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The ring QSym of quasi-symmetric functions is naturally the dual of the
Solomon descent algebra. The product and the two coproducts of the first (extend-
ing those of the symmetric functions) correspond to a coproduct and two products
of the second, which are defined by restriction from the symmetric group algebra.
A consequence is that QSym is a free commutative algebra. @ 1995 Academic

Press, Inc.

1. INTRODUCTION

Quasi-symmetric functions appear in the work of Thomas [T], Stanley
[St1; St2], Gessel [G1], in connection with enumeration of permutations,
Robinson-Schensted correspondence, reduced decompositions and P-
w—partitions.

The Solomon descent algebra ¥ appears in [S] and has been studied and
generalized in several papers [Mo; P; A, BBHT, B, MR].

A remarkable result of Gessel shows that there is a natural duality
between QSym and ¥, which relates the inner coproduct of QSym and the
product in ¥. The purpose of the present paper is to study further this
duality and to show that all the products and coproducts involved have a
natural counterpart in both algebras.

Besides its usual product, QSym has two coproducts F — F(x, y) and
F — F(xy), which extend those of its subring Sym of symmetric functions;
see [Ge, Z, Th]. The result of Gessel (see Theorem 3.2 below) is that
QSym*, with the product dual to the second coproduct, is naturally
isomorphic with ¥. We show that with the product dual to the first
coproduct, and coproduct dual to the product in QSym, QSym* is a
concatenation Hopf algebra, i.c., a free associative algebra with coproduct
arising from its structure of enveloping algebra of the free Lie algebra
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968 MALVENUTO AND REUTENAUER

(Theorem 2.1). Dualizing again, we conclude that QSym is a free commuta-
tive aigebra, and a free module over Sym (Corollary 2.2). In the next section,
we defineonZS = @ , . ,ZS, a Hopf algebra structure, which by restric-
tion to L gives the previous Hopf algebra structure of QSym*, identified
with ¥ (Theorem 3.3); the product in ZS is the convolution product, once
ZS 1is identified to a subspace of the endomorphisms of the tensor algebra
(S, acting by permutations of the coordinates in the tensor product).

In this paper, we consider several vector spaces over Q and free modules
over Z. All of these will be graded, of the form V= @ ,, V,, where V, is
the subspace of homogeneous elements of degree n in V; note that we
shall use the word “weight” instead of “degree.” The subspace V, will
always be finite-dimensional. We call dual of V the graded dual, that is,
the space V* = @ . V.5, where V,* is the usual dual of V,. We thus
have V** = I, canonically. Everything will be graded, e.g., End(}') means
@ .., End(V,), and so on. In most cases, V' will be a bialgebra or a Hopf
algebra. Then IV* is again one.

2. QUASI-SYMMETRIC FUNCTIONS

Following Gessel [G1], we define the ring of quasi-symmetric functions
(see also [R, Section 9.4]). Let X be an infinite fotally ordered set of
commuting variables and Z[ X] the ring of formal power series in these
variables over Z. Recall that an element of finite degree F = F(x) of
Z[ X ] is a symmetric function if whenever x,,..., X, ¥y,,..., ¥, are in X,
with the x’s distinct and the y’s distinct, and for any choice of positive
integers cy,..., ¢, the monomials x{* --- x;* and y{* --- y/* have the same
coefficient in F. Now, F (of finite degree) is a quasi-symmetric function if it
satisfies the weaker condition: for any x;, < - <x,and y, < .- <y, in
X and any positive integers ¢,,...,c,, these monomials have the same
coefficient in F.

We denote by Sym = Sym(x) and QSym = QSym(x) the set of symmet-
ric and quasi-symmetric functions. Both are subrings of Z[ X'], and QSym
is a subring of Sym.

The ring QSym is a free Z-module, with a basis (M) indexed by
compositions. Recall that a composition is a sequence C = (c,,...,¢;) of
positive integers (including the empty sequence); the weight of C is
ICl=¢, + - +c¢, and its length is {C) = k.

Gessel defines M, by

MC = Zx:'l x;('l\’
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where the sum is over variables in X subject to the condition x; < -+ <
x. Then (M) is a basis of QSym.

If Y is another infinite totally ordered set of commuting variables, then
we may identify QSym(x) and QSym(y) (in the same way one usually
identifies Sym(x) and Sym(y)). Indeed, one has simply to map M.(x) to
M_(y); then this mapping is well defined and an isomorphism of rings.

Thus, it makes sense to define, for any quasi-symmetric function F, the
quasi-symmetric function F(x, y), on the set of variables X U Y, totally
ordered by the orders of X and Y and by

x <y fxeX, yey. (2.1)

Then we can write

F(x,y) = LF(0)G(y) (22)

and this defines a coproduct

v: QSym — QSym ® QSym (2.3)
Foy(F) = ZFi®Gi'

This coproduct is coassociative, and with the co-unit £(F) = constant term
of F, QSym becomes a bialgebra over Z (we see later that it is actually a
Hopf algebra). We call y the outer coproduct.

Note that M, is homogeneous of degree |C|, so that QSym is a graded
space and its homogeneous subspaces are finite dimensional, as the spaces
considered at the end of the Introduction. Following the latter, we con-
sider its graded dual QSym*; since product and outer-coproduct of QSym
are homogeneous, QSym™* is also a bialgebra, with product and coproduct
A defined by : for any ¢, ¢ in QSym*, F, G in QSym, denoting by < , »
the pairing between QSym* and QSym,

(e, F) =(o @, y(F)), (A(¢),F®G)=(¢,FG). (24)

The co-unit £ is (@) = ¢(1).

Recall that if T is a set of noncommuting variables, then the free
associative Z-algebra Z{T) on T is a Hopf algebra, with co-unit £(P) =
constant term of P, coproduct 8(t) =t ® 1+ 1 ® ¢ for any ¢ in T, and
antipode S: t,...t, = (=1)"1, - ;. We call it the concatenation Hopf
algebra over Z. Similarly, one defines the concatenation Hopf algebra
over .

For the next results, we need to work over Q, instead of Z. We denote
by QF X, Symg and QSym, the corresponding algebras over Q.
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THEOREM 2.1. The bialgebra QSymYy, defined by (2.4) is canonically
isomorphic to the concatenation Hopf algebra QKT ), with T = {¢;, i = 1},
and t; of weight i.

Since (M) is a basis of QSym over Z, we may consider the dual basis
(M}) of QSym*. If D, E are two compositions, denote by DE the
composition obtained by concatenating D and E. We write below M, for
M

(n)*

Proof. 1. We show first that QSym™ is, as an associative algebra, freely
generated by the elements M¥, n > 1. This is a consequence of the
identity

ME = MM} (2.5)

for any compositions C, D, E with C = DE. Now (2.5) is by duality
equivalent to

y(M¢) = Z M, & Mg, (2.6)
C=DE
which we verify now. Let C = {c,,...,¢;). Then
Me(x) = Yoxi o xis,
where the summation is subject to the condition x, < -+ < x,, with each

x; in X. Thus by (2.1)

M(-(x,y) = Z Zx(,l ‘e x{{-lyi(-'}fll e y‘,i:k)

O<i<k
where the second summation is subject to x; < -+ <x;, y;, | < -+ <y,
with each x; in X and each y; in Y. In other words,
MC(x7y) = Z M(:'\ ..... t',)(x)M((Hl ..... C,\)(y)
O<i<k
= 2 My(x)M(y).
C=DE

which proves (2.6) by (2.2) and (2.3).
2. We show now that for any n > 1,

AM*Yy = Y, Mfe M. (2.7

k+il=n

By duality, this means that in a product M, M, expanded in the M. basis,
the element M, appears if and only if D = (k), E =(),and n =k + 1,
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and in this case, with coefficient 1. Let D = (d,,...,d)), E = (e,,...,¢)).
Then

£ —_ inix e x’fl,yfl e )jj,

where the variables are in X and subject to the condition x, < -+ <x,,
¥y < - <y. If iorj=2, then clearly no monomial x" appears in this
sum; hence M, does not appear in M,M,. If i =j =1, then D = (k),
E = (/), and

MpMeg=M:M, = Zkay’

— Zxk+l+ Zxkyl+ Zylxk

x<y x>y

=M+ My + My,

which proves the claim.
3. Define elements P of QSym* by their generating series in QSym*

n

[t (t is a new central variable):

Y. Pt =log(l + MFt + MFe? + ). (2.8)

i>1
We show that
A(PF)=Pf®1+1®PF. (2.9)

Indeed, we have (with M = 1)

L AP

i>1

= Aflog(1 + Mt + M}t> + -+ )) = log(ZA(M;*)r")
(EM*:" ® MFt ) = log((AZM:zk ® 1)(1 ® %:M,*z’))

(ZM*: ® 1) + log(l ® ZM* ’)

log( L MF*y @ 1+ 1@ log( 3 M*e')
=Y (P*®1+1®P ),
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where the third equality follows from (2.7) and the fifth because log(ab) =
log(a) + log(b) if a and b commute. This proves (2.9).
4. By expansion of (2.8), using (2.5), we find

(- 1)/((")-1
I(C)

- X

ICl=n

*
ME,

which shows that P* is an homogenecous element of degree n of QSym*
and that P* freely generates the associative algebra QSym*. Finally, (2.9)
shows that QSym* is the concatenation Hopt algebra generated by
PE, Py,

COROLLARY 2.2. As a commutative Q-algebra, QSymy, has a free gener-
ating set containing a free generating set of Symg,. In particular, QSymg, is a
free commutative algebra and a free module over Symg,.

Denote by C the reverse of the composition C.

Proof. 1. Recall that if Q(T) denotes the free associative Q-algebra
generated by T, with coproduct 8(t) =¢® 1 + 1 ® ¢, then its dual is a
free commutative algebra. A free generating set is obtained as follows: let
M(T) denote the set of words on T; then M(T) is a Q-basis of Q{T"). Let
L(T) denote the set of Lyndon words on 7 (we suppose that T is totally
ordered), and L(T)* the subset of the dual basis M(T)* corresponding to
L(T). Then L(T)* freely generates the dual of Q(T); see, eg., [R,
Theorem 6.1 (i), p. 125).

2. Taking the notations of the proof of Theorem 2.1, we take T =
{P*|i > 1}, naturally ordered. For a composition C, let P = P> ... P,
with C = (c,,...,¢;). Then M(T) = {P*[C} is a basis of QSym}. Let
{P-|C} denote its dual basis: it is a basis of QSymg. Let L be the set of
Lyndon compositions (a composition is a word on {1,2,...}, so we may
speak of Lyndon compositions). Then, by 1, {P. | C € L} freely generates
QSymg.

3. We compute P.. We have by (2.8)

Y M = exp( Y PJ-"‘tf), (2.10)

i»0 jz1

hence

E3

l(C)!PC

M= %

ICl=n
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This implies that for any composition D, one has

1
MD = (§D }‘—(‘E—"[—)—)‘PC, (211)

where C > D means that C is finer than D (3122 is finer than 44) and
where f(C,D) =UC)!--- IC)! with C =C, --- C, (concatenation of
compositions) and D = (|Cyl,...,|C,]); note that P* = PZ - PE.

By duality, (2.11) gives

1
P=Y WMD. (2.12)

Cz=D

In particular, for C = (n), since then C is the least fine composition of n,
we have

It is well known [M] that the M, are a free generating set of Sym,, which
concludes the proof. |

Following Gessel, we consider another basis (F.) of QSym, defined by

Fo= Y M,. (2.13)
D=C

If C=A(cy,...,cp), let I{C) be the subset of {1,...,|C| — 1} defined by
HC) ={c,ci + g0y + 0+, ). Similarly, let I(C) = IC) = {c,
+ o H e,y oo € {1, L, IC = 1) We denote by w(C) the
unique composition of the same weight as C such that [(C) and K w(C))
are complementary subsets of {1,...,|C| — 1}. For example, if C = 21321,
then 1(C)=1(2,3,6,8} <{1,2,...,8}, hence, I(w(C)) ={7,5,4,1} and
w(C) = 22131.

CoroLLARY 2.3. QSym is a Hopf algebra with antipode S defined by
S(M) = Z¢, p{— DMy, or equivalently, by
S(Fe) = (=1)Fye,

This result has also been obtained by Ehrenborg [E].

Proof. We may work in QSymg. The fact that QSym, is a Hopf
algebra follows by duality from Theorem 2.1. Its antipode S is the adjoint
of the antipode $* of QSym¥,. The latter is the unique anti-automorphism
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of QSym®, defined by $*(P*) = —P7. Usin (2.10), we have
Q i g

Y. S*(MF) = S*( Y M,*z") = §* (cxp( Y i’j*t’))
i=0 iz0 j=1

-1
= exp( Y. S*(Pj*)tf) = exp(— Y. Pj*tf) = ( Y Mi*t") .
Jjz1 jiz1 iz0
Thus
sH(Mpy = L (DM (2.14)
ICl=n

Since $* is an anti-automorphism, we obtain

s Mgy = Y (—D"ME,

C=D

because in Eq. (2.14), we may as well replace Mg by M} and because
HC) = I(C). The latter formula may be rewritten as

s*(Mp) = L (=D"ME,
CzD

which implies by duality

S(Me) = L (=DM

CzD

It remains to compute the last formula. By (2.13), we have

S(F) = ¥ S(Mp) = ¥ (-D""'Mg.

D>=C D=C
DzE

viv

Thus, all we have to show is

Y (- Mg = (-1 F, = (-D L M.
D>C,E F> w((C)

Now, using the order preserving bijection C - I(C) between compositions
of n and subsets of {1,...,n — 1}, we see that this formula is equivalent to
(in the free Z-module with basis the subsets of {1,...,n — 1}; v is fixed)

Y (-nPE=(-1" r ¢ (2.15)

62vy.¢& e2(1,..., n—1]\¥



QUASI-SYMMETRIC FUNCTIONS AND DESCENT ALGEBRA 975

where £€=1{n —ili€ g}. Observe that {1,....,n — Y\ y=(1,...,
n — 1}\ y)~; hence the second sum is equal to (—=D"E ., 15, &.
In this sum, the coefficient of & is (=" if £2{1,...,n — 1}\ y;
that is, e U y = {1,...,n — 1}, and 0 otherwise. In the left-hand side of
(2.15), the coefficient of & is L, ,_12s2,0.(= D", which by

inclusion—exclusion is (= D" if y U £ ={1,...,n — 1} and 0 otherwise. |

Denote by w the linear endomorphism of QSym defined by w(F.) =
F

()
COROLLARY 2.4. The mapping w is an automorphism of the algebra of

quasi-symmetric functions, extending the usual conjugation of symmetric
functions.

This result is due to Gessel [G2].

Proof We have w(F.) = (—1)“/S(F,); hence w is an automorphism,
since § is the antipode. Moreover, w(F,) = F|., which with the notations
of [M], is w(h,) = e, and proves the second statement. |}

We may deduce from these two corollaries a result already found by
Doubilet [D]. Indeed, following [M], denote by f, the forgotten symmetric
functions, defined by f, = w(m,). Since m, = LM, where the sum is over
all compositions whose rearrangement gives the partition A, Corollaries
2.3 and 2.4 imply that f, is + an N-linear combination of m,, the sign
being that of (— DY A summation formula for f, is also easily
obtained.

3. THE DESCENT ALGEBRA

For the definitions and known results below, see also [R, Section 9.4].
Let X,Y be two disjoint infinite set of commuting variables and order
Z = XY by

xy <x'y' ifeither x <x'orx =x"and y <y
Then define a coproduct y', called the inner coproduct, on QSym by
Y (F) = ZG,' ® H,

F(Xy) = ZGl(y)Hl(x)’
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where F(xy) means the quasi-symmetric function F evaluated in the
totally ordered set Z and the right-member is its canonical image in
Z[ X U Y] (note the interchange of x and y in this formula). With its
product, the coproduct ¥’ and the co-unit &', QSym becomes a bialgebra
(we leave to the reader to verify that &' is defined by &'(F,) = 1, ' (F.) = 0
if /(C) = 2).

We show first how to define naturally the dual bialgebra. A major step
has already been proved by Gessel, who showed that QSym*, with the
product adjoint to the coproduct y" of QSym, is isomorphic with the
Solomon descent algebra L.

Let §, denote the symmetric group of order n and consider in ZS, the
elements D,, indexed by subsets of {1,...,n — 1}, with

D, = Z g,
Des(o )=/

where the descent set of o = §, is defined by

Des(a) ={i,l <i<n—1,0(i)>oc(i+ 1)}.

Let L, denote the linear span of the D;, and L= & ,,,L, € ZS
= @ ,..ZS,, where the latter becomes a ring structure by putting
oa = 0if o, a are not in the same S,; note that ZS is a ring without a
unit.

The next result was proved by Solomon in the wider context of finite
Coxeter groups.

THEOREM 3.1 [S]. X is a subalgebra of ZS.

Let C(I) be the composition of n corresponding to the subset [ of
{1,...,n — 1}; in other words, I{(C(I)) = I, with the notations of Section 2.
We write D¢ for Dy .

THEOREM 3.2 [G1]. QSym*, with the product inherited from the coprod-
uct y' of QSym, is isomorphic with L; in this isomorphism, the basis (F&) of
QSym* corresponds to the basis (D) of Y. In other words, for any
compositions C,C',C", the coefficient of vy'(F), expanded in the basis
(F ® Feo) of QSym © QSym, is equal to the coefficient of D+, expanded
in the basis (D.) of L.

It is the latter result which motivated this article. It justifies introducing
a pairing between ¥ and QSym by

(Dery For) = 8prgr. (3.1)
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The previous result thus may be written (DqD.., F.) = {D. ®
D¢, y'(F.)) for any compositions C,C’,C", where the pairing is naturally
extended to the tensor products.

The purpose of this section is to define on ZS a coproduct A and a
product * which gives a Hopf algebra structure on ZS, such that ¥ is a
Hopf subalgebra, and which correspond by the pairing (3.1) to the product
in QSym and to its coproduct . In other words, we want that for any
x,y in L and G, H in QSym, one has {(A(x),G ® H) = {x,GH ) and
(x*y,G) ={x ®y,y(G)).

Stated otherwise, define a linear isomorphism,

7:QSym* — Y., F¥ — D,. (3.2)

Then we shall show that # is a homomorphism from the bialgebra QSym*
as defined in Section 2 onto the bialgebra ¥ as defined by * and A.

We first define A on ZS. For this we need a couple of definitions. For a
word w of length n on a totally ordered alphabet A, denote by st(w) the
permutation in S, defined by st(w) (i) < st(w) () if and only if

(a; <ay) or (a;=a;andi<j),

where w =a, -+ a,. See [R, p. 167] for an example. Note that when
w =a, -+ a, has no repeated letter, then st(w) is the word obtained by
applying to w the unique increasing bijection {a,...,a,} = {1,2,...,n}.
We call st(w) the standard permutation of w. Furthermore, for o € S,
viewed as a word on {1,...,n}, and I c(1,...,n}, let ¢ |I denote the
word obtained by keeping only the digits in I of o. Then define a
coproduct A on ZS by

n

A(o)= Y ol{l,....i}est{a]l {i+1,...,n}).

i=0

For example, A(3124) = X ® 3124 + 1 ® st(324) + 12 @ st(34) + 312 ®
st(4) + 3124 @ A= A©3124 +1 @213+ 120 12+ 3120 1+ 3124 ®
A, where A is the identity in §,,.

Now, let A be an infinite set of noncommuting variables and consider
the algebra of noncommutative polynomials Z{ A) on A. It has a structure
of Hopf algebra, the concatenation Hopf algebra defined for A = T in
Section 2.

The convolution * is defined for any f, g in End ,(Z{ A4)) by

frg=n-(f®g)°8,
where p is the product Z(A) ® Z{A) — Z(A) (see [R, p. 28]). There is
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a right action of ZS on Z{ A defined by

ay - a, - a=a,, > a,,,
if oS, and a, € A. Viewing o as an element of End(Z{A4)), ie.,
a(P) = P- ¢ for P in Z{ A), the convolution * defines a product o *
on Z§: indeed, recall that an element f in End(Z{ A))isin ZS if and only
if f commutes with each homogeneous algebra endomorphism of Z{A)
(Weyl duality). This easily implies that o x a € ZS.

Remark. The product * on ZS may be defined directly by o * a = Luv,
where the sum is over all u,v such that alph(u) U alph(v) = {1,2,...,
n + p}, st(u) = o and st(v) = a, with alph(u) = the set of letters in u,
and 0 €S, a € S,,. (Example: 12%12 = 1234 + 1324 + 1423 + 2314 +
2413 + 3412)

Define £: ZS > Zby e(A) = 1and e(a) =0if a €S, n > 1.

THEOREM 3.3. With product *, coproduct A and co-unit & defined
above, ZS is a Hopf algebra and T is a Hopf subalgebra, dual to QSym with
usual product and coproduct y. In the corresponding isomorphism a: QSym*
— ¥, F} is mapped onto D.

Proof. 1. Recall that Z{ A} has another product, the shuffle product,
denoted by L. With the coproduct &' defined by

d(w)y= Y uodur,

ur=w

for any word w on A (w = ur in the free monoid M(A) on A), Z{A)
becomes a Hopf algebra, called the shuffle Hopf algebra, dual to the
concatenation Hopf algebra. The pairing is

{u,v) = 3§,, (3.3)

for any words in M(A) (the latter is a basis of Z{ 4)); see, e.g., (R].
We denote by *' the corresponding convolution in End (Z{ 4)); that is,

frlg=pe(fOg) S,

where w': Z{A) ® Z{A) — Z{A) is the shuffle product.

2. Define a coproduct A: ZS — ZS ® ZS by A = (st ® st)° &' (where
st is extended by linearity) and a product ' in ZS by embedding Z$ in
End(Z{ A>). Then we have

o+ a=0lda, (3.4)
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forany o in §,, @ in §,, where permutations are considered as words and
a is the word in {n + 1,...,n + p} obtained by replacing in « each i by
t + n.

We show that ZS with *', A and ¢ is a Hopf algebra. First, note that if
u, x are words such that each letter in u is smaller than each letter in x,
then

st(u) *'st(x) = st(u L x). (3.5)
Then we have (since &' is a homomorphism for t.J)
Ao x"a)=A(olda) =(st ®st)o (o Lia)
= (st @ st)(8'( o) Lt 5'(@))
=(st®st) Y. (uldx)® (v idy)
»=a
= Y. st(u Ldx) ® st(v Ll y)
= L (st(u) *"st(x)) @ (st(v) *"st(y)) by (3.5)
= T (st(u) @ st(r)) *' (st(x) ® st())
(st ® st)( Youe® l‘)

w=a

=[(st®st)ed' ()] * [(st®st)e8'(a)] = A(c) * A(a)

%

(st ® st)( gax ®y)

This shows that A" is a homomorphism, hence, that ZS is a bialgebra.
Since it is graded and ZS, = Z, it is therefore a Hopf algebra.

3. Let 6: ZS > ZS, 6(0) = o~'. We show that the Hopf algebra
structure on ZS of 2, when conjugated by 6, gives the product * and
coproduct A of the theorem. This will prove that ZS with * and A is a
Hopf algebra.

We have to show that o*a = 6(8c *' 6a) and Ac = (8 ®
8)e A - 8(o). For the first, note that the adjoint, for the pairing (3.3), of
the mapping P — P- o, is the mapping P- ¢~ '; that is, viewing ZS as a
subspace of End(Z{A4)), 6(x) is the adjoint of x. Now, the shuffle and
concatenation structures of Z{A4) are dual each to another; hence, for
f, g € End(Z{ A)), the adjoint of f+ g = puc(f®gledis wo(f ®g)od
=f" %" g (with f' = adjoint of f). Thus, the adjoint of o * « is
6(o ) =" 6(a), which proves the first identity. For the second, observe that
if I ={i, < -+ <i}isasubsetof{l,...,n} and o € §,, then

o(st( o [ 1)) = st(o (i) ... 07 '(i,)). (3.6)
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Then

(0® 68)oA(o) =(60® B)i(al{l,...,i}) @st(o|{i +1,...,n})

i=0

by (3.6)
=Y st(o7 () ..o (D)) @st(o (i + 1) o7 (n))

=(st®st) Y. u®r=(st®st)ed(o')

u=o""!

=Aof(0o),

! = o means concatenation of u and v. This proves the second

where o~
identity.

4. We show now that ¥ is a Hopf subalgebra of Z§ with A and *.
Conjugating by 6 once more, it is equivalent to show that £ = 6(¥) is a
Hopf subalgebra of ZS with A and *'. Now, define for any composition C,
the element D _ . of Eby D _ = Ly _Dg; thatis, D _ . is the sum of all
permutations whose descent set is contained in /(C). A basic observation
of {GR] is that

6(D.c) =t Ly, (3.7)
where 12+ n =u, --- u, (concatenation), n =|C| and lu;l=¢;, C=
(cy,...,¢y). The elements (3.7) span ¥, since the D, span L. Now, take
another such element 6(D _ ;) = v Lt -+ Ly, 12 n=v) = v, ] =

e;, E = (e,,...,e)). Then by definition (3.4) of =’ and (3.7), we have
O(DSC) *'G(DSE) = B(Ds(,‘E)’

where CE is the concatenation of the compositions C and E. Thus ¥’ is
closed for *'. Now, we have

B(O(D.c)) = (st ®st)o 8'(uy Ld--Luduy)
= (st ® st)(8'(u,) Lud--Ld 8'(1,))

(since &' is a homomorphism for the shuffle)

~stesy| T (xyey) e (5 85,))

u;=xy;
= (st @ st) 20 (x; Ll bl ) @ (yy Lol yy)
= }: st(a; Ll xy ) @ sty Lol y,)

2, 8(D ) ®8(D ),
c.C

I
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where the sum is over all compositions C' = (c},...,c}) and C" =
(cl, ..., with ¢, = ¢, + /.

5. The previous computatons show that D_.*D_,=D_,, and
AD_,)=X,;.,D.,®D_,, where we write n for the composition (n).
Since F. = L, M, by (2.13), we have by duality M = L., -FZ, and
the isomorphism 7 of (3.2) maps M} onto D_, because D_p =
Y . gD¢. This shows that 7 is a homomorphism of bialgebras, by the
previous equations, (2.5) and (2.7). §

Remarks. 1. A consequence of the previous proof is that, if g, denotes
the projection of Z{A) onto its component of degree n, then

q.* - xq(P)=PD_c,

for any composition C = (c,,...,¢,) and P in Z{ A). Hence the convolu-
tion subalgebra of End(Z{.4)) generated by the g, is also a subalgebra
under composition, anti-isomorphic to X with its usual product; for this
and generalizations, see [R; P; MR].

2. It is easy to verify that the two structures of bialgebra we have
considered on ZS in this section (A and *, on one hand; A" and *', on the
other) are dual each to another, for the scalar product in ZS such that
U S, is an orthonormal basis. In other words, one has (o *" @, 7) = {0 ®
a, A(t))and (o * a,7) ={o ® a, N(T)).

3. In their study of noncommutative symmetric functions, using
quasi-determinant, the authors of [GKLLRT] meet the Solomon descent
algebra and show that it is canonically isomorphic to their algebra of
noncommutative symmetric functions. They give, among others, a useful
formula relating the internal and external products of ¥ and another
approach to the pairing between QSym and L.

Note added in proof. A related work, in connection with control theory which appears in
the book, is the article The Shuffle Product and Symmetric Groups, by A. A. Agrachev and
R. V. Gamkrelidze, which appears in the book “Collection: Differential Equations, Dynami-
cal Systems and Control Science,” Lecture Notes in Pure and Applied Mathematics, Vol. 152,
pp. 365-382, Springer-Verlag, Berlin/New York, 1994. For a sequel to the present work, see
the article by S. Poirier and C. Reutenauer, Algebres de Hopf de tableaux de Young, in Ann.
Sci. Math. Québec (1995).
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