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Abstract Zwittermicin A (ZwA) is a hybrid polyketide–non-
ribosomal peptide that is thought to be biosynthesized from five
proposed building blocks, including the 2,3-diaminopropionate.
Candidate genes for de novo biosynthesis of 2,3-diaminopropio-
nate, zwa5A and zwa5B, have been identified in a previous study.
In this research, zwa5A was interrupted and chemically synthe-
sized 2,3-diaminopropionate was used to feed the zwa5A� mu-
tant. Results showed that feeding with 2,3-diaminopropionate
restored the ability of the zwa5A� mutant to produce ZwA. An-
other non-ribosomal peptide synthase gene, designated orf3, was
identified. Amino acid dependent PPi release assay showed that
the adenylation domain ZWAA2 of ORF3 acyl-adenylated LL-
2,3-diaminopropionate effectively. Taken together, it can be con-
cluded that LL-2,3-diaminopropionate is indeed one of the building
blocks for the biosynthesis of Zwittermicin A.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Zwittermicin A; LL-2,3-Diaminopropionate;
Adenylation; Bacillus thuringiensis
1. Introduction

Zwittermicin A (ZwA) is a kind of polyketide (PK) and non-

ribosomal peptide (NRP) hybrid produced by a variety of

Bacillus thuringiensis and B. cereus strains [1–3]. ZwA inhibits

the growth of a wide range of microorganisms and facilitates

the insecticidal activity of the protein toxins produced by B.

thuringiensis [4,5]. The chemical structure of ZwA has been

determined [6,7] (Fig. 1A), but the biosynthetic gene cluster it-

self has not been cloned and many details of the biosynthesis

pathway remain poorly understood.

A 16 kb DNA fragment related to the biosynthesis of ZwA

from B. cereus strain UW85 was reported by Handelsman�s
group [8]. It was deduced that ZwA was assembled from LL-Ser-

ine, malonyl, aminomalonyl (AM), hydroxymalonyl (HM) and

2,3-diaminopropionate (Dap) based on the structure of ZwA

and on the genetic information contained in the gene cluster

[8]. The proposed assembly model featured the activated inter-
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mediates LL-Serine-PCP and Dap-PCP as NRP extender units,

with malonyl-CoA, AM-ACP and HM-ACP as PK extender

units, and AM-ACP, HM-ACP and Dap were proposed to

be biosynthesized de novo before the assembly process. In a

subsequent study, genes related to de novo biosynthesis of

AM-ACP and HM-ACP were identified from the 16 kb

DNA fragment and in vitro experiments have confirmed the

general layout of the biosynthesis pathway [9]. Nevertheless,

building blocks labeling studies are necessary to support the

details of the ZwA assembly line hypothesis. Unfortunately,

few data are presently available regarding the identity of the

genes involved.

A gene encoding a putative non-ribosomal peptide synthase

(NRPS)-polyketide synthase (PKS) hybrid, designated nrps–

pks, was identified in the 16 kb DNA fragment. The predicted

amino acid sequence of this hybrid synthase was found to con-

sist of seven functional domains, organized as follows: conden-

sation domain (C), adenylation domain (A), peptidyl carrier

protein (PCP), ketosynthase (KS), acyl transferase (AT), keto-

reductase (KR) and acyl carrier protein (ACP) [8]. This struc-

ture should allow it to catalyze loading of one NRP building

block and one PK building block. Obviously, there must be

some other unrecognized nrps genes or pks genes located out-

side of the already identified 16 kb DNA fragment that play an

important role since there are five building blocks to account

for in the biosynthesis of ZwA.

Candidate genes for de novo biosynthesis of the proposed

building block Dap, designated zwa5A and zwa5B, have been

cloned from B. thuringiensis strain YBT-1520 as described in

our previous report [10]. These genes were located 19.6 kb

down stream of the 16 kb DNA fragment identified by Han-

delsman and coworkers. In this study, we identified another

nrps gene, designated orf3, within this 19.6 kb gap and we dem-

onstrated that LL-Dap is one of the building blocks for the bio-

synthesis of ZwA.
2. Materials and methods

2.1. Bacterial strains, plasmids and primers
The bacterial strains, plasmids and primers used in this study are

listed in Tables 1 and 2, respectively.

2.2. Insertional inactivation of zwa5A gene
A 2419 bp blunt end fragment harboring the temperature sensitive

Bacillus replicon from plasmid pDG491 was inserted into the HincII site
of plasmid pDG780 to create Escherichia coli/Bacillus shuttle vector
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Chemical structure of ZwA (part A) and the proposed biosynthesis pathway of 2,3-diaminopropionate (part B). Box of broken line indicates
the proposed building block of 2,3-diaminopropionate.

Table 1
Bacteria strains and plasmids used in this study

Strains/plasmids Description References

Bacillus thuringiensis
YBT-1520 Wild-type, ZwA producing [10]
BMB0143 YBT-1520 carries recombinant plasmid pBMB0141 This study
BMB0144 zwa5A� mutant strain of YBT-1520 This study
BMB0145 YBT-1520 carries recombinant plasmid pBMB0145 This study
BMB0146 YBT-1520 carries recombinant plasmid pBMB0146 This study
Bacillus cereus UW030 UW85 derivate, ZwA non-producing [1]
Erwinia herbicola LS005 Standard bacteriological test strain for ZwA [1]
Escherichia coli BL21 (DE3) hsdS gal(kcIts857 ind1 sam7 nin5 lac UV-5-T7gene1) Merck
EMB1300 E. coli BL21 carries plasmid pGEX-6p-1 This study
EMB1301 E. coli BL21 carries recombinant plasmid pBMB1301 This study
EMB1302 E. coli BL21 carries recombinant plasmid pBMB1302 This study
E. coli DH10B-BAC1F8 clone 1F8 of YBT-1520 BAC library [10]

Plasmids
pDG491 Ampr, Cmr, repts [23]
pDG780 Ampr, Kanr Offered by BGSC
pDG646 Ampr, harbors ermR gene Offered by BGSC
pBMB0631 Ampr, Kanr, E. coli/Bacillus (repts) shuttle vector This study
pBMB0141 pBMB0631 harbors zwa5A0-ermR This study
pBMB0145 pHT304 harbors zwa5A This study
pBMB0146 pHT304 harbors zwa5A-5B This study
pGEX-6p-1 GST Æ Tag, Ampr GE Healthcare
pBMB1301 pGEX-6p-1 harbors zwaA1 This study
pBMB1302 pGEX-6p-1 harbors zwaA2 This study

ZwA, Zwittermicin A; Ampr, ampicillin resistant; Cmr, chloramphenicol resistant; Ermr, erythromycin resistant; Kanr, kanamycin resistant; repts,
temperature sensitive replicon for B. thuringiensis; BGSC, Bacillus Genetic Stock Center (The Ohio State University, USA).
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pBMB0631. Primer pair 6B0813/6B0814 was used to amplify a 613 bp
fragment of the zwa5A gene, designated zwa5A 0 (HindIII fragment;
the first base pair is 23 bp down stream from the initiation codon and
the last base pair is 342 bp up stream from the termination codon), from
B. cereus UW85, which is a ZwA producing strain. The 1601 bp ermR
gene (BamHI fragment) from plasmid pDG646 was inserted into the
BamHI site (21 bp up stream of the last base pair) of zwa5A 0, yielding
a zwa5A 0–ermR construct. This zwa5A 0–ermR construct with HindIII
extremities was then ligated to the 5489 bp HindIII fragment from shut-
tle vector pBMB0631 to create recombinant plasmid pBMB0141.



Table 2
Primers used in this study

Primers Sequence

6B0813 CGCAAGCTTAGAAAGGGTAATCGGCAA

HindIII
6B0814 GGGAAGCTTATCACCAAAAATAATGGA

HindIII
AK5G1025 CCGAAAAGTATTGTATTTAC

6E2171 GGAACCATACTTAATATAGA

6F0876 ATGAATTCATGCATGACCTCCCAGC

EcoRI
6F0877 CCGAATTCATTGAAATGTTTAGTATT

EcoRI
P5AB0 CCGAATTCGAAAACATTTAATTACTC

EcoRI
P5AB1 CCGAATTCTAAGCTTATCAAATAAC

EcoRI
A1P0 AACGGATCCAAATCTGCAATGGATCTAGA

BamHI
A1P6 CCCGAATTCTTTCCAAATCTCAACTAATTT

EcoRI
A2P0 ACCGGATCCTTGCGTAATATTAATATGTT

BamHI
A2P5 ACCCTCGAGTAAACTACTATCTATGTCATTTC

XhoI

All the primers were synthesized by TAKARA Biotechnology (Dalian)
Co. Ltd.
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Plasmid pBMB0141 was introduced into B. thuringiensis strain
YBT-1520 by electroporation with a Bio-Rad GenePulser instrument.
Transformants were cultured in Luria Bertani (LB) medium at 42 �C,
with 25 lg/mL erythromycin as selective antibiotic. The zwa5A� mu-
tant strain BMB0144 was selected out by PCR screening with primer
pair AK5G1025 (locates 187 bp up stream of the initiation codon of
zwa5A gene, in zwa6 gene)/6E2171 (locates in ermR gene).

Genes zwa5A and zwa5A-5B were amplified by primer pairs 6F0876/
6F0877 and P5AB0/P5AB1 and then inserted into the EcoRI site of
shuttle vector pHT304 to create recombinant plasmids pBMB0145
and pBMB0146, respectively. These recombinant plasmids were intro-
duced into strain BMB0144 to complement the zwa5A� mutation.

2.3. In vivo feeding experiment
Overnight cultured B. thuringiensis YBT-1520 mutant strain

BMB0144 were transferred into Tryptic Soy Broth (TSB) (Becton,
Dickinson and Company) medium and cultured at 28 �C. Chemically
synthesized Dap was used to feed mutant strain BMB0144 with the
concentration of 100 lg/mL at 0 h, 12 h, 24 h, 36 h, 48 h or 60 h after
cell growth. Culture filtrates were collected after the strains had been
cultured for 72 h in total and then used to evaluate ZwA yield.

2.4. Purification and identification of ZwA
Culture filtrates of B. thuringiensis YBT-1520 and the mutant strains

were filtered by MF-Millipore� Filters (pore diameter, 0.22 lm) and
were then used to test the inhibition of Erwinia herbicola strain
LS005, which is an indicator strain of ZwA, by the method described
previously [1,11]. Culture filtrates were further filtered by Biomax� Fil-
ters (Millipore, NMWL 5 kDa). High-performance liquid chromatog-
raphy combined with ion trap/time-of-flight mass spectrometry (LC/
MS-ITTOF) (Shimadzu) was used to detect ZwA according to the
modified method described previously [12]. The separation was per-
formed on an ODS-C18 column using a gradient elution consisting
of mobile phase A (0.1% formic acid) and mobile phase B (acetoni-
trile/water (20:80)).

2.5. Cloning of the nrps gene
Bacterial artificial chromosome (BAC) clone 1F8 [10], which har-

bored a DNA fragment covering a part of the ZwA biosynthetic gene
cluster extending from the 16 kb DNA fragment identified by Handels-
man and coworkers to the region encoding the zwa6–zwa5A–zwa5B
genes, was sequenced by the shotgun method. The amino acid se-
quence predicted for the potential nrps gene orf3 identified in this re-
gion was analyzed for the presence of functional domains using
Ansari�s method as documented at the following address: http://
www.nii.res.in/nrps-pks.html [13].

2.6. Over-expression and purification of adenylation domains ZWAA1
and ZWAA2

The adenylation domain encoding fragment zwaA1 was amplified
from orf3 by primer pair A1P0/A1P6 from orf3 and inserted into the
BamHI/EcoRI site of plasmid pGEX-6P-1(a vector for making gluta-
thione-S-transferase fusions), while zwaA2 was amplified by A2P0/
A2P5 and inserted into the BamHI/XhoI site, yielding plasmids
pBMB1301 and pBMB1302, respectively. Both recombinant plasmids
were introduced into E. coli strain BL21 (DE3) to over-express their
respective GST-adenylation domain fusion proteins. The expressed fu-
sion proteins were purified by GST Æ Bind� Purification Kits (Nova-
gen) and cleaved by PreScission� Protease (GE Healthcare) to
prepare the adenylation domains ZWAA1 and ZWAA2.

2.7. Amino acid-dependent PPi release assay
PPi levels were measured using the continuous spectrophotometric

assay furnished by the EnzChek Pyrophosphate Assay Kit (Molecular
Probes) as described by Ehmann[14]. Reactions were carried out at
30 �C in 500 lL total volume and contained 1· Buffer, 0.2 mM MesG,
10 mM MgCl2, 5 mM ATP, 10 mM amino acid, 0.3 U inorganic
pyrophosphatase (IP), 1 U purine nucleoside phosphorylase (PNP),
2 lM adenylation domain. Reactions were initiated by addition of
amino acid substrate after a 10 min incubation at 30 �C to remove
any contaminated PPi or Pi by PPi/IP/PNP/MesG couple. Nucleic
Acid/Protein Analyzer DU800 (Beckman) was used to monitor absor-
bance at 360 nm every 30 s for 8 min. A standard curve for the pyro-
phosphate assay was generated using the pyrophosphate standard as
a source of PPi according to the protocol of the EnzChek Pyrophos-
phate Assay Kit. The concentration of PPi in solutions was determined
by conjunction with the standard curve for PPi.

2.8. Specificities prediction of the adenylation domains
In silico prediction of the adenylation domain specificities was per-

formed using Rausch�s NRPSpredictor program as documented at
the following address: http://www-ab.informatik.uni-tuebingen.de/
software [15].
3. Results and discussion

3.1. Creation of a zwa5A� mutant

A genomic DNA fragment from B. thuringiensis YBT-1520

(also present in B. cereus UW85) encoding the genes zwa6,

zwa5A and zwa5B had been identified in the course of a previous

study in our laboratory [10]. The gene products corresponding

to the latter two, ZWA5A and ZWA5B, were found to be homo-

logs of cysteine synthase and ornithine cyclodeaminase, respec-

tively. Interestingly, it has been hypothesized that during the

biosynthesis of viomycin in Streptomyces sp., LL-Dap is synthe-

sized by the concerted actions of cysteine synthase and ornithine

cyclodeaminase homologs [16]. Precursor labeling studies per-

formed on viomycin have determined that LL-Serine is the precur-

sor for LL-Dap [17]. Based on all of these observations, we

deduced that LL-Dap biosynthesis may follow the same pathway

during the biosynthesis of ZwA as during that of viomycin (Fig.

1B).

In order to evaluate the importance of the zwa5A gene for the

production of ZwA, a knocked out version of zwa5A was pro-

duced by insertion of an erythromycin resistance marker (ermR),

and the resultant zwa5A 0 construct was used to promote homol-

ogous recombination with the corresponding DNA sequence of

the B. thuringiensis YBT-1520 genome, resulting in the ermR,

zwa5A� knockout mutant strain BMB0144. PCR with primer

pair AK5G1025 (locates in zwa6 gene)/6E2171 (locates in ermR

http://www.nii.res.in/nrps-pks.html
http://www.nii.res.in/nrps-pks.html
http://www-ab.informatik.uni-tuebingen.de/software
http://www-ab.informatik.uni-tuebingen.de/software


Fig. 2. Inhibition activity and LC/MS-ITTOF analysis of ZwA produced by strain YBT-1520 and zwa5A� mutant strain BMB0144. (Part A) the
inhibition activity of zwa5A� mutant strain to Erwinia herbicola strain LS005 when 2,3-aminopropionate was fed at different stage, such as (1) at the
same time with inoculation, (2) 12 h after, (3) 24 h after, (4) 36 h after, (5) 48 h after, (6) 60 h after. Hole CK1 meant mutant strain without 2,3-
aminopropionate fed, while hole CK2 meant 100 lg/ml 2,3-aminopropionate solution, which was the concentration used in the feeding experiment.
(Part B) Accurate MS, and MS/MS spectra of ZwA. (1) MS of YBT-1520, (2) MS/MS of precursor ion 397.2003, (3) MS of BMB0144, (4) MS of
BMB0145, (5) MS of BMB0146, (6) MS/MS of precursor ion 397.2005, (7) MS of BMB0144 fed with Dap 12 h after, and (8) MS/MS of precursor ion
397.2004.
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gene) amplified a 1.5 kb DNA fragment showed that the zwa6

gene and ermR gene were located together in a single DNA mol-

ecule, confirming the insertion of the zwa5A� knockout con-

struct. The zwa5A� mutant strain BMB0144 showed no

activity against E. herbicola LS005, which is an indicator strain

of ZwA (Fig. 2A).

In LC/MS-ITTOF analysis, ZwA eluted at retention time of

4.5 min and showed a protonated molecule ion at m/z 397

([M+H]+). The MS/MS spectrum of precursor ion 397 showed

fragment ions at m/z 147, 251 and 379 (Fig. 2B), which were

proposed to result from breakage of the N6–C7 bond and from

dehydration, respectively. No ZwA molecule ion was observed

in the MS spectra of strain BMB0144. These results indicated

that the zwa5A� mutant strain BMB0144 had been rendered

unable to produce ZwA.

Genetic complementation experiments were performed with

intact zwa5A and zwa5A-5B genes, yielding the revertant mu-
tant strains BMB0145 and BMB0146, respectively. Culture fil-

trates of strain BMB0145 were unable to inhibit growth of the

indicator strain E. herbicola LS005 while those from strain

BMB0146 were able to do so indicating that ZwA was pro-

duced in the culture filtrates of strain BMB0146 but not in

those of strain BMB0145. It was according with the LC/MS-

ITTOF analysis result that no ZwA molecule ion was observed

in the MS spectra of strain BMB0145 while a molecule ion at

m/z 397 was found in that of strain BMB0146 (Fig. 2B). These

results showed clearly that the production of ZwA was nega-

tively affected by the insertional disruption of the zwa5A gene.

However, a polarity effect on zwa5B could not be ruled out

from contributing to the observed effects, since only the com-

bined zwa5A-5B genes restored the ability of the zwa5A� mu-

tant to produce ZwA, possibly linked to the fact that no

obvious promoter could be recognized between zwa5A and

zwa5B.



Fig. 3. SDS–PAGE analysis of the GST Æ adenylation-domain fusion
protein. Lane 1, protein molecular weight marker; lane 2, total protein
of strain EMB1301; lane 3, total protein of strain EMB1301 (induced
with 0.1 mM IPTG); lane 4, total protein of strain EMB1302; lane 5,
total protein of strain EMB1302 (induced with 0.1 mM IPTG); lane
6, total protein of strain EMB1300 (induced with 0.1 mM IPTG); lane
7, fusion protein of GST Æ ZWAA1; lane 8, fusion protein of
GST Æ ZWAA2.
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3.2. Dap restored the ability of the zwa5A� mutant to produce

ZwA

Culture filtrates of strain BMB0144 fed with Dap were able

to effectively inhibit growth of E. herbicola LS005 (Fig. 2A).

Samples from cultures to which Dap was fed after 24 h or

36 h showed the best inhibition efficacy out of all six tests per-

formed. LC/MS-ITTOF analysis result showed that strain

BMB0144 fed with Dap after 24 h produced more ZwA than

the wild-type strain, B. thuringiensis YBT-1520 (Fig. 2B). These

observations indicated that chemically synthesized Dap was a

suitable substitute for the product of the zwa5A gene, which is

necessary for the biosynthesis of ZwA.

According to results obtained by Handelsman and cowork-

ers, ZwA was first detected after 48 h, and production reached

maximal levels after 72 h [18]. Expression of ZmaR, the pro-

tein conferring self-resistance to ZwA, was first detected after

12 h, and the level of ZmaR increased concomitantly with

ZwA production, reaching maximal levels after 72 h [19]. Since

antibiotic self-resistance genes clustered with antibiotic biosyn-

thetic genes often shares similar regulatory pathways with the

biosynthetic genes [20,21], it seems reasonable to assume that

the expression of the ZwA biosynthetic gene cluster was initi-

ated after 12–24 h. The observation that expression of the

ZwA cluster starts after 12–24 h explains why Dap is most

effective when added in the period that follows (24–36 h), as

this is likely to correspond to the period when LL-Dap would

have been naturally produced.

Gene interruption and feeding experiments indicated that

Dap is the building block for the biosynthesis of ZwA. Abso-

lutely, identification of NRPS catalysis loading of Dap into

ZwA assembly line is a conclusive evidence to support this

standpoint.
3.3. Identification of nrps gene orf3 and function domain analysis

of ORF3

A hypothetical 6528 bp gene, orf3, was recognized as a po-

tential nrps gene within the gap between the 16 kb DNA frag-

ment identified by the Handelsman group and the region

encoding the zwa6–zwa5A–zwa5B genes (GenBank accession

number EU520420). The predicted amino acid sequence of

the gene product of orf3 showed that the corresponding pro-

tein, designated NRPS ORF3, consists of six functional do-

mains, organized as follows: A (ZWAA1), PCP, C, A

(ZWAA2), PCP and TE (thioesterase domain). In this context,

thioesterase domain fuses to the C-terminal of the NRPS pro-

tein and catalyzes antibiotic backbone release from assembly

line, which is why it is also referred to as a termination domain

[22]. Interestingly, no protein with a thioesterase domain has

been recognized in the previously characterized 16 kb DNA

fragment, and among all of the five proposed building blocks

for ZwA, Dap is the last one in the assembly line model [8].

In fact, orf3 is the only gene encoding an intact NRPS in the

genome of strain YBT-1520 (genome sequence not shown

here). Taken together, these informations suggest that ORF3

may be the NRPS that catalyzes loading of Dap during the

biosynthesis of ZwA.
3.4. Adenylation domain ZWAA2 acyl-adenylated LL-Dap

effectively

The adenylation domain is one of the three core domains

(the other two domains are PCP and C) involved during the
loading of an NRP extender unit in an NRP assembly line.

It catalyzes the formation of an aminoacyl adenylate interme-

diate at the expense of Mg2+-ATP and release of PPi[22]. This

adenylation reaction is amino acid specific and necessary for

the amino acids to be assembled.

The two adenylation domains identified in ORF3 (ZWAA1

and ZWAA2) were over expressed as GST-tagged fusion pro-

teins, which were purified and analyzed by SDS–PAGE as

shown in Fig. 3. The GST tags were then removed from the fu-

sion proteins by protease cleavage and further purification,

yielding purified proteins corresponding to the two respective

adenylation domains.

Amino acid-dependent PPi release experiment was employed

to test adenylation of LL-Dap in the presence of the purified ade-

nylation domains. PPi levels analysis results showed that ade-

nylation domain ZWAA2 did acyl-adenylate LL-Dap

effectively. Three kinds of LL-Dap similar amino acid, LL-Ala,

LL-Cys and LL-Ser, were used as control in the PPi release exper-

iment. Under the same conditions, 15 lM PPi was produced

when LL-Dap was used as substrate while only 3 lM PPi was

produced when LL-Ser was used (Fig. 4A). During the in vitro

adenylation reactions, ZWAA2 acyl-adenylated LL-Ala and LL-

Cys in some measure. Adenylation domain ZWAA2 can thus

be expected to necessarily acyl-adenylate LL-Dap during the bio-

synthesis of ZwA in vivo when competing non-specific amino

acids concentrations are far lower than in in vitro experiments.

In the analysis of ZWAA1, it seemed that the most appropri-

ate substrate was LL-Cys, but the process was not as effective in

comparison to the acyl-adenylation of LL-Dap by ZWAA2 (Fig.

4B). Many more amino acids should be tested to determine the

most appropriate substrate of ZWAA1. At this point, how-

ever, it seems unlikely that LL-Dap itself could be the specific

substrate of ZWAA1.

In silico prediction of the adenylation domain specificities

showed that the probable preferred substrate of ZWAA2 is a

gly = ala = val = leu = ile = abu = iva-like amino acid (Fig.

S1). Although the program used, NRPSpredictor, is known

to yield poor results with the glycine/alanine model due the

small size of the substrates [15], this prediction did fit with

our biochemical specificity test results since Dap is a kind of

small-sized amino acid and shares a similar carbon backbone

with the predicted amino acid.

In contrast, it was quite unexpected that the substrate pre-

dicted for ZWAA1 was also a gly = ala = val = leu = ile = abu =

iva-like amino acid. However, the detected activity of ZWAA1



Fig. 4. PPi levels of the adenylation reaction measured by continuous
spectrophotometric assay. Part A, analysis of adenylation domain
ZWAA2. Amino acid (1) LL-Dap, (2) LL-Ala, (3) LL-Cys and (4) LL-Ser
used as substrate, no amino acid was used in reaction (5). Part B,
analysis of adenylation domain ZWAA1, ZWAA2 acyl-adenylated LL-
Dap used as control. (1) Amino acid (2) LL-Cys, (3) LL- Ser, (4) LL-Ala
and (5) LL-Dap used as substrate, no amino acid was used in reaction
(6).
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on LL-Cys was very weak and we cannot rule out that ZWAA1 is

actually inert in vivo where amino acids are found in much lower

concentrations than in the assay. It is possible that ZWAA1 is in

fact a degenerated Dap adenylation domain and that ZWAA2 is

the truly active one. If so, where this inert domain originated or

how ZWAA1 might have lost its activity remains unknown. An-

other possibility is that ZWAA1 belongs to a skipped module in

the ZwA assembly line since two potential modules can be

aligned out (if C is an iteratively acting domain) from NRPS

ORF3, whose functional domains are organized as follows: A

(ZWAA1) – PCP – C – A (ZWAA2) – PCP – TE. Our data

and analysis suggested that the latter four domains are responsi-

ble for the assembling of building block 2,3-diaminopropionate

and releasing of the carbon skeleton. It seems that the former

three domains constitute an intact functional module (maybe a

skipped one), while their real role remains obscure. Further

investigation is definitely necessary to confirm the mechanism

of NRPS ORF3 in ZwA assembly.

Two main conclusions can thus be drawn from the muta-

tion-feeding experiment and adenylation analysis results.

Firstly, that LL-Dap is one of the building blocks for the biosyn-

thesis of ZwA and is de novo biosynthesized under the cataly-

sis of ZWA5A. Secondly, that LL-Dap is acyl-adenylated by

ZWAA2 of NRPS ORF3 and may be loaded onto the ZwA

assembly line under the catalysis of NRPS ORF3.
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