Pic(Y )0
loc be the subfunctor of groups of Pic(Y ) defined as
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Pic(Y )0
loc(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : Spec C → Pic(Y ) such that f factors trough

some finite, local and rational scheme {Z , z0}:

Spec C
f

h

Pic(Y )

Z

g

for some g : Z → Pic(Y ) such that g(z0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for each k-algebra C .

Theorem 4.23. Let V = H1(Y , OY ) and V∗ = Spec S ·
k V . One has a canonical isomorphism

(
V∗)D = Pic(Y )0

loc.

Proof. By definition of Pic(Y )0
loc and taking into account that (V∗)D = lim−→ Z̃ i with Z̃ i local, ratio-

nal and finite schemes, it is enough to show that one has a canonical isomorphism Pic(Y )0
loc(C) =

(V∗)D(C) for every local, rational and finite k-algebra C . Let m ⊂ C be the maximal (nilpotent) ideal.
We have the exact sequence of sheaves of groups on Y :

0 → m⊗
k

OY
exp−→ Ox

Y ×C → Ox
Y → 0

where Bx is the group of invertible elements of B and exp(m ⊗ f ) = ∑
n

1
n! · (m ⊗ f )n . From the exact

sequence of cohomology it follows easily that:

Pic(Y )0
loc(C) = H1(Y ,m⊗

k
OY ) = m⊗

k
H1(Y , OY ) = lim−→

i

(m⊗
k

V i)

= lim−→
i

(
lim−→

n
Homk-alg

(
k
[
V ∗

i

]
/
(

V ∗
i

)n
, C

)) = lim−→
i

(
V∗

i

)D
(C) = (

V∗)D
(C). �

Theorem 4.24. Let Y be an anti-affine Gorenstein scheme. If char(k) = 0, then

Prin(E, Y ) = Homk-lin
(

E∗, H1(Y , OY )
)
.

Proof. Denote V = H1(Y , OY ). By Theorems 4.10 and 4.23 one has

Prin(E, Y ) = Homgroups
(
ED ,Pic(Y )

) = Homgroups
(
ED ,Pic0

loc(Y )
)

= Homgroups
(
ED ,

(
V∗)D) = Homgroups

(
V∗,E

) = Homk-lin
(

E∗, V
)
. �

Analogously, one has:

Theorem 4.25. If Y is an abelian variety and G is a reduced, connected and commutative unipotent group,
then:

(1) If char(k) > 0, then Prin(G, Y )st
ant = Quasiabel(G, Y ) = ∅.
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(2) If char(k) = 0, then G = E for some vector space E and

Prin(G, Y )st
ant = Immk-lin

(
E∗, H1(Y , OY )

)
.

4.5. General case

Let G be the affine part of a quasi-abelian variety A. By Theorem 4.21, if char(k) > 0, then G is a
torus. If char(k) = 0, then k is a perfect field and then G is smooth and connected and it splits as a
product G = U × K of its multiplicative type and unipotent parts. So one has:

Proposition 4.26. If A is a quasi-abelian variety, then its affine part Aaff is smooth and it splits as a product
U × K, with U a unipotent group and K of multiplicative type.

So we assume henceforth that G splits as a product G = U × K, with U a unipotent group and
K of multiplicative type. Then G D = U D × K D . If G = Spec A is of multiplicative type, then A∗

i is
geometrically reduced, i.e.,

(Zi)k = Spec(k× n· · · ×k)

is a discrete finite scheme (k/k being the algebraic closure). If G is unipotent, then A∗
i is a local k-

algebra and then Zi is a finite and local k-scheme. If G = U × K, then Zi = Z U
i × Z K

i = (Zi)0 × (Zi)red
where (Zi)0 is the connected component through the origin and (Zi)red is the (geometrically) reduced
sub-scheme of Zi .

Theorem 4.27. Under the above hypothesis one has:

(1) Prin(G, Y ) = Prin(U , Y ) × Prin(K, Y ).
(2) Prin(G, Y )ant = Prin(U , Y )ant × Prin(K, Y )ant .

Proof. (1) It is immediate because

Homgroups
(
U D × K D ,Pic(Y )

) = Homgroups
(
U D ,Pic(Y )

) × Homgroups
(

K D ,Pic(Y )
)
.

(2) We use the anti-affinity criterium of Theorem 4.14. It is clear that Lχi |Z U
i

= LχU
i and Lχi |Z K

i
=

Lχ K
i . Moreover R gπi∗(ωY ⊗OY L−χi ) � kZi (0) if and only if R gπi∗(ωY ⊗OY L−χi )|(Zi)0

� k(Zi)0 (0) and

R gπi∗(ωY ⊗OY L−χi )|(Zi)red
� k(Zi)red(0). Now, since the highest cohomology group commutes with

base change,

R gπi∗
(
ωY ⊗

OY

L−χi
)
|(Zi)0

= R gπZ U
i ∗

(
ωY ⊗

OY

L−χU
i
)

and

R gπi∗
(
ωY ⊗

OY

L−χi
)
|(Zi)red

= R gπZ K
i ∗

(
ωY ⊗

OY

L−χ K
i

)
and we conclude. �

This theorem reduces the computation of principal G-bundles (and anti-affine ones) to the cases
when G is either a multiplicative type or a unipotent group.
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(∗) Let G be a reduced, connected, commutative and affine group and K its multiplicative type
part. Let K/k be a Galois extension such that (K K )D is discrete. We denote G K/k the Galois group of
k → K . Then

Theorem 4.28 (Classification of quasi-abelian varieties). Let Y be an abelian variety, G as in (∗) and
Quasiabel(G, Y ) the set of isomorphism classes of quasi-abelian varieties with affine part isomorphic to G
and abelian part isomorphic to Y . Then

(1) If char(k) > 0, then Quasiabel(G, Y ) �= ∅ if and only if G is a torus and then:

Quasiabel(G, Y ) = ImmG K/k-groups
(

X(G K ),Pic0(Y K )
)
/Autgroups(G × Y ).

(2) If char(k) = 0, then:

Quasiabel(G, Y ) = ImmG K/k-groups(X(G K ),Pic0(Y K )) × Immgroups(Addit(G), H1(Y , OY ))

Autgroups(G × Y )
.

In another words, to give a quasi-abelian variety A with affine part G and abelian part Y is equivalent to give
a sublattice Λ ⊂ Pic0(Y K ), stable under the action of the Galois group and a linear subspace V ⊂ H1(Y , OY ),
up to group automorphisms of Y , such that Λ � X(G K ) and V � Addit(G).

A different proof of this result may be found in [Br]. For an algebraically closed field, this result is
given in [Sa01].

Corollary 4.29. (See [Ar60, Theorem 1] and [Ro61, Theorem 4].) If k is a finite field, then every quasi-abelian
variety is an abelian variety.

Proof. Since char(k) > 0 one has that Gaff is a torus. After base change to K we can assume that it
splits and then X(Gaff) � Z

n . But Pic0(Y ) is a connected scheme over a finite field, so Pic0(Y ) is a
finite set. Therefore Immgroups(X(Gaff),Pic0(Y )) = ∅. �
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