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SUMMARY

A long-standing question concerns how stem cells
maintain their identity through multiple divisions.
Previously, we reported that pre-existing and newly
synthesized histone H3 are asymmetrically distrib-
uted during Drosophila male germline stem cell
(GSC) asymmetric division. Here, we show that phos-
phorylation at threonine 3 of H3 (H3T3P) distin-
guishes pre-existing versus newly synthesized H3.
Converting T3 to the unphosphorylatable residue
alanine (H3T3A) or to the phosphomimetic aspartate
(H3T3D) disrupts asymmetric H3 inheritance.
Expression of H3T3A or H3T3D specifically in early-
stage germline also leads to cellular defects,
including GSC loss and germline tumors. Finally,
compromising the activity of the H3T3 kinase Haspin
enhances the H3T3A but suppresses the H3T3D phe-
notypes. These studies demonstrate that H3T3P dis-
tinguishes sister chromatids enriched with distinct
pools of H3 in order to coordinate asymmetric segre-
gation of ‘‘old’’ H3 into GSCs and that tight regulation
of H3T3 phosphorylation is required for male germ-
line activity.

INTRODUCTION

Epigenetic phenomena are heritable changes in gene expression

or function that can persist throughoutmany cell divisions without

alterations in primary DNA sequences. By regulating differential

gene expression, epigenetic processes are able to direct cells

with identical genomes to become distinct cell types in humans

and other multicellular organisms. However, with the exception

of DNA methylation, little is known about the molecular pathways

leading to epigenetic inheritance (Bonasio et al., 2010; Martin and

Zhang, 2007).

Prior research has shown that epigenetic events play particu-

larly important roles in ensuring both proper maintenance and

differentiation of several stem cell populations. Many types of
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adult stem cells undergo asymmetric cell division to generate a

self-renewed stem cell and a daughter cell that will subsequently

differentiate (Betschinger and Knoblich, 2004; Clevers, 2005; In-

aba and Yamashita, 2012; Morrison and Kimble, 2006). Mis-

regulation of this balance leads to many human diseases,

ranging from cancer to tissue dystrophy to infertility. However,

the mechanisms of stem cell epigenetic memory maintenance

as well as how loss of this memory contributes to disease remain

unknown.

Recently, we found that during the asymmetric division of the

Drosophila male germline stem cell (GSC), the pre-existing his-

tone 3 (H3) is selectively segregated to the self-renewed GSC

daughter cell whereas newly synthesized H3 is enriched in the

differentiating daughter cell known as a gonialblast (GB) (Tran

et al., 2012) (Figure 1A). In contrast, the histone variant H3.3,

which is incorporated in a replication-independent manner,

does not exhibit such an asymmetric pattern. Furthermore, we

found that asymmetric H3 inheritance occurs specifically in

asymmetrically dividing GSCs, but not in the symmetrically

dividing progenitor cells. These findings demonstrate that global

asymmetric H3 histone inheritance possesses both molecular

and cellular specificity. We proposed the following model to

explain our findings.

First, the cellular specificity exhibited by the H3 histone sug-

gests that global asymmetric histone inheritance occurs

uniquely in a cell-type (GSC) where the mother cell must divide

to produce two daughter cells each with a unique cell fate.

Because this asymmetry is not observed in symmetrically

dividing GB cells, we propose asymmetric histone inheritance

to be a phenomenon specifically employed by GSCs to establish

unique epigenetic identities in each of the two daughter cells.

Second, as stated previously, a major difference between H3

and H3.3 is that H3 is incorporated to chromatin during DNA

replication, while H3.3 variant is incorporated in a replication-in-

dependent manner. Because this asymmetric inheritance mode

is specific to H3, we propose a two-step model to explain asym-

metric H3 inheritance: (1) prior to mitosis, pre-existing and newly

synthesized H3 are differentially distributed on the two sets of

sister chromatids, and (2) during mitosis, the set of sister chro-

matids containing pre-existing H3 is segregated to GSCs, while

the set of sister chromatids enriched with newly synthesized H3

mailto:xchen32@jhu.edu
http://dx.doi.org/10.1016/j.cell.2015.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.10.002&domain=pdf


Figure 1. H3T3P Distinguishes Pre-existing H3-GFP from Newly Synthesized H3-mKO in Mitotic Male GSCs

(A) A visual representation of the Drosophila testis tip showing the asymmetric H3 inheritance during male GSC asymmetric cell division.

(B) A schematic diagram of a two-step model to explain how the asymmetric epigenome is established during S-phase (step one) and recognized followed by

asymmetric segregation in M-phase (step two) GSC, adapted from Tran et al. (2013).

(C–E) A prophase GSC where GFP and mKO signals are separable.

(F–H) A prophase GB where GFP and mKO signals are overlapping.

(I–N) A prophase GSC where GFP and mKO signals are separable at some chromosomal region (I, L, and M). Immunostaining using anti-H3T3P (N) showed

H3T3P co-localization more with GFP (J, L, and N) than with mKO (K, M, and N).

(O–T) A prophase GB where GFP and mKO signals are overlapping (O, R, and S) and no preference of H3T3P (T) with either GFP (P and R) or mKO (Q and S).

(U–Z) A metaphase GSC where GFP and mKO signals are indistinguishable (U, X, and Y), H3T3P (Z) overlaps with both GFP (V and X) and mKO (W and Y).

Asterisks in (C), (I), (L), (U), and (X), hub. Scale bars, 5 mm.

See also Figure S1.
is segregated to the GB that differentiates (Tran et al., 2012,

2013) (Figure 1B).

RESULTS

H3T3P Distinguishes Pre-existing H3 and Newly
Synthesized H3 in Mitotic Male GSCs
To test our proposed two-step model, we used a temporally

controlled dual-color system to precisely label pre-existing

H3 with GFP and newly synthesized H3 with monomeric Kusa-

bira-Orange (mKO) (Tran et al., 2012). Asymmetric segregation

of H3-GFP and H3-mKO was clearly visualized in anaphase

and telophase GSCs imaged during the second mitosis

following heat-shock-induced switch from H3-GFP- to H3-

mKO-coding sequence (Tran et al., 2012). Here, we show

that H3-GFP and H3-mKO signals are already separable at

some chromosomal region in prophase GSCs (Figures 1C–

1E), likely in regions with less tight cohesion between sister

chromatids. Such a separation was not detected in a control

prophase GB (Figures 1F–1H). These results are consistent

with the hypothesis that the differential distribution between
pre-existing H3-GFP and newly synthesized H3-mKO is estab-

lished prior to mitosis in GSCs (Figure 1B, step one). By

contrast, such a separation was not detected using a H3.3

dual-color transgene under the same heat-shock regime (Fig-

ure S1A), consistent with our previous report that H3.3 is in-

herited symmetrically (Tran et al., 2012).

When immunostaining experiments were performed using an

antibody recognizing a mitosis-enriched phosphorylation at

threonine 3 of H3 (H3T3P) (Dai et al., 2005; Polioudaki et al.,

2004), the H3T3P signal (Figures 1J, 1K, and 1N) showed more

co-localization with H3-GFP (Figures 1I and 1L) than with H3-

mKO (Figures 1I and 1M) in prophase GSCs where separation

between H3-GFP and H3-mKO could be visualized (Figures 1I,

1L, and 1M). By contrast, H3-GFP signals and H3-mKO signals

were not separable in prophase GBs, (Figures 1O, 1R, and 1S)

and H3T3P did not distinguish between them (Figures 1P, 1Q,

and 1T). Furthermore, when sister chromatids congressed to

the equator in metaphase GSCs, such a distinction became un-

detectable (Figures 1U–1Z), suggesting that H3T3P distin-

guishes sister chromatids enriched with pre-existing H3 from

those enriched with newly synthesized H3 in prophase GSCs.
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Figure 2. Expression of an H3T3A Transgene Greatly Reduces H3T3P in Mitotic Germ Cells

(A–D) Tip of a testis expressing nos>H3T3A-GFP stained with antibodies against a hub marker FasIII, H3T3P, and H3S10P. A prophase germ cell (yellow dotted

outline) expressing H3T3A-GFP (A) is lack of H3T3P (B) but has abundant H3S10P (C) that co-localizes with condensed chromosome labeled by Hoechst staining

(D). Two mitotic CySCs (white dotted outline) without H3T3A-GFP (A) has both H3T3P (B) and H3S10P (C) signals co-localized with condensed chromosome

labeled by Hoechst staining (D). Asterisks, hub.

(E–H) Mitotic germ cells (cyan dotted outline) expressing nos>H3-GFP (E) as a control have both H3T3P (F) and H3S10P (G) signals co-localized with condensed

chromosome labeled by Hoechst staining (H). Scale bars, 5 mm.

See also Figure S2.
Consistent with this potential function of H3T3P, immunostain-

ing signals of H3T3P were only detectable in prophase (Figures

1N and S1D) to metaphase (Figures 1Z, and S1D), but not in

late anaphase (Figure S1D) GSCs. By contrast, immunostaining

using an antibody against another mitosis-enriched H3S10P

(phosphorylation at serine 10 of H3) showed abundant signal

throughout mitosis (Figure S1D). Furthermore, the signal from

H3T3P immunostaining (Figure S1E) was enriched, but not

restricted, to the centromeric region labeled with an antibody

against a centromere-specific H3 variant centromere identifier

(Cid) (Figure S1E). In summary, the temporal and spatial distribu-

tions of H3T3P in Drosophila male germ cells are comparable to

what has been reported in other cell types from other systems

(Caperta et al., 2008; Dai et al., 2005; Escribá and Goday,

2013; Markaki et al., 2009; Wang et al., 2010).

Expression of an H3T3A Transgene Greatly Reduces
H3T3P in Mitotic Germ Cells
To understand the function of H3T3P in male germ cells, we

generated fly lines with an H3-GFP transgene carrying a point

mutation that converts T3 to the unphosphorylatable alanine

(Ala or A, H3T3A). Expression of the H3T3A-GFP transgene in

early germ cells by the nanos-Gal4 (nos-Gal4) driver (Van Doren

et al., 1998) greatly reduced the H3T3P signal (yellow versus

white outlined cells in Figures 2A and 2B). This reduction of im-

munostaining signal was specific to H3T3P, as immunostaining

using anti-H3S10P showed normal signals in H3T3A-expressing

cells (yellow versus white outlined cells in Figure 2C). As a con-

trol, expression of the wild-type H3-GFP had no effect on either

H3T3P (Figures 2E and 2F) or H3S10P (Figure 2G) signals.
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Because endogenous H3 is still abundant in testes in which

early germ cells are enriched with nos-driving H3T3A expression

(Figures S2A and S2B), the absence of H3T3P signal suggests a

dominant negative effect of H3T3A. The dominant negative effect

of point mutations of H3 has recently been observed with several

residues of histone H3 (Herz et al., 2014; Lewis et al., 2013).

Expression of H3T3A Changes the Asymmetric H3
Segregation Pattern in Mitotic GSCs
Because expression of the H3T3A provides a loss-of-function

condition for H3T3P (Figures 2, S2C, and S2D), we next explored

whether asymmetric histone segregation is affected in H3T3A-

expressing GSCs using the dual-color labeling strategy (Fig-

ure 3A). As a control, we used a similar system with wild-type

H3 and found that pre-existing H3-GFP and newly synthesized

H3-mKO are asymmetrically segregated in telophase GSCs dur-

ing the second mitosis after heat-shock-induced genetic switch

(Figures 3B–3D), consistent with our previous report (Tran et al.,

2012). By contrast, we found a dramatic shift in histone inheri-

tance patterns from predominantly asymmetric to predominantly

symmetric pattern (Figures 3H–3J), using the dual-color trans-

gene with H3T3A (Figure 3A). Although the majority of GSCs

expressing H3T3A exhibited a symmetric pattern of histone in-

heritance (Figures 3H–3J), we could still detect the conventional

asymmetric pattern resembling that of wild-type H3 in telophase

GSCs (Figures 3E–3G). Surprisingly, we also observed the in-

verted asymmetric pattern (Figures 3K–3M).

We reason that if pre-existing and newly synthesized histones

are randomly incorporated during the first step (Figure 1B), no

separation between GFP and mKO signals should be detectable



Figure 3. Expression of H3T3A Changes

the Asymmetric H3 Segregation Pattern in

Mitotic GSCs

(A) A schematic diagram showing the dual color-

switch design that expresses pre-existing H3T3A-

GFP and newly synthesized H3T3A-mKO by

heat-shock treatment, as adapted from Tran et al.

(2012).

(B–D) A telophase GSC expressing nos>FRT-H3-

GFP-PolyA-FRT-H3-mKO-PolyA (nos>H3) during

the second mitosis after heat-shock-induced

genetic switch show conventional asymmetric

segregation pattern.

(E–M) Telophase GSCs expressing nos>

FRT-H3T3A-GFP-PolyA-FRT-H3T3A-mKO-PolyA

(nos>H3T3A) during the second mitosis after

heat-shock-induced genetic switch show conven-

tional asymmetric segregation pattern (E–G), sym-

metric pattern (H–J), or inverted asymmetric pattern

(K–M).

(N–P) A prophase GSC expressing nos>

FRT-H3T3A-GFP-PolyA-FRT-H3T3A-mKO-PolyA

(nos>H3T3A) during the second mitosis after heat-

shock-induced genetic switch show separableGFP

and mKO signals. Asterisk, hub; white dotted

outline, mitotic GSCs at telophase (B–M) or pro-

phase (N–P); arrowheads, interphase GSCs or GBs

that showmuch less condensed nuclei. Scale bars,

5 mm.
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Figure 4. Expression of H3T3A or H3T3D

Changes Pre-existing and Newly Synthe-

sized H3 Distribution Patterns in Post-

Mitotic GSC-GB Pairs

(A–I) Immunostaining signals using antibodies

against a hub marker FasIII and spectrosome/

fusome marker a-spectrin in testes from

nos>FRT-H3-GFP-PolyA-FRT-H3-mKO-PolyA

(nos>H3, A–C) or nos>FRT-H3T3A-GFP-PolyA-

FRT-H3T3A-mKO-PolyA (nos>H3T3A, D–I) males

after the second mitosis upon heat-shock-in-

duced genetic switch. Asterisk, hub; white dotted

outline, post-mitotic GSC-GB pairs; arrowheads,

spectrosome structure in between GSC and GB

cells. Scale bars, 5 mm.

(J) Quantification of the ratio of GFP (y axis: log2
scale) fluorescence intensity in GSC-GB pairs (see

Figures S3A, S3B, and Table S1 for details):

nos>H3 (open circle, n = 55), nos>H3T3A (solid

triangle, n = 64), and nos>H3T3D (open square,

n = 57). Red dotted outline delineates symmetric

distribution zone (see explanations below). H3 (n =

55): GSC/GB GFP ratio = 10.11 ± 1.66 (p < 10�4

for the ratio >1, one-tailed t test). H3T3A (n = 64):

GSC/GB GFP ratio = 1.50 ± 0.28 (p > 0.05

therefore is insignificantly different from 1, two-

tailed t test). H3T3D (n = 57): GSC/GB GFP ratio =

1.56 ± 0.51 (p > 0.05 therefore is insignificantly

different from 1, two-tailed t test). All ratios =

Avg ± SE; p value, one sample t test.

(K) Percentage of GSC-GB pairs with conventional

asymmetric (GFP in GSC/GB >1.55), symmetric

(GSC/GB GFP ratio between 1–1.45 and GB/GSC

GFP ratio between 1–1.45), inverted asymmetric

(GFP in GB/GSC >1.55), and borderline (GSC/GB

GFP ratio between 1.45–1.55 and GB/GSC GFP

ratio between 1.45–1.55) patterns, respectively in

nos>H3, nos>H3T3A, and nos>H3T3D testes, as

well as the predicted patterns according to ran-

domized segregation modeling (Table S2). In

nos>H3 testes, conventional asymmetric: 87.3%

(48/55); symmetric: 12.7% (7/55); no inverted

asymmetric or borderline pairs. In nos>H3T3A testes, conventional asymmetric: 9.4% (6/64); symmetric: 71.9% (46/64); inverted asymmetric: 12.5% (8/64);

borderline: 6.3% (4/64). In nos>H3T3D testes, conventional asymmetric: 7.0% (4/57); symmetric: 79.0% (45/57); inverted asymmetric: 10.5% (6/57); borderline:

3.5% (2/57). Predicted patterns: conventional asymmetric: 18.7% (12/64); symmetric: 53.1% (34/64); inverted asymmetric: 18.7% (12/64); borderline: 9.4% (6/64).

See also Figures S3A and S3B and Tables S1 and S2.
duringGSC asymmetric division. The fact that we could still iden-

tify conventional and inverted asymmetric segregation patterns

in telophase GSCs (Figures 3E–3G and 3K–3M) suggests that

the establishment of histone asymmetry prior to mitosis may

not be affected. The observed defects in proper asymmetric

segregation therefore arise upon mitotic entry when sister chro-

matids containing different populations of H3 need to be recog-

nized and segregated to the appropriate daughter cell (Figure 1B,

step two). Consistent with this hypothesis, separable H3T3A-

GFP and H3T3A-mKO could still be detected in prophase

GSCs (Figures 3N–3P and S1B), but not in a control prophase

GB (Figure S1C).

Expression of H3T3A Changes H3 Distribution Patterns
in Post-Mitotic GSC-GB Pairs
Since mitotic GSCs account for <2% among all GSCs (Sheng

and Matunis, 2011; Yadlapalli et al., 2011; Yadlapalli and Yama-
924 Cell 163, 920–933, November 5, 2015 ª2015 Elsevier Inc.
shita, 2013), we next examined post-mitotic GSC-GB pairs

derived from GSC asymmetric divisions to quantify histone in-

heritance patterns (Tran et al., 2012) (Experimental Procedures).

In contrast to the conventional asymmetric distribution pattern

in wild-type H3-expressing GSC-GB pair (Figures 4A–4C), we

observed symmetric (Figures 4D–4F), conventional asymmetric

(left pair in Figures 4G–4I), and inverted asymmetric (right pair

in Figures 4G–4I) distribution patterns in post-mitotic GSC-GB

pairs. These data are consistent with what we have observed

with mitotic GSCs (Figures 3E–3M).

Next, we quantified the percentage of each of these distribu-

tion patterns. Wemainly used GFP signal to account for different

patterns, for example, in Figure 4J: the conventional asymmetric

patterns are in zone I, with GFP ratio in GSC/GB >1.55; the sym-

metric patterns are in zone II, with GFP ratio in GSC/GB <1.45

but >0.69 (i.e., GB/GSC <1.45); and the inverted asymmetric

patterns are in zone III, with GFP ratio in GB/GSC >1.55.



Figure 5. Both Germline and Somatic Gonadal Cells Show Defects in nos>H3T3A or nos>H3T3D Testes

(A–L) Immunostaining using antibodies against a hub marker FasIII and spectrosome/fusome marker a-spectrin in testes from nos>H3-GFP (A–D), nos>H3T3A-

GFP (E–H), or nos>H3T3D-GFP (I–L) males 7 days after eclosion. Asterisks in (A), (E), and (I), hub; arrowheads in (C), (G), and (K) point to the hub region, which are

shown with higher magnification in insets: hub size increases in nos>H3T3A-GFP (inset in G) or nos>H3T3D-GFP (inset in K) testes, but not in nos>H3-GFP (inset

in C) testes. Early-stage germ cells, as determined by nos-driven GFP expression (B, F, and J), and nuclear morphology (Chen et al., 2013; Tran et al., 2000) are

delineated by the yellow dotted lines in (D), (H), and (L). Scale bars, 20 mm.

(legend continued on next page)
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The �1.5-fold cutoff is based on the quantification range of

symmetric H3 distribution in spermatogonial cells and symmetric

H3.3 distribution in GSC-GB pairs (Tran et al., 2012, 2013).

We reasoned that GFP ratio reflects the establishment of

asymmetric histone distribution on sister chromatids more reli-

ably than mKO ratio for two reasons. First, when we measured

mKO fluorescence intensity in post-mitotic GSC-GB pairs,

both cells are actively undergoing S phase for the next mitosis

and exhibit robust incorporation of mKO-labeled newly synthe-

sized histones (Figure 4C). Second, any histone turn-over that in-

corporates newly synthesizedmKO-labeled histones (Deal et al.,

2010; Dion et al., 2007) during processes such as transcription

may not be sister chromatid-specific.

When we quantified the GFP distribution patterns in post-

mitotic GSC-GB pairs in H3T3A-expressing testes (Figures 4J

and S3A), we found that 71.9% (46/64) of pairs showed a sym-

metric pattern of inheritance (Figure 4K; Table S1). By contrast,

in wild-type H3-expressing testes, 87.3% (48/55) of pairs

showed an asymmetric pattern of inheritance (Figure 4K; Table

S1). Moreover, in H3T3A-expressing testes, asymmetric pat-

terns could be observed in two distinct modes at lower fre-

quencies: 9.4% (6/64) conventional asymmetry, 12.5% (8/64) in-

verted asymmetry, and 6.3% (4/64) at the borderline (1.45- to

1.55-fold) between asymmetry and symmetry (Figure 4K; Table

S1). Noticeably, no GSC-GB pair showed the inverted asym-

metric pattern (zone III in Figure 4J) in wild-type H3-expressing

testes (Figures 4J and 4K), suggesting that such a pattern is spe-

cifically induced by H3T3A-expression.

Expression of H3T3A Causes Several Germline Defects
A spectrum of cellular defects could be detected in nos>H3T3A

testes after the level of H3T3P is effectively reduced (Figures

S2C and S2D). Compared to testes expressing the wild-type H3

(Figures 5A–5D, S4A, S4D, and S5A), H3T3A-expressing testes

exhibitedphenotypeswithbothgermlineandsomaticdefects (Fig-

ures 5E–5H, 5M–5P, S4B, S4E, and S5B). First, GSCs expressing

the H3T3A transgene were not maintained properly. In testes

without transgene or expressing H3-GFP, only germ cells with

dotted spectrosome structure (de Cuevas and Spradling, 1998;

Hime et al., 1996; Lin et al., 1994) were detectable next to the

hub cells (Figure S4A, arrows). However, in nos>H3T3A testes,

germ cells with branched fusome structure were detected adja-

cent to the hub region (arrowheads in Figure S4B), suggesting

that GSCs either undergo precocious differentiation or cell death,

thereby allowingmore differentiated spermatogonial cysts to take

their place. Quantification of these two distinct cellular structures

(spectrosome versus fusome) showed a significant loss of GSCs

in H3T3A-expressing testes (Figure S4C). Second, we observed

a significant expansion of germline tumors carrying early-stage

cellular markers, including nos-driven GFP expression (Figures
(M–T) Immunostaining using a germ cell-specific anti-Vasa in testes from nos>H3T

germline tumors (white dotted outline in Q–T) are detectable. Hoechst stains nuc

(U) Quantification of the percentage of testes with germline tumor and/or germ ce

nos>H3T3D-GFP (n = 43).

(V) Quantification of hub size: 108 ± 2.393 mm2 in nos>H3-GFP (n = 50) testes vers

9.702 mm2 in nos>H3T3D-GFP testes (n = 37) (***p < 10�4). All ratios = Avg ± SE

See also Figures S4 and S5.
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5E, 5F, S4E, and S5B), spectrosome structure (Figures 5E, 5G,

S4E, S5B, and S5D), and condensed nuclei (Chen et al., 2013;

Schulzetal., 2004; Tranetal., 2000) (Figures5HandS5B). Interest-

ingly, based on these cellular markers, the tumors of progenitor

germ cells developed in nos>H3T3A testes were noticeably het-

erogeneous (Figure S5D). For example, some tumor cells main-

tained strong GFP expression (Figure S5D), a mark indicative of

activenos-Gal4activity, andexhibitedspectrosomestructure (Fig-

ure S5D), suggesting that they are an early-stage GSC and/or GB

cell tumor. Conversely, other tumor cells exhibited loss of GFP

expression and a fusome structure (Figure S5D), suggesting that

they are a later-stage spermatogonial tumor. We reason that this

heterogeneity in tumor types is likely due to the heterogeneity

observed in histone inheritance patterns (Figures 3 and 4). Third,

the nos>H3T3A males had gradually decreased fertility (Fig-

ure S5C), consistent with the progression of germline defects (Fig-

ure S5B) and eventual germ cell loss (Figures 5M–5P and 5U).

While the progenitor germ cell tumor phenotype was not detected

in nos>H3 (n = 19) control testes, it was observed in 42.9% of

nos>H3T3A testes (n = 42) (Figure 5U). The germ cell loss pheno-

typewasdetected in15.8%ofnos>H3 (n= 19) control testesbut in

47.6% of nos>H3T3A testes (n = 42) (Figure 5U). The loss of germ

cells in 15.8% of control testes is likely due to age-related effect

(Boyle et al., 2007; Cheng et al., 2008; Toledano et al., 2012; Wal-

lenfang et al., 2006). Last, nos>H3T3A testes (Figures 5G, inset,

and S4B, yellow outline) showed a substantial hub enlargement

(Figure 5V) compared to nos>H3 testes (Figures 5C, inset, and

S4A, yellow outline), most likely as a secondary defect due to

GSC loss as reported previously (Dinardo et al., 2011; Gönczy

andDiNardo, 1996;Monk et al., 2010; Tazuke et al., 2002). In sum-

mary, development of these germline defects in adult flies sug-

gests that H3T3P is likely required for both GSC maintenance

and proper differentiation of GB.

Expression of H3T3A in Late-Stage Germ Cells or
Somatic Cells Does Not Cause Germline Tumors
The GSC loss, germline tumor and hub enlargement phenotypes

in nos>H3T3A testes were specifically caused by expressing

H3T3A in early-stage germ cells. We used a later-stage germline

driver, bam-Gal4 (Cheng et al., 2008; Eun et al., 2014; Schulz

et al., 2004) (Figure 6A), to turn on the same H3T3A transgene

in four-cell and later stage germ cells. In doing so, we were

able to effectively reduce H3T3P in the more differentiated

germ cells (Figure 6G). However, in this population of symmetri-

cally dividing cells, we did not detect the phenotypes (Figures

6J–6M) we had observed in nos>H3T3A testes (Figures 5, S4,

and S5).

In addition to GSCs, another type of adult stem cell residing in

the Drosophila testis niche is the cyst stem cell (CySC), which,

under normal conditions, is the only mitotically active somatic
3A-GFP (M–P) or nos>H3T3D-GFP (Q–T) males. Both germ cell loss (M–T) and

lei in (D), (H), (L), (P), and (T). Scale bars, 20 mm.

ll loss in testes expressing nos>H3-GFP (n = 19), nos>H3T3A-GFP (n = 42), or

us 198.5 ± 15.22 mm2 in nos>H3T3A-GFP testes (n = 37) (***p < 10�4) or 145.2 ±

; p value calculated by unpaired t test.



Figure 6. Expression of H3T3A or H3T3D Using the bam-Gal4 Driver Did Not Phenocopy Defects in nos>H3T3A or nos>H3T3D Testes

(A) A cartoon showing stage-specificity of nos-Gal4 and bam-Gal4 drivers: nos-Gal4 is turned on in early-stage germline, including GSCs (Van Doren et al., 1998),

while bam-Gal4 expresses from four-cell spermatogonial cells (Cheng et al., 2008; Eun et al., 2014; Schulz et al., 2004).

(B–I) Immunostaining using antibodies against the germ cell-specific marker Vasa, H3T3P, and H3S10P in bam>H3T3A-GFP testes. Expression of bam>H3T3A

greatly reduces H3T3P in later stagemitotic spermatogonial cells: a two-cell mitotic spermatogonial cyst (white dotted outline in B–E) without H3T3A-GFP (B) had

detectable H3T3P (C) and H3S10P (D), both H3T3P and H3S10P overlapped with DNA signal stained with Hoechst (E). By contrast, a four-cell mitotic sper-

matogonial cyst (white dotted outline in F–I) with H3T3A-GFP (F) had greatly reduced H3T3P (G) but abundant H3S10P (H), the H3S10P signal overlapped with

DNA signal stained with Hoechst (I). The diffusive signal in (C) and (G) came from anti-Vasa, which stains the entire mitotic germ cells because their nuclear

envelopes are broken down (Yadlapalli et al., 2011; Yuan et al., 2012). Scale bars, 10 mm.

(J–Q) Immunostaining using antibodies against a hub marker FasIII, spectrosome/fusome marker a-spectrin and Vasa: tip of the testis expressing bam>H3T3A-

GFP (J-M) or bam>H3T3D-GFP (N-Q). Scale bars, 20 mm. Asterisks in (B–K), (N), and (O), hub.

See also Figure S6.
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gonadal cell type (Dinardo et al., 2011). When we used a somatic

cell-specific Tj-Gal4 driver (Tanentzapf et al., 2007) to express

H3T3A, we found it is sufficient to reduce H3T3P signal specif-

ically in CySCs (Figure S6A). However, no dramatic cellular de-

fects could be detected when comparing Tj>H3T3A (Figure S6C)

with Tj>H3 testes (Figure S6B). In summary, these stage-specific

and cell type-specific effects caused by H3T3A expression sug-

gest that the phenotype we observed in nos>H3T3A testes is

unlikely the result of a global perturbation of general cellular

machineries.

Expression of H3T3D in Early-, but Not Late-Stage, Germ
Cells Leads to Randomized H3 Inheritance and Cellular
Defects
To further understand how H3T3P functions in GSCs, we ex-

pressed a different H3T3 mutant for which the T3 residue was

converted to the phosphomimetic aspartic acid (D), under the

hypothesis that such a mutation may disrupt the temporal order

of H3T3 phosphorylation (Figures 1I–1N and S1D). Indeed,

expression of H3T3D in early germcells using a similar dual-color

labeling strategy (as described for H3T3A in Figure 3A) also ran-

domizes pre-existing H3T3D and newly synthesized H3T3D

inheritance patterns (Figures 4J, 4K, and S3B; Table S1): approx-

imately 79.0% (45/57) of GSC-GB pairs showed symmetric

inheritance patterns, 7.0% (4/57) showed conventional asym-

metry, and 10.5% (6/57) showed inverted asymmetry, with the

remaining 3.5% (2/57) of pairs at the borderline between asym-

metry and symmetry (1.45- to 1.55-fold). The randomized H3T3D

inheritance patterns cannot be attributed to loss of H3T3P, as

H3T3P is still detectable in H3T3D-expressing GSCs (Fig-

ure S3C). These data suggest that it is likely the timing of the

H3T3 phosphorylation that is important for normal GSC activity.

In addition, both progenitor germline tumor (Figures 5I–5L and

S4F) and germ cell loss (Figures 5Q–5T) phenotypes could be

detected in nos-H3T3D testes (Figure 5U). Quantification

showed significant decrease of GSCs in nos>H3T3D testes

(6.84 ± 0.41, n = 37) compared to that of the control nos>H3

testes (8.68 ± 0.31, n = 19; p < 0.001). Moreover, similar to the

nos>H3T3A testes, the hub region in nos>H3T3D testes was

also enlarged compared to the control nos>H3 testes (Figures

5V and S4F), most likely as a secondary effect due to the loss

of GSCs. By contrast, no germline tumor phenotype was found

when the same transgene H3T3D-GFP was driven by the bam-

Gal4 driver (Figures 6N–6Q).

Since both reduction of H3T3P by expression of H3T3A and

the mimicking of H3T3P by expression of H3T3D result in similar

histone inheritance and germline defects, we hypothesize that

phosphorylation of H3T3 might require a tight temporal control

during GSC mitosis. Therefore, expressing either the H3T3A or

the H3T3D may lead to loss of this control and similar defects

in histone inheritance patterns as well as abnormal germline

activity.

Differential Effects of haspin Gene Mutations on
Germline Tumor Phenotypes in H3T3A- and
H3T3D-Expressing Testes
The kinase that generates the H3T3Pmark has been identified to

be the Haspin protein (Dai et al., 2005). By driving a short hairpin
928 Cell 163, 920–933, November 5, 2015 ª2015 Elsevier Inc.
RNA (shRNA) (Ni et al., 2011) with the nos-Gal4 driver to knock

down haspin, specifically in early-stage germ cells, we were

able to observe a significant decrease of H3T3P in GSCs (Fig-

ure S7A). Testes expressing nos>haspin shRNA showed a

much greater frequency of cell death (Figures S7C and S7D)

confined mainly to spermatogonial cells (Yacobi-Sharon et al.,

2013), when compared to the nos-Gal4 control (Figure S7B).

Even though spermatogonial cell death was also detected in

nos>H3T3A testes (and in bam>H3T3A testes), germline tumor

phenotype was much more prevalent in nos>H3T3A testes

than in nos>haspin shRNA testes. The similarity between

nos>H3T3A and nos>haspin shRNA phenotypes is consistent

with the fact that both lead to reduced H3T3 phosphorylation.

The difference between nos>H3T3A and nos>haspin shRNA

phenotypes suggests that the phenotypes induced by H3T3A

expression are not simply a byproduct of compromising Haspin

kinase activity in general. It is likely that Haspin targets some, as

of yet, unknown substrates other than H3T3 inDrosophilaGSCs.

For instance, the yeast Haspin homolog has been shown to have

potential roles in regulating mitotic spindle polarity (Panigada

et al., 2013). It has also been reported that knockdown of Haspin

in human cells (Wang et al., 2010; Yamagishi et al., 2010; re-

viewed by Higgins, 2010) or in Xenopus (Kelly et al., 2010) results

in mitotic spindle defects.

To further understand potential interactions between Haspin

and loss-of-H3T3P phenotypes, we first asked whether halving

the level of Haspin could enhance the nos>H3T3A phenotype.

For this, we utilized a set of permissive conditions described

hereafter to create a sensitized genetic background. Due to the

temperature sensitivity of the Gal4:UAS system, flies grown at

lower temperature (i.e., 18�C) have been shown to have reduced

levels of Gal4-driven expression (Eliazer et al., 2011). In testis

samples from nos>H3T3A flies grown at 18�C at an earlier devel-

opmental stage (3rd instar larvae), we found that H3T3P is still

abundant and cellular defects were minimal. For example, no

obvious germline tumor was detected (n = 18, Figures 7A–7D).

Therefore, we utilized these conditions as a permissive but sensi-

tized genetic background. In this background, if Haspin level was

halved (using a deficiency chromosome that uncovers the haspin

gene locus; Figures 7E–7H), increased germ cell tumors could be

detected (56%, n = 19, Figure 7M). These tumors were identified

using a variety of morphological features, including expansion of

germ cells with nos-Gal4-driving GFP expression (Figure 7F

versus 7B), spectrosome structure (Figure 7G versus 7C), and

condensed nuclei (Figure 7H versus 7D). Enhancement of the

germline tumor phenotype in nos>H3T3A testes was also de-

tected using a hypomorphic haspinmi09386 allele (Venken et al.,

2011), althoughwith less severity (Figures 7I–7L) and lower pene-

trance (21%, n = 16, Figure 7M). In summary, these data showed

that in nos>H3T3A testes the germline tumor phenotype could

be enhanced by loss-of-function in haspin gene.

We next explored the genetic interaction between haspin and

nos>H3T3D phenotype by utilizing a set of restrictive condi-

tions—flies were grown at 18�C, shifted to 29�C as newly

eclosed flies and kept at 29�C for 7 days, under which

nos>H3T3D testes showed strong phenotype with high pene-

trance. We found that when Haspin level was halved using the

same deficiency chromosome that uncovers the haspin gene



Figure 7. Genetic Interactions between haspin Gene Mutants and Mutations of H3T3
(A–L) Immunostaining using antibodies against a hub marker FasIII, spectrosome/fusome marker a-spectrin and germ cell marker Vasa in larval testes from

nos>H3T3A (A–D), Df (haspin)/+; nos>H3T3A (E–H) or haspinmi09386/+; nos>H3T3A (I–L) males at constant 18�C. Early-stage germline tumor is detected in testes

from Df (haspin)/+; nos>H3T3A (F) and (H) or haspinmi09386/+; nos>H3T3A (J) and (L) males, but not in testes from nos>H3T3A (B) and (D) males. Arrowhead in (G)

points to enlarged hub area compared to (C).

(M) Percentage of testes that are normal or have germline tumor(s) frommales of the following genotypes: nos>H3T3A (n = 18);Df (haspin)/+; nos>H3T3A (n = 16);

and haspinmi09386/+; nos>H3T3A (n = 19).

(N–U) Immunostaining using antibodies against FasIII, a-spectrin, and Vasa in testes from nos>H3T3D (N–Q) or Df (haspin)/+; nos>H3T3D (R–U) males (siblings

from the same crosses) grown at 18�C, shifted to 29�C as newly eclosed flies and kept at 29�C for 7 days. Early-stage germline tumor is detected in testes from

nos>H3T3Dmales (O) and (Q), but less severe in testes from nos>H3T3D; Df (haspin)/+males (S) and (U). Arrowhead in (P) points to enlarged hub area compared

to (T). Early-stage germ cells, as determined by nos-driven GFP expression (B), (F), (J), (O), and (S), and nuclear morphology are delineated by the yellow dotted

lines in (D), (H), (L), (Q), and (U).

(V) Percentage of testes that have germline tumor(s) or germ cell loss frommales with the following genotypes: nos>H3T3D (n = 17) or Df (haspin)/+; nos>H3T3D

(n = 12).

(W) Quantification of hub size: 172.2 ± 14.72 mm2 in nos>H3T3D (n = 17) testes versus 115.0 ± 9.802 mm2 in Df (haspin)/+; nos>H3T3D (n = 12) testes (all ratios =

Avg ± SE; *p < 0.005, calculated by unpaired t test). Asterisks in (A), (E), (I), (N), and (R), hub. Scale bars, 20 mm.

See also Figure S7.
locus, both germline tumor and germ cell loss phenotypes in

nos>H3T3D testes were suppressed, as indicated by lower

severity (compare Figures 7N–7Q with Figures 7R–7U) and

reduced penetrance (Figure 7V). Consistently, the secondary

hub enlargement defect in nos>H3T3D testes was also sup-

pressed (Figure 7W). These findings are reminiscent of published
studies in which expression of a phosphomimetic substrate can

rescue the phenotypes of compromised kinase activity in cancer

cells (Wu et al., 2010). Together, the opposite genetic interac-

tions between haspin and the two H3 mutations on T3 further

support the hypothesis that H3T3P needs to be tightly controlled

for proper H3 inheritance and germline activity.
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DISCUSSION

Here, we report that a mitosis-enriched H3T3P mark acts as a

transient landmark that distinguishes sister chromatids with

identical genetic code but different epigenetic information,

shown as pre-existing H3-GFP and newly synthesized H3-

mKO. By distinguishing sister chromatids containing different

epigenetic information, H3T3P functions to allow these molecu-

larly distinct sisters to be segregated and inherited differentially

to the two daughter cells derived from one asymmetric cell divi-

sion. The selective segregation of different populations of his-

tones likely allows these two cells to assume distinct fates:

self-renewal versus differentiation. Consequently, loss of proper

epigenetic inheritance might lead to defects in both GSC main-

tenance and GB differentiation, suggesting that both cells need

this active partitioning process to either ‘‘remember’’ or ‘‘reset’’

their molecular properties.

The temporal and spatial specificities of H3T3Pmake it a great

candidate to regulate asymmetric sister chromatid segregation.

First, H3T3P is only detectable from prophase to metaphase, the

window of time during which the mitotic spindle actively tries to

attach to chromatids through microtubule-kinetochore interac-

tions. Second, the H3T3P signal is enriched at the peri-centro-

meric region, where kinetochore components robustly crosstalk

with chromatin-associate factors. Third, H3T3 shows a sequen-

tial order of phosphorylation, first appearing primarily on sister

chromatids enrichedwith pre-existing H3 and then subsequently

appearing on sister chromatids enriched with newly synthesized

H3 as the GSC nears metaphase. The distinct temporal patterns

shown by H3T3P are unique to GSCs and would allow the

mitotic machinery to differentially recognize sister chromatids

bearing distinct epigenetic information; an essential step neces-

sary for proper segregation during asymmetric GSC division.

Furthermore, the tight temporal control of H3T3 phosphorylation

suggests that rather than serving as an inherited epigenetic

signature, H3T3P may act as transient signaling mark to allow

for the proper partitioning of H3. We hypothesize that H3T3P

needs to be under tight temporal control in order to ensure

proper H3 inheritance and germline activity.

Our studies have shown that H3T3P is indeed subject to strin-

gent temporal controls during mitosis. The H3T3P mark is unde-

tectable during G2 phase. Upon entry to mitosis, sister chroma-

tids enriched with pre-existing H3-GFP histone begin to show

H3T3 phosphorylation prior to sister chromatids enriched with

newly synthesizedH3-mKO. As the cell continues to progress to-

ward metaphase, H3T3P signal begins to appear on sister chro-

matids enriched with newly synthesized H3-mKO. Such a tight

regulation of H3T3P is compromised when levels of H3T3P are

altered due to the incorporation of mutant H3T3A or H3T3D.

Incorporation of the H3T3A mutant results in a significant

decrease in the levels of H3T3P on sister chromatids throughout

mitosis, such that neither sister becomes enriched with H3T3P

as theGSCprogresses towardmetaphase. Conversely, incorpo-

ration of the H3T3D mutant would result in seemingly elevated

levels of H3T3P early in mitosis. Although H3T3A and H3T3D

act in different ways, both mutations significantly disrupt the

highly regulated temporal patterns associated with H3T3 phos-

phorylation, the result of which is randomized H3 inheritance
930 Cell 163, 920–933, November 5, 2015 ª2015 Elsevier Inc.
patterns and germ cell defects in testes expressing either

H3T3A or H3T3D.

To further evaluate the extent of H3T3A and H3T3D roles in the

segregation of sister chromatids enriched with different popula-

tions of H3 during mitosis (Figure 1B, step two), we modeled all

possible segregation patterns in male GSCs and compared

these estimates to our experimental results. To simplify our cal-

culations, wemade two important assumptions: first, we assume

nucleosomal density to be even throughout the genome. This

assumption allows us to infer that the overall fluorescent signal

contributed by each chromosome is proportional to their respec-

tive number of DNA base pairs. Second, by quantifying pre-ex-

isting H3-GFP asymmetry in anaphase and telophase GSCs,

we estimate that the establishment of H3-GFP asymmetry is

�4-fold biased, i.e., 80% on one set of sister chromatids and

20% on the other set of sister chromatids, based on quantifica-

tion of GFP signal in anaphase (GFPGSC side/GB side = 4.5) and

telophase (GFP GSC side/GB side = 3.8) GSCs (Tran et al.,

2012). With these two simplifying assumptions, we calculate

both GFP and mKO ratios among all 64 possible combinations

(Table S2: 2 (for X-ch) 3 2 (for Y-ch) 3 4 (for 2nd ch) 3 4 (for 3rd

ch) = 64 combinations in total). If we define asymmetry as a

greater than �1.5-fold difference in fluorescence intensity, then

based on a model of randomized sister chromatid segregation,

we estimate that a symmetric pattern should appear for 53.1%

(34/64) of GSC-GB pairs whereas both conventional and in-

verted asymmetric patterns should occur with equal frequencies

and account for 18.7% (12/64) of total GSC-GB pairs. The re-

maining 9.4% (6/64) of GSC-GB pairs should produce histone

inheritance patterns with a 1.45- to 1.55-fold difference in signal

intensity (predicted ratios in Figure 4K).

This estimation is close to our experimental data in both

H3T3A- and H3T3D-expressing testes (Figures 4J and 4K; Table

S1). Of the 64 quantified post-mitotic GSC-GB pairs in

nos>H3T3A testes, �71.9% showed symmetric inheritance

pattern. Conventional and inverted asymmetric patterns were

detected at 9.4% and 12.5%, respectively, and 6.3% at the

borderline. Similarly, of the 57 quantified post-mitotic GSC-GB

pairs in nos>H3T3D testes, �79.0% showed symmetric inheri-

tance pattern. Conventional and inverted asymmetric patterns

were detected at 7.0% and 10.5%, respectively with 3.5% of

pairs at the borderline. Some differences between predicted ra-

tios and our experimental data could be due to the simplified as-

sumptions, the limited sensitivity of our measurement, and/or

some coordinated chromatid segregation modes that bias the

eventual read-out (Yadlapalli and Yamashita, 2013). In summary,

comparison between the modeling ratios and our experimental

data suggest that loss of the tight control of H3T3 phosphoryla-

tion in GSCs randomizes segregation of sister chromatids en-

riched with different populations of H3.

If the temporal separation in the phosphorylation of H3T3 on

epigenetically distinct sister chromatids facilitates their proper

segregation and inheritance during asymmetric cell division, it

is likely that mutations of the Haspin kinase will also affect the

temporal control of H3T3 phosphorylation. In the context of

H3T3A, where the levels of H3T3P are already reduced, a further

decrease in H3T3P by reducing Haspin levels should limit the

GSC’s ability to distinguish between sister chromatids enriched



with distinct H3. Indeed, haspin mutants enhance the pheno-

types in nos>H3T3A testes. A different situation appears in the

context of H3T3Dwhere sister chromatids experience seemingly

elevated levels of H3T3P at the start of mitosis. These elevated

H3T3P levels may be exacerbated by the phosphorylation activ-

ity of the Haspin kinase. Therefore, it is conceivable that by

halving the levels of the Haspin kinase, H3T3 phosphorylation

should be reduced to a level more closely resembling wild-

type. In this way, some of the temporal specificity that is lost in

the H3T3D mutant is restored, resulting in suppression of the

phenotypes observed in nos>H3T3D testes. An exciting topic

for future study would be to further explore how exactly Haspin

phosphorylates H3T3 in the context of chromatin and whether

H3T3A and H3T3D mutations act synergistically or antagonisti-

cally in regulating asymmetric sister chromatids segregation

through differential phosphorylation of a key histone residue.

It would also be interesting to understand the potential connec-

tion between asymmetric histone inheritance and another phe-

nomenon reported by several investigators: selective DNA strand

segregation (reviewed by Evano and Tajbakhsh, 2013; Rando,

2007; Tajbakhsh and Gonzalez, 2009). Recent development of

the chromosome orientation fluorescence in situ hybridization

(CO-FISH) technique (Falconer et al., 2010) allows study of

selective chromatid segregation at single-chromosome resolu-

tion. Using this technique in mouse satellite cells, it has been

demonstrated that all chromosomes are segregated in a biased

manner, such that pre-existing template DNA strands are pre-

ferentially retained in the daughter cell that retains stem cell

identity. Interestingly, this biased segregation becomes random-

ized in progenitor non-stem cells (Rocheteau et al., 2012). Using

CO-FISH in Drosophila male GSCs, sex chromosomes have

been shown to segregate in a biased manner. Remarkably,

sister chromatids from homologous autosomes have been

shown to co-segregate independent of any specific strand prefer-

ence (Yadlapalli and Yamashita, 2013). Such findings hint at a

possible epigenetic source guiding the coordinated inheritance

of Drosophila homologous autosomes. In many cases of biased

inheritance, researchers have speculated about the existence of

a molecular signature that would allow the cell to recognize

and segregate sister chromatids bearing differential epigenetic

information (Klar, 1994, 2007; Lansdorp, 2007; Rando, 2007; Yen-

nek and Tajbakhsh, 2013). However, the identity of such a signa-

ture has remained elusive. The work represented in this paper

provides experimental evidence demonstrating that a tightly-

controlled histone modification, H3T3P, is able to distinguish sis-

ter chromatids and coordinate their segregation.

Epigenetic processes play important roles in regulating stem

cell identity and activity. Failure to appropriately regulate epige-

netic information may lead to abnormalities in stem cell behav-

iors, which underlie early progress toward diseases such as

cancer and tissue degeneration. Due to the crucial role that

such processes play in regulating cell identity and behavior,

the field has long sought to understand whether and how stem

cells maintain their epigenetic memory through many cell divi-

sions. Our results here suggest that the asymmetric segregation

of pre-existing and newly synthesized H3-enriched chromo-

somes may function to determine distinct cell fates of GSCs

versus differentiating daughter cells.
EXPERIMENTAL PROCEDURES

Heat-Shock Scheme

Flies with UASp-FRT-H3-GFP-PolyA-FRT-H3- mKO or UASp-FRT-H3T3A/D-

GFP-PolyA-FRT-H3T3A/D-mKOmutant transgene were paired with nos-Gal4

drivers. Flies were raised at 18�C throughout development until adulthood to

avoid pre-flip (Tran et al., 2012). Before heat shock, 0- to 3-day-old males

were transferred to vials that had been air-dried for 24 hr. Vials were sub-

merged underneath water up to the plug in a circulating 37�C water bath for

2 hr and recovered in a 29�C incubator for indicated time before dissection

and immunostaining experiments.

Temperature Shift Assay to Induce Germline Tumor in Adult Flies

Flies with UASp-FRT-H3-GFP-PolyA-FRT-H3- mKO or UASp-FRT-H3T3A/D-

GFP-PolyA-FRT-H3T3A/D- mKO paired with nos-Gal4, bam-Gal4, or Tj-Gal4

driver were raised at 18�C throughout development until adulthood. Newly en-

closed males were collected and shifted to 29�C for indicated time before

dissection and immunostaining experiments.

Immunostaining Experiments

Immunofluorescence staining was performed using standard procedures

(Hime et al., 1996; Tran et al., 2012). Primary antibodies were mouse anti-a

spectrin (1:50, DSHB 3A9), mouse anti-Fas III (1:50, DSHB, 7G10), mouse

anti-Armadillo (1:100; DSHB, N2 7A1 clone), rabbit anti- H3T3P (1:200, Milli-

pore 05-746R), mouse anti-H3S10P (1:2,000; Millipore, #05-806), chicken

anti-CID (1:100; gift from Dr. Sylvia Erhardt, University of Heidelberg, Ger-

many), and rabbit anti-Vasa (1:200; Santa Cruz SC-30210). Secondary anti-

bodies were the Alexa Fluor-conjugated series (1:200; Molecular Probes). Ly-

sotracker (Invitrogen L7528) is applied according to manufacturer

recommendation. Images were taken using the Zeiss LSM 510 META or Zeiss

LSM 700 Multiphoton confocal microscope with a 403 or 633 oil immersion

objectives and processed using Adobe Photoshop software.

EdU Incorporation to Label GSC-GB Pair at S Phase

EdU labeling of the GSC-GBpairs at S phasewas performed usingClick-iT EdU

Alexa Fluor 647 Imaging Kit (Life Science C10640) according to manufacturer’s

instructions. Dissected testes were immediately incubated in S2 medium with

100 mM EdU for 30 min at room temperature. The testes were subsequently

fixed and proceed to primary antibodies (anti-FasIII, anti-a spectrin and anti-

Vasa) incubation. Fluorophore conjugation to EdU was performed along manu-

facturer’s instructions and followed by secondary antibodies incubation.

The addition of EdU facilitates recognition of the GSC-GB pairs undergoing

active DNA synthesis from those without EdU, which might be arrested due to

the heat-shock treatment. The cell-cycle progression is important for the

incorporation and segregation of pre-existing versus newly synthesized H3.

Quantification of GFP and mKO Intensity

No antibody was added to enhance either GFP or mKO signal. Values of GFP

and mKO intensity were calculated using Image J software. DAPI signal was

used to determine the area of nucleus for measuring both GFP and mKO fluo-

rescent signals, the raw reading was subsequently adjusted by subtracting

fluorescence signals in the hub region used as background in both GSC and

GB nuclei and compared between each other.
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