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Abstract

The main goal of this article is to relate asymptotic geometric properties on a tower of coverings of
a non-compact Kähler manifold of finite volume with reasonable geometric assumptions to its universal
covering. Examples to which our findings are applicable include moduli spaces of hyperbolic punctured
Riemann surfaces and Hermitian locally symmetric spaces of finite volume.
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1. Introduction

1.1

Let M be a complex manifold. By a tower of coverings of M , we mean a sequence of finite
coverings Mi+1 → Mi with M0 = M , such that π1(Mi+1) is a normal subgroup of π1(M1) of
finite index and ∩

∞

i=0 π1(Mi ) = {1}.An interesting problem is that of how to relate the geometric
properties of Mi to M, the universal covering of M. The case where M is compact has been an
object of study for a long time; cf. [6,7,13,11,19,21,22,26,25,27,28] and many more.

The study for a general non-compact M of finite volume with respect to some complete
Kähler metric has been limited. Since many interesting geometric and arithmetic objects arise
as non-compact complex manifolds, it is natural and meaningful to ask whether similar results
hold for non-compact manifolds under mild restrictions. In fact, the paper grows out of our
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curiosity to understand the corresponding asymptotic behavior for general moduli spaces of
hyperbolic punctured Riemann surfaces. Further motivation comes from the desire to understand
whether asymptotic properties satisfied by compact Hermitian locally symmetric spaces of non-
compact type as studied in [7,25,27,28] are also satisfied by non-compact ones. For non-compact
Hermitian locally symmetric spaces of finite volume, results concerning asymptotic growth of
Betti numbers similar to the results of [6] have been obtained by [2,5,12,23], but results related
to [7,25,27], or [28] appear to be open up to now. Our main goal in this paper is to present a
formulation which is applicable to general non-compact manifolds with reasonable restrictions,
which in particular includes the two classes of manifolds mentioned above.

The usual difficulty in discussing asymptotic growth of geometric quantities such as coho-
mology on a tower of non-compact manifolds is that in general a large proportion of the quantity
may escape to infinity as one takes an appropriate limit. We show that the difficulty can be over-
come under reasonable conditions on the manifolds. Specifically, we assume that the manifolds
involved are geometrically finite or quasi-projective, to be explained in 2.1. These conditions are
natural and are satisfied by both moduli spaces of hyperbolic Riemann surfaces and Hermitian
locally symmetric spaces of finite volume.

As a result, we are able to generalize estimates from towers of compact manifolds to
similar towers of non-compact manifolds, such as through the relation between the growth of
Betti numbers with respect to volume and the L2 Betti numbers (von Neumann dimensions),
convergence of Bergman kernels, and equidistributions of pluricanonical sections. We also verify
that the canonical sections of a sufficiently large cover in a tower of quasi-projective varieties give
rise to an immersion of the manifold into some projective space.

It is a pleasure for the author to thank Gopal Prasad for helpful comments on the exposition
of the paper. The author is also grateful to the referee for pointing out numerous misprints in an
early version of this paper and providing constructive suggestions.

2. Statement of the results

2.1

Suppose M is a complex manifold equipped with a Kähler metric g of finite volume. We
denote the Kähler form of g by ω. Let M be the universal covering of M.

Definition. We say that (M, g) is geometrically finite if
(i) the volume of M with respect to g is finite,
(ii) the Riemannian sectional curvature of g is uniformly bounded from above, and
(iii) the injectivity radius of M is uniformly bounded from below on M .

As usual, we say that M is quasi-projective if it can be written as M = M − D, where M is a
projective algebraic manifold, and D is a divisor on M . If M is quasi-projective, using resolution
of singularities we can choose M in such a way that D = M − M is a divisor with normal
crossings. Denote by ∆ the unit disk in C and by ∆∗ the punctured unit disk. We may cover a
neighborhood of D in M by a finite number of open sets of the form U = ∆n−k

× (∆∗)k , where
n > k > 1. Clearly M is covered by a finite number of U as above if we allow n > k > 0.

2.2

Suppose that there exists a tower of coverings of M as mentioned in 1.1. We let Γ = π1(M)
be the fundamental group of M. Let Γ1 = Γ and Γ1 < · · · < {1} be a tower of normal subgroups
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of Γ corresponding to an infinite sequence of normal coverings with finite index of M , such
that ∩

∞

i=0 Γi = {1}. In other words, the fundamental group is residually finite. Let Di be a
fundamental domain of Γi . Since we are taking a tower of normal coverings, we may assume
that the fundamental domains Di of Γi are nested in the sense that Di ⊂ Di+1. As ∩i Γi = 1,M = ∪i Di . If M1 is quasi-projective, each M j for j > 1 is quasi-projective as well.

2.3

Denote by H p
(2)(N ) the space of L2 harmonic p-forms on a complete Riemannian manifold

N , with its dimension denoted by bp
(2)(N ). If, moreover, N is a complete Kähler manifold, we

let H p,0
(2) (N ) be the space of L2-holomorphic p-forms on a manifold N , which, by the Kähler

identity, is isomorphic to H0,p
(2) (N ). We denote by h p,0

(2) (N ) its dimension.

Let D be a fundamental domain of π1(N ) in N . The von Neumann dimension of H p,0
(2) (

N )
with respect to N is defined as


D B p,0N (x), where B p,0N (x) = B p,0N (x, x) is the trace of the

Bergman kernel as defined in 3.1, and is denoted by h p,0
v,(2)(

N ).We may also consider them as the
dimension of the corresponding Dolbeault cohomology from the Leray isomorphism. Similarly,
we define the von Neumann dimension of the space of L2d-harmonic forms p on N , and denote
the dimension by bp

v,(2)(
N ).

2.4

To relate geometric properties of a tower of quasi-projective manifolds to its universal
covering, we begin with some qualitative asymptotic statements.

Definition. We say that a complete manifold N of complex dimension n satisfies cohomology
condition C if H p,0

(2) (
M) = 0 for p < n and Hn,0

(2) (
M) ≠ 0.

For a tower of compact Kähler manifolds, the following result is Theorem 1.3 of [7]; see also
[21] for the case of Riemann surfaces. It also follows immediately from Theorem 1.1 of [27],
since part (b) is an immediate consequence of part (a) as illustrated by the last sentence in 3.4.
The interest in this article is in the non-compact version.

Theorem 1. Let M be a complex manifold of complex dimension n equipped with a Kähler
metric which is geometrically finite. Assume that M supports a tower of normal coverings Mi of
M. Assume that M satisfies the cohomological condition C. Then for each 0 6 p 6 n:

(a)

lim
i→∞

h p,0
(2) (Mi )

[π1(M) : π1(Mi )]
= h p,0

v,(2)(
M). (1)

(b) For each point x ∈ D ⊂ Di ⊂ M, the Bergman kernels satisfy

lim
i→∞

B p,0
Mi
(x) = B p,0M (x). (2)

Remarks. (a) As mentioned earlier, the result for M compact is already known in various cases
(cf. for instance [27]). From this point onward, we will focus on the non-compact cases.
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(b) The existence of a tower of coverings on a manifold is not always guaranteed. On the other
hand, there are lots of natural examples supporting such towers and moreover satisfying other
conditions stated in the theorem, including Hermitian locally symmetric spaces, moduli spaces
of Riemann surfaces with punctures which are hyperbolic, and manifolds with non-positive
sectional curvature. We refer the readers to Section 4 for the details. Furthermore we only focus
on normal coverings of M . We refer the readers to [20] for discussions about the necessity of
such conditions.

(c) As will be clear from the proof, the same argument also implies that for a tower of (non-
compact) manifolds Mi for which the universal covering M satisfies bp

v,(2)(
M) = 0 for p ≠ n,

we conclude that

lim
i→∞

bp
(2)(Mi )

[π1(M) : π1(Mi )]
= bp

v,(2)(
M)

for all p.

(d) In the case of compact Hermitian locally symmetric spaces of non-compact type, the paper of

Kazhdan in [11] gives the first result observing that limi→∞

hn,0
(2) (Mi )

[π1(M):π1(Mi )]
> 0, which was later

proved also for non-compact Hermitian locally symmetric spaces by Kazhdan [12]; see also [23],
page 149, Corollary 1. Theorem 1(a) and (b) can be considered to be more precise versions of
the above results and are applicable to examples such as moduli spaces of curves with punctures;
cf. 5.2.

2.5

From the point of view of automorphic forms or cusp forms, the following result may be
interesting.

Theorem 2. Let M = M − D be a quasi-projective variety equipped with a Kähler metric which
is geometrically finite. Assume that M supports a tower of normal coverings Mi of M. Let K be
the canonical line bundle on M. Let L is a positively curved Hermitian line bundle on M. Then

limi→∞

h0
(2)(Mi ,K+L)

[π1(M):π1(Mi )]
= h0

v,(2)(
M, K + L).

Remarks. (a) Classical automorphic forms on Hermitian symmetric spaces of non-compact type
correspond to L = ℓK or K + L = (ℓ + 1)K , where ℓ is a positive rational number for which
ℓK is a line bundle on Mi for i sufficiently large.

(b) The same formulation is applicable to cusp forms, which can be considered as the space of
pluri-logarithmic canonical forms vanishing at the compactifying divisor.

(c) The proof of Theorem 2 for cusp forms for non-compact Hermitian locally symmetric spaces
of finite volume has been given in various settings in the work of [12,2,5,23].

2.6

Recall that the Bergman metric of a complex manifold can be defined as
√

−1∂∂ log BM ,
where BM = Bn,0

M . For a general complex manifold, the (1, 1)-form gives rise to a pseudo-metric
which may not be positive definite.



1200 S.-K. Yeung / Advances in Mathematics 230 (2012) 1196–1208

The following is a result used to recover the Killing metric on a Hermitian symmetric space.

Theorem 3. Let M be a quasi-projective variety supporting a tower of coverings as studied
in Theorem 2. Then

√
−1∂∂ log BMi converges on compacta to the Bergman metric on M.

If M is a Hermitian locally symmetric space, the Bergman metric is just the invariant Killing
metric up to a normalizing constant. For the special case where M is a compact hyperbolic
Riemann surface, the above theorem was a theorem of Rhodes [21]. Donnelly [7] generalized
the result to a compact Hermitian locally symmetric space of non-compact type. The theorem
here covers non-compact Hermitian locally symmetric spaces of finite volume as well as moduli
spaces of curves with punctures.

2.7

We would consider two applications of the earlier results to Hermitian locally symmetric
spaces and moduli spaces of curves. In both cases, the universal covering is biholomorphic to a
bounded domain in some Cn . First of all, Theorem 3 leads immediately to equidistribution of a
generic L2-section of the canonical line bundle. The result for a compact tower has been achieved
by To in [25]; see also [24] for formulations in related directions.

Theorem 4. Suppose that we are given a tower of coverings of Hermitian locally symmetric
spaces or moduli spaces of punctured Riemann surfaces as discussed earlier. Denote by Zs the
current of integration associated with the zero divisor of s ∈ H0

(2)(Mi , KMi ). We may regard Zs

as a random variable as s varies over the set of holomorphic sections of H0
(2)(Mi , KMi ) with

L2-norm 1. We refer the readers to 4.3 for more details on the settings. The expected value of Zs
satisfies

lim
i→∞

Ei (Zs) =
1

2π

√
−1∂∂ log B M .

The second application is the following. We have the following consequence, similar to the
results in [28] for cocompact lattices of Hermitian locally symmetric spaces.

Theorem 5. Let Mi be a tower of coverings as studied in Theorem 4. There exists io > 0 such
that for i > io, global L2-holomorphic sections in Γ (Mi , KMi ) give rise to a holomorphic
immersion of Mi into some projective space.

Note that the point of interest here is that sections of KMi instead of multiples of KMi give
the immersion of Mi .

3. Bergman kernels and asymptotic results

3.1

In this section, M is a complex manifold of complex dimension n as studied in Section 2.
Let us recall some standard terminologies. Let ϕ ∈ H p,0

(2) (M). The L2-norm of ϕ is defined
by

∥ϕ∥
2

=


M
ϕ ∧ ∗ϕ, (3)
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which can also be expressed as
M

|ϕ|
2

=


M

|ϕ|
2
gω

n, (4)

where | · |g is the norm with respect to the Kähler metric g associated with ω, and ωn is the
volume form of the metric g on M.

Let { fi } be an orthonormal basis of H p,0
(2) (M). The Bergman kernel is defined to be

B p,0
M (x, y) =


i

fi (x) ∧ ∗ fi (y),

where ∗ is the Hodge operator. Thus we are regarding B p,0
M as a section of p∗

1Ω
p,0
M ⊗ p∗

2Ω
n−p,n
M ,

where pi is the projection of M × M into the i th factor.
We are mainly interested in the trace of the kernel, B p,0

M (x) := B p,0
M (x, x). From the

definition,

h p,0
(2) =


M

B p,0
M (x, x). (5)

As the Bergman kernel is independent of the basis, for each fixed point x ∈ M,

B p,0
M (x, x) =

 sup
f ∈H p,0

(2) (M),∥ f ∥=1

| f (x)|2g

ωn
= sup

f ∈H p,0
(2) (M),∥ f ∥=1

| f (x)|2.

Here by abuse of the notation, we denote | f (x)|2gω
n by | f (x)|2. Note that the spaces of (n, n)-

forms are pointwise one dimensional. In the same manner, for two (p, 0)-forms f1 and f2, we
say that | f1|

2
= f1 ∧ ∗ f1 6 | f2|

2
= f2 ∧ ∗ f2 if | f1|

2
g 6 | f2|

2
g.

For p = n, we may also write

Bn,0
M (x, x) = sup

f ∈H0
(2)(M,KM ),∥ f ∥=1

| f (x)|2.

3.2

In this section, we do not need to assume that the manifold M involved is quasi-projective, but
assume that the Kähler metric involved is geometrically finite and the universal covering satisfies
cohomology condition C. We begin with the following observation.

Lemma 1. Let x ∈ M. Identify x with a point (still denoted by) x ∈ D ⊂ Di on the universal
covering M for all i . Then for 0 6 p 6 n, where n = dimCM, we have

lim sup
i→∞

B p,0
Mi
(x) 6 B p,0M (x).

Proof. We may assume that B(p,0)Mi
(x) is realized by | fi,x (x)|2 for some fi,x ∈ H p,0

(2) (Mi ) with
∥ fi,x∥L2(Mi )

= 1. Suppose that lim supi→∞ | fi,x (x)| = A. Consider the sequence of forms fi,x .
We are going to show that fi,x converges on compacta to f∞,x with L2-norm bounded from
above by 1.
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Let V be any relatively compact set of M . Note that we may assume that Di+1 ⊂ Di . Since
∪i Di = M from the definition, we conclude that V ⊂ Di for all i sufficiently large.

Now we claim that, taking a subsequence if necessary, the sequence fi,x |V is equicontinuous.
Let χDi be the characteristic function on Di . By considering χDi

fi,J,x we may regard fi,x as a
function on Di . Taking a subsequence if necessary, we know that as elements in the Hilbert space
H p,0
(2) (Di ), the fi,x form a Cauchy sequence as i → ∞ for fixed x . In particular, given any ϵ > 0,

there exists N > 0 such that ∥ fk,x − f j,x∥D 6 ϵ if k > j > N . The same conclusion holds
when D is replaced by Di . As V ⊂ Di for i sufficiently large, we conclude that the L2-norm of
(fk,x − f j,x )|V is bounded by ϵ < 1.

Since M has bounded geometry, the norm square of a harmonic (p, 0)-form ϕ satisfies a
subelliptic differential inequality of the form

∆|ϕ|
2
g + k|ϕ|

2
g > 0

(cf. page 204 of [27]). Then standard regularity theory implies that the pointwise norm of a form
ϕ is bounded by the L2-norm of ϕ as given on pages 203–205 of [27], from which we conclude
that the pointwise norm of fi,J,x is equicontinuous on V . Hence the claim follows.

A simple argument alternate to the above paragraph is as follows. Let Ux be a small
complex coordinate neighborhood of x on M . The earlier argument implies that the L2-norm
of (fk,x − f j,x )|Ux is bounded by ϵ < 1. On Ux , a holomorphic (p, 0)-form can be written
as


J

fi,J,x dz j1 ∧ · · · ∧ dz jp in terms of local coordinates, where the sum is over all p-tuples
J = ( j1, . . . , jp) with j1 < · · · < jp. Hence the convergence of fi,x on compacta is the
same as the convergence of the local holomorphic function fi,J,x . With the knowledge of
L2 bounds, the Maximum Principle (or Cauchy Estimate) implies the pointwise estimate of
| fk,J,x − f j,J,x | as well. Since V as a relatively compact set can be covered by a finite number
of such neighborhoods, the claim follows.

From the claim, we apply the Ascoli–Arzela Theorem to conclude that given any sufficiently
small ϵ > 0, there exists a subsequence of fix that converges on compacta to a holomorphic form
fx ∈ H p,0

(2) (
M), with | fx (x)| > A − ϵ and

∥ fx∥V 6 lim sup
i→∞

∥ fi,x∥V 6 1.

Since V is an arbitrary compact subset of M , by considering a nested exhaustive sequence of
such V , a standard argument involving a normal family of functions concludes the proof of
Lemma 1. �

3.3

Let us recall that on a complete Kähler manifold M of complex dimension n with finite
volume, the L2-arithmetic genus χ(2)(M) and L2 Euler–Poincaré characteristic e(2)(M) are
defined by

χ(2)(M) =

n
p=0

(−1)ph p,0
(2) (M),

e(2)(M) =

n
j=0

(−1)pb j
(2)(M),

when the expressions involved are finite. Similarly, we define the corresponding von Neuman
dimension of M with respect to π1(M) by
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χv,(2)(M) =

n
p=0

(−1)ph p,0
v,(2)(

M),
ev,(2)(M) =

n
j=0

(−1)pb j
v,(2)(

M).
Lemma 2. Assume that (M, g) is geometrically finite. Then:

(i) The arithmetic genus satisfies χv,(2)(M) = χ(2)(M).

(ii) The Euler–Poincaré number satisfies ev,(2)(M) = e(2)(M) = e(M).

Proof. If M is compact, this is just the Atiyah Covering Index Theorem [1]. For M non-compact,
of finite volume and geometrically finite, the results are still valid, as observed by Cheeger and
Gromov in [4]. The idea is to make use of a good exhaustion of the manifold, on which the
curvature and the second fundamental forms of the boundary of the exhaustion can be esti-
mated. Geometric finiteness properties of the Kähler metric are used to construct a good ex-
haustion. Then the usual proof of the Atiyah Covering Index Theorem in terms of the traces
of the heat kernels of differential forms can be adapted to this case, as given in Section 6
of [4]. �

3.4. Proof of Theorem 1

Note that from the definition,
Mi

B p,0
Mi
(x) = h p,0

(2) (Mi ).

Since the Bergman kernel is invariant under biholomorphism and the coverings involved are
normal coverings, the left hand side can be expressed as

[Γ ,Γi ]


M

B p,0
Mi
(x) = [Γ ,Γi ]


D

B p,0
Mi
(x).

From Lemma 1, we conclude that

h p,0
v,(2)(

M) =


D

B p,0M (x)

> lim sup
i→∞


D

B p,0
Mi
(x)

= lim sup
i→∞

h p,0
(2) (Mi )

[Γ ,Γi ]
.

Now for p < n, we know from the assumption that B p,0M = 0 and hence h p,0
v,(2)(

M) = 0. It

follows that lim supi→∞

h p,0
(2) (Mi )

[Γ ,Γi ]
= 0. Hence automatically

lim
i→∞

h p,0
(2) (Mi )

[Γ ,Γi ]
= h p,0

v,(2)(
M) for p < n. (6)
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On the other hand, from Lemma 2, for each i, χv,(2)(M) =
χ(2)(Mi )

[Γ ,Γi ]
, which implies that

n
p=0

(−1)ph p,0
v,(2)(

M) =

n
p=0

(−1)p
h p,0
(2) (Mi )

[Γ ,Γi ]
.

From Eq. (6), after taking the limit as i → ∞, this implies that limi→∞

hn,0
(2) (Mi )

[Γ ,Γi ]
= hn,0

v,(2)(
M).

This concludes (i) of Theorem 1. (ii) follows from (i) and the interpretation in (5). �

3.5. Proof of Theorem 2

The idea of the proof is similar to the one in Theorem 1. The Kähler metric g on M induces
a Hermitian metric gK on the canonical line bundle K of M . Note that gK is just the reciprocal
of the determinant of the Kähler metric in terms of local coordinates. Let h be a positively
curved metric on L . One defines the Bergman kernel of K + L on M as BM,K+L at x ∈ M
as


i | fi |

2
g,h(x), where { fi } is an orthonormal basis of K + L with respect to metrics gK · h

on K + L and the volume form of g on M . Similarly, | · |g,h denotes the pointwise norm of the
section with respect to gK and h.

Like for the case of differential forms, we denote the dimension of the space of L2-
holomorphic K + L valued forms on M by h p,0

(2) (M, K + L) and the von Neumann dimension

of K + L with respect to M by h p,0
v,(2)(

M, K + L) =


D B p,0M,K+L
(x), where D is a fundamental

domain of π(M) in M .
Since (L , h) is a positively curved Hermitian line bundle, the Kodaira Vanishing Theorem

implies the vanishing of h p,0
(2) (M, K + L) and h p,0

(2) (
M, K + L). The latter implies the vanishing

of B p,0M,K+L
and hence the vanishing of h p,0

v,(2)(
M, K +L). The rest of the proof is then the same as

that of Theorem 1. Again, the problem of non-compactness is overcome since only L2-sections
are concerned, and the good exhaustion of Cheeger and Gromov [4] can be applied to complete
the argument using the Atiyah Covering Index Theorem. �

3.6. Proof of Theorem 3

From Theorem 1(ii), we conclude that B p,0
Mi

converges pointwise on compacta to B p,0M . Note

that each B p,0
Mi
(x, y) as well as B p,0M expressed in terms of local coordinates in a coordinate

neighborhood is analytic as a function on Mi × Mi , where Mi is the complex manifold whose
underlying differentiable structure is the same as Mi but the complex structure is the complex
conjugate. The argument of Theorem 1 clearly also shows that B p,0

Mi
converges in Ck to B p,0M for

all k. Theorem 3 follows from C2 convergence. �

3.7

We would like to give a few remarks.

Remarks. (a) By considering Taylor series expansion, and noting that in terms of local
coordinates, the coefficients of B p,0

Mi
(x, y) in terms of the standard basis for the differential forms

is holomorphic in x but antiholomorphic in y, the convergence along the diagonal of M × M
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implies convergence everywhere on M × M . Hence one actually has analytic convergence on
M × M and hence along the diagonal as well. We refer the readers to [28] for details of the
arguments.

(b) As mentioned in the introduction, Kazhdan proved in [11] for compact Hermitian locally
symmetric spaces that hn,0

v,(2)(Mi ) > 0, or that the Bergman kernel on M is positive. This was
utilized to prove the following important result. Let us call a quotient of a Hermitian symmetric
space with respect to a cocompact arithmetic lattice an arithmetic variety, which is known to
be defined over some number field; cf. [11]. It is interesting to study, as a variety defined over
a number field, the conjugate of an arithmetic variety with an element in the absolute Galois
group. Kazhdan proved in [11] that such a conjugate is also an arithmetic variety—in other
words, another arithmetic quotient of a Hermitian symmetric space. For non-cocompact lattices,
proofs have been given by [12] and Nori and Raghunathan [18]. A completely different geometric
proof for all cases has been given in Mok and Yeung [17]. The readers may also consult [15] for
more exposition and remarks on this result of Kazhdan.

3.8

Let us now explain why the results of Theorem 1 are also applicable to harmonic forms and
the usual Betti numbers. In the first place, Lemma 1 is applicable to harmonic (p, q)-forms. The
reason is that a harmonic form satisfies an elliptic equation which becomes uniformly elliptic
on a relatively compact set V . Lemma 2 is also applicable for such harmonic forms, as seen by
considering χ (q) =

n
p=0(−1)ph p,q

(2) (M). The rest of the argument is the same as in the proof
of Theorem 2.

4. Hermitian locally symmetric spaces and moduli spaces of hyperbolic punctured
Riemann surfaces

4.1

In this section, we explain briefly the reason that non-compact Hermitian locally symmetric
spaces of non-compact type and moduli spaces Mg,n of hyperbolic Riemann surfaces of genus
g with n punctures satisfy the hypothesis required for our theorems.

A Hermitian locally symmetric space can be written as M = Γ \ G/K , where G is a semi-
simple Lie group, K is a maximal compact subgroup and Γ is a lattice such that M has finite
volume with respect to the invariant metric, the Bergman metric. For simplicity, we may just
consider a torsion-free lattice. Otherwise we have to consider some étale coverings in order to
resolve the singularities which are quotient singularities. The Bergman metric on such manifolds
has non-positive Riemannian sectional curvature and the volume is finite. It is well-known that
Γ is residually finite. Explicit examples are given by arithmetic lattices. A tower of coverings is
then obtained by considering a tower of congruence subgroups of Γ .

Since the universal covering of such a manifold is a bounded symmetric domain, it is clear
that the geometry is finite. Moreover, it is also well-known that the Bergman metric satisfies
Condition C (cf. [6,3] or [8]).

4.2

For the moduli space of Riemann surfaces Mg,n , it is known that the mapping class group
Γg,n of Mg,n is residually finite according to a result of Grossman (cf. [9]). Hence there exists
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a tower of normal subgroups Γi with Γ1 = Γg,n and ∩
∞

i=1 Γi = {1}. The universal covering of
Mg,n is the Teichmüller space Tg,n . The tower of normal coverings is denoted by Tg,n/Γi .

In general, Mg,n contains quotient singularities corresponding to the fixed points of the
mapping class group. The singularities can be resolved by considering level structure. We may
consider such a finite normal covering to begin our study. We refer the readers to [10] for
background on moduli spaces of curves.

It is also known that Mg,n supports a Bergman metric for which the moduli space, or the
Teichmüller space, satisfies Condition C and has finite geometry. See for example [29] or the
earlier work in [14].

4.3

We now elaborate on the setting and the proof of Theorem 4. The setting is similar to the one
given by To in [25]; see also [24]. It is known that the space of L2-sections on H0

(2)(Mi , KMi )

is of finite dimension. This follows for example from a well-known argument of Siegel (cf.
[16]). Let SH0

(2)(Mi , KMi ) be the set of holomorphic sections of the canonical line bundle with

L2-norm 1 on Mi , equipped with the standard Haar measureµi . Denote by D1,1(Mi ) the space of
(1, 1)-currents on Mi . The divisor of any s ∈ H0

(2)(Mi , KMi ) defines a current Zs ∈ D1,1(Mi ).

Then as s varies over the probability space (SH0
(2)(Mi , KMi ), µi ), Zs can be regarded as a

D1,1(Ms) valued random variable. The expectation value Ei (Zs) ∈ D1,1(Mi ) is defined by

(Ei (Zs), η) :=


s∈SH0

(2)(Mi ,KMi )


Zs

η


dµi (s),

for any test smooth (1, 1)-form η. Since we are considering a normal tower of coverings, the
expected values are invariant under deck transformations and we may just regard this as living
on M or its fundamental domain.

Proof of Theorem 4. Once we have Theorem 3, the argument of To in [25] can immediately
be applied to conclude the proof of Corollary 1. The argument is related to the arguments of
Shiffman and Zelditch in [24]. �

4.4. Proof of Theorem 5

Equipped with Theorem 3, the scheme of proof is similar to that for the cocompact case, as in
[28,30]. However, we need to pay attention to the fact that we are considering non-compact
manifolds in which the injectivity radius at a point x approaches zero as x approaches the
boundary of the manifold. We begin with the following observation.

Lemma 3. (i) A L2-holomorphic n-form on a quasi-projective M can be extended as a
holomorphic n-form to M .

Proof. The L2-norm of a holomorphic n-form φ is independent of a Kähler metric. By taking a
local section ψ of KM non-zero in a neighborhood of Ui of D and considering φ

ψ
, the extension

of φ is reduced to a standard result on the extension of L2-holomorphic functions. The lemma
follows. �

We now continue with the proof of Theorem 5. From Theorem 3, we have the convergence of
Bn,0

Mi
(x) to Bn,0M (x) on compacta. The following are the two steps that we need to give the proof

for i sufficiently large:
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(i) sections in H0
(2)(Mi , KMi ) generate KMi , and

(ii) sections in H0
(2)(Mi , KMi ) give an immersion of Mi .

Let us first consider (i). Let Ai be the base locus of Γ (Mi , KMi ). Ai is an algebraic subvariety,
which extends to an algebraic variety on a compactification of Mi according to Lemma 1.
Again for simplicity, we denote KMi by K .Ai is also the set on which the Bergman kernel
Bn,0

Mi
= Bn,0

Mi ,K
vanishes. Since Bn,0

Mi
is invariant under biholomorphism, and Mi → M is a normal

covering, it follows that Ai is invariant under the deck transformation. Hence Ai descends to a
subvariety denoted by the same symbol on M , or equivalently, on a fixed fundamental domain
D ⊂ M . Moreover, as the covering map is finite, the image on M extends to a subvariety in the
compactification M of M as well. Since an L2-holomorphic section of the canonical line bundle
on Mi pulls back to give a L2-holomorphic section on Mi+1, clearly Ai+1 ⊂ Ai on M . From
the Noetherian property, there exists io such that Ai = Ai+1 for i > io. Let us denote this set by
A on M . We are done if A ∩ M = ∅, which means that the base locus of K on Mi is trivial for
i > io. On the other hand, suppose that A ∩ M ≠ ∅. Let x ∈ A ∩ M and consider a relatively
compact neighborhood U of x in M. Pulling it back to the universal covering and using the same
symbols, we conclude that Bn,0

Mi
(x) = 0 for all i > io. It follows from Theorems 2 and 3 that

Bn,0M (x) = 0 since there is uniform convergence of Bn,0
Mi

to BM on the relatively compact set

U . On the other hand, for any bounded domain M , we can always find a non-trivial bounded
holomorphic function on M non-vanishing at any given point x ∈ M , which means that Bn,0M is
always non-vanishing. The contradiction establishes base point freeness of KMi for i > io.

As for (ii), it is equivalent to showing that there exists io > 0 such that for i > io and for
any given point x ∈ Mi , there exist two holomorphic sections fi , gi ∈ Γ (Mi , K ) such that
d( fi/gi ) is non-degenerate at x . Applying arguments similar to that of (i) above, in view of the
formulations in [28], we see readily the validity of (ii). �

Remark. In contrast to the case for compact Hermitian locally symmetric spaces treated in
[28,30], since we do not have a lower bound on the injectivity radius, separation of points by
the sections in H0

(2)(Mi , KMi ) is not clear. In particular, the argument in [30] comparing heat

kernels on M and Mi is not readily applicable. Additional arguments as in (i) and (ii) above are
not sufficient to guarantee separation of points on Mi in general. It can however be proved that
for i sufficiently large, global sections of KMi separate distinct points x, y ∈ Mi except possibly
for the case where πi (x) = πi (y), where πi : Mi → M is the covering map.
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