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In this paper, we modify the standard definition of moments of
ranks and cranks such that odd moments no longer trivially vanish.
Denoting the new k-th rank (resp. crank) moments by Nk(n) (resp.
Mk(n)), we prove the following inequality between the first rank
and crank moments:

M1(n) > N1(n).

This inequality motivates us to study a new counting function,
ospt(n), which is equal to M1(n) − N1(n). We also discuss higher
order moments of ranks and cranks. Surprisingly, for every higher
order moments of ranks and cranks, the following inequality holds:

Mk(n) > Nk(n).

This extends F.G. Garvan’s result on the ordinary moments of ranks
and cranks.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Ramanujan’s striking congruence properties of the partition function p(n),

p(5n + 4) ≡ 0 (mod 5),

E-mail addresses: andrews@math.psu.edu (G.E. Andrews), ChanSH@ntu.edu.sg (S.H. Chan), bkim4@seoultech.ac.kr (B. Kim).
1 The author was supported by National Security Agency, NSA grant H98230-12-1-0205.
2 The author was partially supported by Nanyang Technological University Academic Research Fund, project number RG68/10.
3 The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education, Science and Technology (NRF2011-0009199).
0097-3165/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcta.2012.07.001

https://core.ac.uk/display/81972506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jcta.2012.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:andrews@math.psu.edu
mailto:ChanSH@ntu.edu.sg
mailto:bkim4@seoultech.ac.kr
http://dx.doi.org/10.1016/j.jcta.2012.07.001


78 G.E. Andrews et al. / Journal of Combinatorial Theory, Series A 120 (2013) 77–91
p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11),

have motivated much research. In particular, many partition statistics have been studied to find
combinatorial explanations for the above three congruences. Among these, the rank introduced by
F. Dyson [10] and the crank defined by the first author and F.G. Garvan [2] have proven successful,
and their properties have been extensively studied. The rank of a partition λ is defined by λ1 − �(λ),
where λ1 is the largest part of λ and �(λ) is the number of parts of λ, and the crank c(λ) of a
partition λ is defined as

c(λ) :=
{

λ1, if r = 0,
ω(λ) − r, if r � 1,

where r is the number of 1’s in λ, and ω(λ) is the number of parts in λ that are strictly larger
than r. The moments of these partition statistics are the main objects of study in this article; they
were introduced by A.O.L Atkin and Garvan [5]. For n � 1, let N(m,n) denote the number of partitions
of n with rank m. For convenience, we define N(0,0) = 1, and N(m,0) = 0 otherwise. Then the rank
generating function R(z,q) is given by

R(z,q) =
∞∑

n=0

∞∑
m=−∞

N(m,n)zmqn =
∞∑

n=0

qn2

(zq)n(z−1q)n
. (1.1)

Here and in the rest of the article, we will use the following standard q-series notation:

(a)0 := 1,

(a)n := (1 − a)(1 − aq) · · · (1 − aqn−1), n � 1,

and

(a)∞ := lim
n→∞(a;q)n, |q| < 1.

For n > 1, let M(m,n) denote the number of partitions of n with crank m, while for n � 1, we set

M(m,n) =
{−1, if (m,n) = (0,1),

1, if (m,n) = (0,0), (1,1), or (−1,1),

0, otherwise.

Then the crank generating function C(z,q) is given by

C(z,q) =
∞∑

n=0

∞∑
m=−∞

M(m,n)zmqn = (q)∞
(zq)∞(z−1q)∞

. (1.2)

The j-th rank and crank moments are defined by, respectively,

N j(n) =
∞∑

k=−∞
k j N(k,n), and M j(n) =

∞∑
k=−∞

k j M(k,n).

Note that the above sums are actually finite since S(m,n) = 0 whenever |m| > n, where S = N (rank)
or M (crank). From the symmetry S(k,n) = S(−k,n), where S = N or M , as can be immediately seen
from their generating functions (1.1) and (1.2), N j(n) and M j(n) are zero whenever j is odd. To get
nontrivial odd moments, we define the following modified rank and crank moments:

N j(n) =
∞∑

k j N(k,n), and M j(n) =
∞∑

k j M(k,n).
k=1 k=1
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The new odd moments of the rank and crank are now nontrivial. Moreover, for even moments of rank
and crank, we see that

S2k(n) = 2S2k(n),

where S = N or M .
Define the generating functions

Rk(q) =
∞∑

n=1

Nk(n)qn, and Ck(q) =
∞∑

n=1

Mk(n)qn.

Our first result is the generating functions for these moments.

Theorem 1. The generation functions C1(q) and R1(q) are

C1(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2

1 − qn
, and R1(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2

1 − qn
.

Moreover, we can express the generating function for the first crank moment in terms of Eulerian
series, which has an interesting combinatorial interpretation.

Theorem 2.

C1(q) =
∞∑

k=1

kqk2

(q)2
k

. (1.3)

Remark. E. Deutsch posted the sequence for the coefficients of C1(q) and gave the generating function
in Theorem 2 in the Online Encyclopedia of Integer Sequences (A115995). V. Jovovic also studied the
sequence, in particular, he gave the generating function in Theorem 1.

Interestingly, there is an inequality between the first rank and crank moments.

Theorem 3. For all positive integers n,

M1(n) > N1(n).

Remark. In a recent paper [9, Eq. (37)], Dyson noted a connection between N S(m,n) and M1(n) >

N1(n). N S (m,n) is the number of certain vector partitions of n with spt crank m, which was recently
introduced by the first author, Garvan and Liang [4]. From [9, Eq. (37)], we see that

M1(n) − N1(n) =
∞∑

m=0

(
N S(m,n) − N S(m + 1,n)

) = N S(0,n), (1.4)

which implies Theorem 3 from the positivity of N S (0,n). Actually, our proof of Theorem 3 is very
similar to Dyson’s proof of the positivity of N S (m,n). In [10], Dyson asked for a further investigation
of M1(n) − N1(n).

Let spt(n) denote the number of smallest parts in the partitions of n. For example, the partitions
of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,
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Table 1
The number of strings in the partitions of 6.

Partitions of 6 Number of even strings Number of odd strings

6 0 0
5 + 1 0 1 (1 is the odd string)
4 + 2 1 (2 is the even string) 0
4 + 1 + 1 0 0
3 + 3 0 0
3 + 2 + 1 0 1 (3,2,1 is the odd string)
3 + 1 + 1 + 1 0 0
2 + 2 + 2 1 (2 is the even string) 0
2 + 2 + 1 + 1 0 0
2 + 1 + 1 + 1 + 1 0 0
1 + 1 + 1 + 1 + 1 + 1 0 0

and so spt(5) = 14. In [1], the first author showed a surprising relation between spt(n) and moments
as follows:

spt(n) = M2(n) − N2(n). (1.5)

In light of Theorem 3 and (1.5), it is natural to define ospt(n) as

ospt(n) = M1(n) − N1(n).

Before stating what ospt(n) counts, we first introduce some notation. We define an even string in
the partition λ as a sequence of the consecutive parts starting from some even number 2k + 2 where
the length is an odd number greater than or equal to 2k + 1 such that 2k + 1 and 2k + 2 plus the
length of the string (the number of consecutive parts) do not appear as a part. We also define an
odd string in the partition λ as a sequence of the consecutive parts starting from some odd number
2k + 1 where the length is greater than or equal to 2k + 1 such that the part 2k + 1 appears exactly
once and 2k + 2 plus the length of string does not appear as a part. Here, by “consecutive parts”, we
allow repeated parts. For example, in the partition 4 + 3 + 3 + 2 + 2 + 1, the parts 4, 3, 2, and 1 are
considered to be consecutive parts. Then, we can see that ospt(n) counts the number of strings in the
partitions of n.

Theorem 4. For all positive integers n,

ospt(n) =
∑
λ�n

ST(λ),

where the sum runs every partitions of n and ST(λ) is the number of even and odd strings in the partition λ.

We give two examples, n = 6 and n = 9. Since M1(6) = 16 and N1(6) = 12, we have ospt(6) = 4.
On the other hand, from Table 1, we see that the total number of strings in the partitions of 6 is 4.
Since M1(9) = 52 and N1(9) = 42, we have ospt(9) = 10. Here we list the partitions of 9 which have
even or odd strings in Table 2.

It is surprising that the crank moments are always larger than the rank moments for all orders.

Theorem 5. For all positive integers k and n,

Mk(n) > Nk(n).

For ordinary moments of ranks and cranks, it was conjectured that

M2k(n) > N2k(n),

for all n. This conjecture was recently proved by Garvan [13] using the symmetrized version of these
moments and employing a Bailey-pair argument. By the relation between the ordinary moments and
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Table 2
The number of strings in the partitions of 9.

Partitions of 9 Number of even strings Number of odd strings

8 + 1 0 1
7 + 2 1 0
6 + 2 + 1 0 1
5 + 3 + 1 0 1
5 + 2 + 2 1 0
4 + 4 + 1 0 1
4 + 3 + 2 1 0
4 + 2 + 2 + 1 0 1
3 + 3 + 2 + 1 0 1
2 + 2 + 2 + 2 + 1 0 1

our modified moments, it is clear that the above theorem gives a generalization of Garvan’s result and
our proof is relatively straightforward and elementary as we use neither the symmetrized moments
nor Bailey pairs.

This paper is organized as follows. In Section 2, we prove Theorems 1 and 2, and we discuss their
combinatorial implications. In Section 3, we prove Theorem 3. In Section 4, we prove Theorem 4
and give combinatorial identities derived from the theorems. In Section 5, we discuss higher order
moments of ranks and cranks. In particular, we give a proof of Theorem 5. We conclude the paper
with some remarks.

2. The first moments of rank and crank

In this section, we prove Theorems 1 and 2. After proving the theorems, their combinatorial im-
plications will be given. We start by proving Theorem 1.

Proof of Theorem 1. First, we derive the generalized Lambert series representation for C1(q). We
begin with the generalized Lambert series representation of the crank generating function [6],

(q)∞
(zq)∞(q/z)∞

= 1

(q)∞

∞∑
n=−∞

(1 − z)(−1)nqn(n+1)/2

1 − zqn
.

Applying the differential operator z ∂
∂z on both sides, we obtain

z
∂

∂z

(
(q)∞

(zq)∞(q/z)∞

)

= 1

(q)∞
z

∂

∂z

∞∑
n=−∞

(1 − z)(−1)nqn(n+1)/2

1 − zqn

= z

(q)∞

∞∑
n=−∞

(−1)n+1qn(n+1)/2(1 − qn)

(1 − zqn)2

= z

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 − qn)

(1 − zqn)2
− 1

z(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 − qn)

(1 − qn/z)2
. (2.1)

Since only the first expression contributes to positive powers of z when expressing C1(q) as a Laurent
series about z, we find that

C1(q) = lim
z→1

z

(q)∞

∞∑ (−1)n+1qn(n+1)/2(1 − qn)

(1 − zqn)2
= 1

(q)∞

∞∑ (−1)n+1qn(n+1)/2

1 − qn
.

n=1 n=1
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Next, we derive the generalized Lambert series representation for R1(q). We begin with the gen-
eralized Lambert series representation of the rank generating function [12, Eq. (7.11)]

∞∑
n=0

qn2

(zq)n(q/z)n
= 1

(q)∞

∞∑
n=−∞

(1 − z)(−1)nqn(3n+1)/2

1 − zqn
.

Applying the differential operator z ∂
∂z on both sides, we obtain

z
∂

∂z

( ∞∑
n=0

qn2

(zq)n(q/z)n

)
= 1

(q)∞
z

∂

∂z

∞∑
n=−∞

(1 − z)(−1)nqn(3n+1)/2

1 − zqn

= z

(q)∞

∞∑
n=−∞

(−1)n+1qn(3n+1)/2(1 − qn)

(1 − zqn)2
.

Similarly, as in the argument for C1(q),

R1(q) = lim
z→1

z

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2(1 − qn)

(1 − zqn)2
= 1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2

1 − qn
. �

We prove Theorem 2 by differentiating a q-series identity.

Proof of Theorem 2. From [7, Eq. (5.14)],

(aq)∞
∞∑

n=0

bnqn2

(q)n(aq)n
=

∞∑
n=0

(−1)n(b/a)nanqn(n+1)/2

(q)n
,

differentiating with respect to b gives

(aq)∞
∞∑

n=0

nbn−1qn2

(q)n(aq)n
=

∞∑
n=1

(−1)n(b/a)nanqn(n+1)/2

(q)n

n−1∑
k=0

−qk/a

1 − bqk/a
.

Letting b → a, we find

(aq)∞
∞∑

n=0

nan−1qn2

(q)n(aq)n
=

∞∑
n=1

(−1)n+1an−1qn(n+1)/2

1 − qn
.

Substituting a = 1 and dividing both sides by (q)∞ , we arrive at (1.3). �
Remark. Eq. (1.3) can be also obtained from the proof of [3, Eq. (3.3)]. By using [3, Eqs. (3.2), (3.3)]
and Eq. (1.4), we find the following interesting representation for R1(q),

R1(q) =
∞∑

n=1

(q)n − (q)2n

(q)2
n

.

Noting that

∞∑
n=1

(q)n − (q)2n

(q)2
n

= lim
z→1−

[
∂

∂z

(
(z − 1)

∞∑
n=1

(q)n − (q)2n

(q)2
n

zn

)]

= lim
z→1−

[
∂

∂z

(
− q2

1 − q
z +

∞∑{
(q)n−1 − (q)2n−2

(q)2
n−1

− (q)n − (q)2n

(q)2
n

}
zn

)]
,

n=2
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we also have the representation

R1(q) = − q2

1 − q
+

∞∑
n=2

(
(qn+1)n−2

(q)n−2
+ (qn+1)n−1

(q)n−1
− 1

(q)n

)
nqn.

Now we focus on the combinatorial interpretation of the first crank moment. By Theorem 1, we
find that

C1(q) = 1

(q)∞

∞∑
n=1

(−1)n+1q(n2+n)/2

1 − qn
= 1

(q)∞

∞∑
n=1

(−1)n+1
∞∑

k=0

q(n+1
2 )+kn. (2.2)

We can think of the right side as a weighted count of partitions as follows.

Theorem 6. For all positive integers n,

M1(n) =
∑
λ�n

∑
j�1

(−1) j+1 w j(λ),

where the sum runs over all partitions of n, and w j(λ) is defined by

w j(λ) =
{

λ j − λ j+1, if λ1 > λ2 > · · · > λ j > λ j+1,
0, otherwise,

for j � 1.

Proof. In (2.2),

q(n+1
2 )+kn

generates the partition π = (n + k,n + k − 1, . . . ,1 + k). We attach the parts of π onto λ, which is
generated by 1

(q)∞ , starting from the largest parts. For example, if λ = (2,2,1) and π = (6,5,4,3),
then the resulting partition is (8,7,5,3). In this way, we find a map

φ :
⋃

n,k∈N
Pn,k ×P → P,

where Pn,k is the set containing the partition (n + k,n + k − 1, . . . ,1 + k) and P is the set of ordinary
partitions. Now, we want to find the preimage φ−1(λ) of a fixed λ ∈ P . For this purpose, we define
�s(λ) as the largest positive integer j satisfying λ1 > λ2 > · · · > λ j > λ j+1. (For convenience, if the
number of parts in λ is �, we define λ�+1 = 0.) If there is no such j, we define �s(λ) to be zero. (This
is the case λ1 = λ2.) Suppose that �s(λ) = 0. Then, clearly, φ−1(λ) = ∅ since if π ∈ Pn,k is appended,
then the first n parts of the resulting partition should be distinct. Now suppose that �s(λ) > 0. Then,
for i � �s(λ), there are λi − λi+1 preimages in

⋃λi−λi+1−1
k=0 Pi,k × P . Finally, if i > �s(λ), then there is

no preimage in
⋃

k∈NPi,k . By taking the sign into the consideration, this completes the proof. �
Remark. In [14], the third author introduced the subpartitions with gap d. Then w j �= 0 only if λ has
the subpartition with gap 1 of length � j.

From Theorem 2, we derive the following interesting partition identity.

Theorem 7. For all positive integers n,

M1(n) =
∑
λ�n

∑
j�1

(−1) j+1 w j(λ) =
∑
λ�n

d(λ),

where d(λ) is the size of Durfee square of λ.
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Table 3
The partitions of 6 with three partition statistics in Theorem 7.

Partitions of 6 c(λ) d(λ)
∑

j�1(−1) j+1 w j

6 6 1 6
5 + 1 0 1 4 − 1
4 + 2 4 2 2 − 2
4 + 1 + 1 −1 1 3
3 + 3 3 2 0
3 + 2 + 1 1 2 1 − 1 + 1
3 + 1 + 1 + 1 −3 1 2
2 + 2 + 2 2 2 0
2 + 2 + 1 + 1 −2 2 0
2 + 1 + 1 + 1 + 1 −4 1 1
1 + 1 + 1 + 1 + 1 + 1 −6 1 0

This is a very curious combinatorial identity since even the positivity of
∑

λ�n

∑
j�1(−1) j+1 w j is

not clear at all, nor is the relationship of the sum of part size differences to cranks or Durfee squares.
In Table 3, we see that M1(6) = ∑

λ�6
∑

j�1(−1) j+1 w j(λ) = ∑
λ�6 d(λ) = 16.

3. Proof of Theorem 3

By Theorem 1, we see that

C1(q) − R1(q) = 1

(q)∞

∞∑
n=1

(−1)n+1q(n+1
2 ) (1 − qn2

)

1 − qn
.

We begin by noting that

∞∑
n=1

(−1)n+1q(n+1
2 )(1 − qn2

)

1 − qn
=

∞∑
n=1

(−1)n+1q(n+1
2 )

n−1∑
j=0

q jn =
∞∑
j=1

f j(q),

where

f j(q) =
∞∑

n= j

(−1)n+1q(n
2)+ jn =

∞∑
n=0

(−1)n+ j+1q(n+ j
2 )+ j(n+ j).

Theorem 8. For i � 0,

f2i+1(q) + f2i+2(q) =
∞∑
j=0

q6i2+8i j+2 j2+7i+5 j+2(1 − q4i+2)(1 − q4i+2 j+3)

+
∞∑
j=0

q6i2+8i j+2 j2+5i+3 j+1(1 − q2i+1)(1 − q4i+2 j+2). (3.1)

The above theorem is a special case of Theorem 12, and so we omit the proof.

Corollary 9. 1
(q)∞ ( f2i+1(q)+ f2i+2(q)) has non-negative power series coefficients. In particular, 1

(q)∞ ( f1(q)+
f2(q)) has positive power series coefficients.

Proof. Clearly, if a and b are integers satisfying 0 < a < b, then

(1 − qa)(1 − qb)

(q)∞
=

∞∏
n=1

n �=a,b

1

1 − qn
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has non-negative power series coefficients, and this fact proves the first claim. Note that 1
(q)∞ ( f1(q)+

f2(q)) contains the term

q

(q)∞
((

1 − q2)(1 − q4)).
When expressed as a power series, this term has positive coefficients for all positive powers of q. This
completes the proof of the second claim. �

Since

C1(q) − R1(q) = 1

(q)∞

∞∑
j=1

f j(q) = 1

(q)∞

∞∑
j=0

(
f2 j+1(q) + f2 j+2(q)

)
,

Corollary 9 implies Theorem 3.

4. The ospt(n) function

In this section, we investigate the combinatorial implications of the result in the previous section,
which leads us to define ospt(n). To prove Theorem 4, we restate (3.1) by factoring (1 − q4i+2) into
(1 − q2i+1)(1 + q2i+1) in the first sum.

f2i+1(q) + f2i+2(q) =
∞∑
j=0

q(2i+2)+(2i+3)+···+(4i+2 j+2)
(
1 − q2i+1)(1 − q4i+2 j+3)

+
∞∑
j=0

q(2i+1)+(2i+2)+···+(4i+2 j+1)
(
1 − q2i+1)(1 − q4i+2 j+2)

+
∞∑
j=0

q(2i+1)+(2i+2)+···+(4i+2 j+2)
(
1 − q2i+1)(1 − q4i+2 j+3)

=
∞∑
j=0

q(2i+2)+(2i+3)+···+(4i+2 j+2)
(
1 − q2i+1)(1 − q4i+2 j+3)

+
∞∑
j=1

q(2i+1)+(2i+2)+···+(4i+ j)(1 − q2i+1)(1 − q4i+ j+1).
We define ST2i(q) (ST2i+1(q), resp.) as the first (second, resp.) sum in the above equation. Then, we
see that

1

(q)∞

∞∑
k=0

ST2k(q)

is the generating function for the number of even strings in the partitions of n. Similarly, we can
think of

1

(q)∞

∞∑
k=0

ST2k+1(q)

as the generating function for the number of odd strings in the partitions of n, which completes the
proof of Theorem 4.

We give another partition theoretic interpretation for ospt(n). By Theorem 3, we see that
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C1(q) − R1(q) = 1

(q)∞

∞∑
n=1

(−1)n+1q(n2+n)/2(1 − qn2
)

1 − qn

= 1

(q)∞

∞∑
n=1

(−1)n+1q(n2+n)/2(1 + qn + q2n + · · · + qn2−n).
From this, we deduce a representation of ospt(n) as a weighted count of partition.

Theorem 10. For all positive integers n,

ospt(n) =
∑
λ�n

∑
j�1

(−1) j+1 w ′
j(λ),

where w ′
j(λ) = min{w j(λ), j}.

The proof is very similar to that of Theorem 6. The only difference is that we now have∑n−1
k=0 q(n+1

2 )+kn instead of
∑∞

k=0 q(n+1
2 )+kn . As a result, the map φ in the proof of Theorem 6 changes

to

φ :
⋃

n,k∈N
0�k�n−1

Pn,k ×P → P.

The different domain gives a restriction on the number of preimages of φ.

5. Higher order moments

An easy observation from (2.1) gives

Ck(q) = lim
z→1

(
z

∂

∂z

)k−1 z

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 − qn)

(1 − zqn)2

= 1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 − qn) lim
z→1

(
z

∂

∂z

)k−1 z

(1 − zqn)2
.

We may evaluate Rk(q) similarly.
Let A1(t) = 1. By a simple consequence of mathematical induction and the quotient rule for differ-

entiation, we see that(
z

∂

∂z

)k−1 z

(1 − zqn)2
= z Ak(zqn)

(1 − zqn)k+1
,

where

Ak(t) = Ak,0 + Ak,1t + · · · + Ak,k−1tk−1

is a polynomial of degree k − 1 with Ak,m satisfying the recursive relation

Ak,m = (m + 1)Ak−1,m + (k − m)Ak−1,m−1 (1 �m � k − 1).

It is easy to verify that Ak+1(t) satisfies the recursive formula,

Ak+1(t) = (1 + kt)Ak(t) + t(1 − t)A′
k(t) (k � 1).

Comparing with [11, Eq. (3.5)], we see that the polynomials Ak(t) (k � 1) are (called) Eulerian poly-
nomials and all the coefficients Ak,m for 1 � m � k − 1, are Eulerian numbers, and are positive
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integers. Thus we have the following corollary, where the double-sum expressions follow from
[11, Eq. (3.2)],

Ak(t)

(1 − t)k+1
=

∞∑
m=0

(m + 1)ktm,

which also follow directly from [12, Eq. (7.20), Eq. (7.4)].

Corollary 11. Let k be a fixed positive integer and Ak(t) be the Eulerian polynomial of degree k − 1. Then

Ck(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2

(1 − qn)k
Ak

(
qn) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(n−1)/2(1 − qn) ∞∑
m=0

mkqnm,

Rk(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2

(1 − qn)k
Ak

(
qn)

= 1

(q)∞

∞∑
n=1

(−1)n+1qn(3n−1)/2(1 − qn) ∞∑
m=0

mkqnm.

We list the first few examples of Ck and Rk .

C2(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 + qn)

(1 − qn)2
,

C3(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1 + 4qn + q2n)

(1 − qn)3
,

R2(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2(1 + qn)

(1 − qn)2
,

R3(q) = 1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2(1 + 4qn + q2n)

(1 − qn)3
.

From the second equalities in Corollary 11, we can deduce two more partition theoretic interpre-
tations for the moments of ranks and cranks. A part n of a partition λ is called a crank piece if every
number smaller than n also appears as a part. We note a partition λ could contain many crank pieces.
We also say a part n of a partition λ is called a rank piece if n consecutive numbers starting from n
appear as parts in the partition. We define cp(λ) (rp(λ), resp.) as the set of different crank (rank,
resp.) pieces in the partition λ. By observing that

Ck(q) =
∞∑

n=1

1 − qn

(q)∞
(−1)n+1q1+2+···+(n−1)

∞∑
m=0

mkqnm,

Rk(q) =
∞∑

n=1

1 − qn

(q)∞
(−1)n+1qn+(n+1)+(n+2)+···+(2n−1)

∞∑
m=0

mkqnm,

we can deduce that

Mk(n) =
∑
λ�n

∑
r∈cp(λ)

(−1)r+1mr(λ)k,

Nk(n) =
∑
λ�n

∑
r∈rp(λ)

(−1)r+1(mr(λ) − 1
)k

,
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Table 4
The partitions of 6 with rank and crank pieces.

Partitions of 6 c(λ) rank cp(λ) rp(λ)

6 6 5 ∅ ∅
5 + 1 0 3 {1} {1}
4 + 2 4 2 ∅ ∅
4 + 1 + 1 −1 1 {1} {1}
3 + 3 3 1 ∅ ∅
3 + 2 + 1 1 0 {1,2,3} {1,2}
3 + 1 + 1 + 1 −3 −1 {1} {1}
2 + 2 + 2 2 −1 ∅ ∅
2 + 2 + 1 + 1 −2 −2 {1,2} {1}
2 + 1 + 1 + 1 + 1 −4 −3 {1,2} {1}
1 + 1 + 1 + 1 + 1 + 1 −6 −5 {1} {1}

where mr(λ) for the multiplicity of parts of size r in the partition λ and we use the convention that
the empty sum equals 0 and 0� = 0 for all positive integer �. In Table 4, we list cp(λ) and rp(λ) for
the partitions of 6.

By Corollary 11, we see that

Ck(q) − Rk(q) = 1

(q)∞

∞∑
n=1

(−1)n+1q(n+1
2 ) Ak

(
qn) (1 − qn2

)

(1 − qn)k
.

We begin by noting that

∞∑
n=1

(−1)n+1q(n+1
2 ) Ak(qn)(1 − qn2

)

(1 − qn)k
=

∞∑
n=1

∞∑
m=0

amqmn(−1)n+1q(n+1
2 )

n∑
j=1

q( j−1)n

=
∞∑

m=0

am

∞∑
j=1

f j,m(q),

where

f j,m(q) =
∞∑

n= j

(−1)n+1q(n
2)+( j+m)n =

∞∑
n=0

(−1)n+ j+1q(n+ j
2 )+( j+m)(n+ j),

and the am ’s are the coefficients of tm in the series expansion of Ak(t)
(1−t)k−1 . Since the coefficients of

Ak(t) are positive, it is easy to see that for k � 2, the am ’s are all positive. As in the argument for the
proof of Theorem 3, we see that the following theorem implies Theorem 5.

Theorem 12. For i,m � 0,

f2i+1,m(q) + f2i+2,m(q)

=
∞∑
j=0

q6i2+8i j+2 j2+7i+5 j+2mj+2mi+m+2(1 − q4i+m+2)(1 − q4i+2 j+m+3)

+
∞∑
j=0

q6i2+8i j+2 j2+5i+3 j+2mj+2mi+m+1(1 − q2i+1)(1 − q4i+2 j+m+2). (5.1)

Proof. The right side of (5.1) multiplied out is

∞∑
j=0

q6i2+8i j+2 j2+7i+5 j+2mj+2mi+m+2(1 − q4i+m+2 − q4i+2 j+m+3 + q8i+2 j+2m+5)
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+
∞∑
j=0

q6i2+8i j+2 j2+5i+3 j+2mj+2mi+m+1(1 − q2i+1 − q4i+2 j+m+2 + q6i+2 j+m+3)
=: (T1 − T2 − T3 + T4) + (S1 − S2 − S3 + S4).

An inspection immediately reveals that S4 = T2. Furthermore,

T4 − S2 + q6i2+7i+2mi+m+2

=
∞∑
j=0

q6i2+8i j+2 j2+15i+7 j+2mj+2mi+3m+7 −
∞∑
j=1

q6i2+8i j+2 j2+7i+3 j+2mj+2mi+m+2 = 0,

which follows from the fact that the second sum is seen to be identified with the first once we
replace j by j + 1 in the second sum. Hence, the right hand side of (5.1) is equal to

T1 − T3 + S1 − S3 − q6i2+7i+2mi+m+2

=
∞∑
j=0

q6i2+8i j+2 j2+15i+9 j+2mj+2mi+3m+9 −
∞∑
j=0

q6i2+8i j+2 j2+11i+7 j+2mj+2mi+2m+5

+
∞∑
j=0

q6i2+8i j+2 j2+5i+3 j+2mj+2mi+m+1 −
∞∑
j=0

q6i2+8i j+2 j2+9i+5 j+2mj+2mi+2m+3

=
∞∑
j=0

q(2 j+2i+3
2 )+(2i+2)(2 j+2i+3)+m(2 j+2i+3) −

∞∑
j=0

q(2 j+2i+2
2 )+(2i+2)(2 j+2i+2)+m(2 j+2i+2)

+
∞∑
j=0

q(2 j+2i+1
2 )+(2i+1)(2 j+2i+1)+m(2 j+2i+1) −

∞∑
j=0

q(2 j+2i+2
2 )+(2i+1)(2 j+2i+2)+m(2 j+2i+2)

= f2i+2,m(q) + f2i+1,m(q),

where in the first equality, we subtracted the term q6i2+7i+2mi+m+2 from T1 and then replaced j by
j + 1 in T1. �

In light of ospt(n), it is now natural to define

osptk(n) = Mk(n) − Nk(n).

To see what osptk(n) counts, we rewrite (5.1) by expressing (1−q4i+m+2) as (1−q2i+1)(1+q2i+m+1)+
q2i+1(1 − qm).

f2i+1,m(q) + f2i+2,m(q)

=
∞∑
j=0

q(2i+m+2)+(2i+m+3)+···+(4i+2 j+m+2)
(
1 − q2i+1)(1 − q4i+2 j+m+3)

+
∞∑
j=0

q(2i+m+1)+(2i+m+2)+···+(4i+2 j+m+2)
(
1 − q2i+1)(1 − q4i+2 j+m+3)

+
∞∑
j=0

q(2i+m+1)+(2i+m+2)+···+(4i+2 j+m+1)
(
1 − q2i+1)(1 − q4i+2 j+m+2)

+
∞∑
j=0

q(2i+1)+(2i+m+2)+(2i+m+3)+···+(4i+2 j+m+2)
(
1 − qm)(

1 − q4i+2 j+m+3).
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Then, for m � 1,

1

(q)∞
(

f2i+1,m(q) + f2i+2,m(q)
)

counts the number of (m, i)-strings in the partitions of n, where we define an (m, i)-string in the
partition λ as a sequence of consecutive parts satisfying one of the following conditions:

(1) If 2i + 1 is not a part of λ, then there are consecutive parts starting from either 2i + m + 1 or
2i + m + 2 such that the part exactly one bigger than the last part in the string does not appear
as a part, such that the number of consecutive parts is larger than or equal to 2i + 1, and such
that the number of consecutive parts is odd if the string starts from 2i + m + 2.

(2) If 2i + 1 is a part of λ, then there are consecutive parts starting from 2i + m + 2 of odd length
� 2i +1 such that m and the part exactly one bigger than the last part in the string do not appear
as a part.

We define, for m � 1

STm(λ) =
∑
i�0

the number of (m, i)-strings in the partition λ,

and ST0(λ) = ST(λ), then we have proven the following theorem.

Theorem 13. For all k,n � 1, we have

osptk(n) =
∑
λ�n

∑
m�0

am STm(λ),

where the am’s are the coefficients of tm in the Maclaurin series expansion of Ak(t)
(1−t)k−1 .

Remark. The referee pointed out that for m � 0,∑
λ�n

STm(λ) = N S(m,n),

where N S (m,n) is the number of certain vector partitions of n with spt crank m. Since N S (m,n) =
N S (−m,n) and N S(m,n) divides spt(5n + 4) into five equal classes [4, Theorem 1.1], this shows that∑

λ�n STm(λ) is a crank for the spt function in sense of that for 0 � i � 4,

ST(i,5,5n + 4) = 1

5
spt(5n + 4),

where

ST(i,5,n) =
∑
m∈Z

m≡i (mod 5)

∑
λ�n

ST|m|(λ).

(Similarly, for the congruences for spt(n) modulo 7.) We emphasize that
∑

λ�n STm(λ) does not rely
on vector partitions.

From the fact that spt(n) = ospt2(n) and A2(t) = 1 + t , we see that

spt(n) =
∑
λ�n

ST0(λ) + 2
∑
λ�n

∑
m�1

STm(λ),

which gives new enumeration for spt(n). Moreover, from the definition of ospt(n) and the parity result
of spt(n) [3, Theorem 1.3], we have the following parity result for ospt(n).
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Theorem 14. ospt(n) is odd if and only if 24n − 1 = p4a+1m2 for some prime p ≡ −1 (mod 24) and some
integers a and m with (p,m) = 1.

6. Concluding remarks

It would be very interesting to find bijective proofs for the results in this paper. In particular, it
would be nice if one could find a bijection for

ospt(n) = M1(n) − N1(n) =
∑
λ�n

ST(λ).

In a recent paper of K. Bringmann and K. Mahlburg [8], the authors obtained asymptotic formulas
for Mk(n), Nk(n), and osptk(n). In particular, they proved that

Mk(n) ∼ Nk(n),

which makes the inequality Mk(n) > Nk(n) more unexpected. They also showed that

ospt(n) ∼ 1

4
p(n),

which suggests the possibility that p(n) > ospt(n) holds for all positive integers n > 1.
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