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The propagation of a semi-infinite line defect, contained in an infinite square-cell lattice is considered.
The defect is composed of particles lighter than those in the ambient lattice and it is assumed this defect
propagates with constant speed. Dispersion properties of the lattice are related to waves generated by the
propagating defect. In order to determine these properties, the Wiener–Hopf technique is applied.
Additional features, related to localisation along the defect are also identified. Analysis of the dispersion
relations for this lattice, from the kernel function inside the Wiener–Hopf equation, is carried out. The
solution of the Wiener–Hopf equation is presented for the case when an external load is applied
corresponding to an energy flux at infinity.
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1. Introduction

Large deformations occurring in composite materials can lead
to regions of plastic flow, where the formation of line inclusions
can occur (Özturk et al., 1991). When waves propagate through a
composite, defects within the composite can lead to localised
defect modes i.e. large deformations around the defects
(Movchan et al., 2007). Such large deformations can also drive
the growth of a defect or an inclusion through a composite. In this
article, the model for a growing line inclusion within a discrete lat-
tice, having particles which are lighter than those in the ambient
lattice, is considered. The model provides information of dispersion
properties of the lattice, and at particular frequencies, waves trav-
elling through the lattice may propagate only along the inclusion
or the ambient lattice. The former situation may enhance the
growth of the inclusion through the lattice and therefore it is
important to determine the frequencies which generate such
vibrating modes.

Lattice models describing defects propagating through discrete
structures have been the subject of many articles. In Slepyan
(2001a), the scalar problem of a dynamic crack moving with con-
stant speed through a homogeneous square-cell lattice is studied.
The dynamic crack can be considered as a sequential removal of
neighbouring bonds, along a row in the lattice, caused by feeding
waves which supply energy to the crack front bond (Slepyan,
2002). When this bond breaks, energy is released in the form of
dissipative waves which carry energy away from the front. The
problem of a fault moving through an elastic triangular lattice
was studied in Slepyan (2001c). For both the square and triangular
lattices, the wave dispersion properties for the lattice can be
deduced in explicit form.

Apart from the introduction of the dynamic crack, additional
inhomogeneities which also affect the dispersion properties in a
lattice or a continuum can be considered. An overview of several
models that reveal the dispersive nature of waves in continua
and periodic structures was presented in Movchan et al. (2012),
which also includes comparisons of the filtering effects of a
bi-atomic chain and a high-contrast periodic continuum. The
problem of a structured interface contained in a continuum was
also solved and the reflection and transmission due to the interface
were analysed. In Mishuris et al. (2009a), a square-cell lattice
containing a propagating crack, and composed of rows of particles
having contrasting mass, was analysed. The influence of this
additional inhomogeneity on the energy dissipation due to crack
propagation was also considered.

An inhomogeneous triangular lattice, composed of bonds with
contrasting stiffness in the principal lattice directions, can be found
in Nieves et al. (2013). This is based on a similar model of that
developed in Slepyan (2001c).

In all the above linear models, interaction between the particles
of the lattice is assumed to occur between the nearest neighbours
and the bonds connecting particles are assumed to be massless.
From these models, other useful properties of the fault, such as
the energy release rate may also be obtained.

In some of these models (Colquitt et al., 2012; Mishuris et al.,
2009b), a fracture criterion has been used to obtain information
about real time progression of the crack. In particular, this can
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Fig. 1. Example computation from Colquitt et al. (2013), showing the comparison of
the eigenfrequencies (x) computed for a line defect composed of 20 particles with
different mass compared to that of the particles in the ambient lattice (indicated by
horizontal dashed lines) and the curve given for the infinite line defect in the lattice
(Osharovich and Ayzenberg-Stepanenko, 2012). Both are shown as functions of the
normalised wavenumber j=p. Here the ratio of the mass of the particles in the line
defect to the mass of the particles in the ambient lattice is 0.25.
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reveal information about the formation and coalescence of voids
ahead of the crack front bond. An inhomogeneous square-cell lat-
tice containing a propagating fault, subjected to a remote sinusoi-
dal load was considered in Mishuris et al. (2009b). When a fracture
criterion is imposed on the crack path bonds, the problem becomes
non-linear. Numerical simulations have been used to calculate
average crack speeds and a good comparison has been found with
estimates from dispersion diagrams. Similar calculations for an
inhomogeneous triangular lattice have been carried out in
Colquitt et al. (2012). Extensions of this analysis have been used
to predict the propagation of an edge crack in a structured
thermo-elastic solid, where the crack propagation is driven by
rapid change in boundary temperature near the interface the crack
emanates from and the elastic waves generated by shocks induced
by the rapid temperature change (Carta et al., 2013).

It is also possible to find continuum models where the influence
of the material’s microstructure may be studied. The theory of cou-
ple-stress elasticity introduced in Koiter (1964), is designed to take
into account characteristic lengths associated with bending and
torsion within a material, and this allows the microstructural prop-
erties of a material to be studied. In Mishuris et al. (2012), this
model was used to study a Mode III semi-infinite crack propagating
at constant speed through a continuum that has a microstructure.
The Wiener–Hopf technique was also applied to solve this problem
and illustrations showing the effect of the material’s bending and
torsion characteristic lengths on the crack’s propagation were pre-
sented. The method was also extended to the case of a Mode III
crack propagating through an elastic material having a high rota-
tional inertia introduced through its microstructure in Morini
et al. (2013). There, the influence of the micro-rotational inertia
on the energy dissipation due to crack propagation was also ana-
lysed, as this dissipation can affect displacements in the vicinity
of the crack tip. It was shown that this rotational inertia may
enhance or diminish the energy dissipation associated with the
propagating crack, in comparison to its energy dissipation in the
model of classical elasticity.

The influence of the microstructure can also be determined
from models of discrete structures which have the same effective
properties as the corresponding homogenised medium. As an
example, the effect of the microstructure on the crack-tip behav-
iour for an edge crack contained in a slab, which is subjected to a
sinusoidal temperature load, was also investigated in Colquitt
et al. (2012). For this quasi-static thermoelastic problem, it was
shown that the ‘‘effective stress intensity factor’’ for the edge crack
in the triangular lattice was lower than that in the homogenised
lattice. This indicates that the introduction of microstructure in a
solid may lessen the possibility of crack propagation.

For the high-frequency regime of the applied load, a theory of
asymptotic homogenisation has been developed in Craster et al.
(2010). A continuum model is constructed from the standing wave
modes for the lattice problem, and the solution of this continuum
problem provides information about the microstructure.

The propagation of an inclusion within a lattice has also been
considered in Slepyan (2001b). Here, instead of the removal of sub-
sequent bonds in a row, giving rise to a crack, these bonds undergo
a transition in phase, i.e. a jump in stiffness, when the elongation of
the bonds reaches a critical point. Another way to interpret the
propagation of an inclusion within the lattice is to assume that
the inclusion is composed of particles of different mass to those
in the ambient lattice. This is discussed in the present paper. The
required dispersion properties are obtained from Colquitt et al.
(2013), where eigenfrequencies and eigenmodes, corresponding
to localised defect modes, for a finite line defect contained in a
square lattice were computed. For a long line defect, these eigen-
frequencies have been shown to lie in the range of frequencies pre-
dicted by the model for the infinite line defect (Osharovich and
Ayzenberg-Stepanenko, 2012). An illustrative example given in
Colquitt et al. (2013), shows a computation for the eigenfrequen-
cies for a line defect containing 20 particles having contrasting
mass compared to the ambient lattice. On Fig. 1, these frequencies
are shown by dashed horizontal lines. The solid curve in this figure,
depicts the dispersion curve of the infinite line defect model of
Osharovich and Ayzenberg-Stepanenko (2012), and it is possible
to see from this figure that this model can be used to predict the
complete range of the frequencies for a long finite line defect.
The same dispersion relation is also encountered in the work pre-
sented here. It is also noted that the density of the eigenfrequen-
cies for the finite line defect shown in Fig. 1, increases as we
approach the frequencies of the standing wave modes for the
infinite line defect, where the homogenised model for this defect
is applicable.

The diffraction of waves due to a semi-infinite line of rigid small
inclusions within a continuum, called a grating, has been studied in
Hills and Karp (1965). This problem has been solved using the Wie-
ner–Hopf technique (Noble, 1958; Hochstadt, 1989) and this solu-
tion has used to describe resonance modes for the grating as well
as the dispersive nature of this line defect (Hills, 1965; Hills and
Karp, 1965).

For finite length rigid line inclusions contained in an elastic
material, the complete solution has been obtained for this problem
in the case of when the ambient matrix is a bimaterial and the rigid
line inclusion is located along the interface of the two materials
Ballarini, 1990. Here the strength of the singularities found in the
solution near the tips of the inclusion have been determined and
compared with those in the problem of when there is a crack along
the interface in the bimaterial. A similar analysis has been given in
Dal Corso et al. (2008) and Bigoni et al. (2008), where the model for
a prestressed elastic material containing a rigid line inclusion
under Mode I and II loading has been considered. The influence
of the inclusion on the fracture patterns in this problem was also
studied and the analytical results were shown to give a good agree-
ment with those obtained in experiments.

A semi-infinite line defect is considered here which propagates
through a square-cell lattice. The structure of this article is as fol-
lows. In Section 2, the problem of the propagating semi-infinite
fault, composed of particles with reduced mass compared to the
ambient infinite square lattice, is analysed. The description of this
problem and the main notations are given in Section 2.1. In
Section 2.2, the dynamic equations are introduced for the
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propagating semi-infinite defect inside the lattice, and the proce-
dure for solving this problem is given, including the reduction of
this problem to a Wiener–Hopf equation posed on the line of the
defect. From the roots and poles of the kernel function in this equa-
tion, dispersion relations for the defect moving with constant
speed are then determined in Section 2.3. For a given speed of
the propagating defect, a description of the roots and poles of the
kernel function is outlined in Section 2.4, and this information is
used to study the Wiener–Hopf equation and derive its solution
in Section 3. In Section 4, for a particular load, the solution of the
Wiener–Hopf equation is derived and the local displacements of
the defect are compared with the asymptotics of the displacement
that gives the behaviour of the solution in the vicinity of the defect
in the corresponding homogenised problem. The Fourier transform
of the discontinuous inertia term and a proof that the index of the
kernel function is zero are given in Appendices A and B, respec-
tively. In Appendix C, the general solution for the Wiener–Hopf
equation of Section 2 is also presented.

2. Dynamic semi-infinite chain inside the lattice

2.1. Main notations and description of the problem

The problem of a semi-infinite line defect, composed of particles
of mass m, propagating through a square-cell lattice, composed of
particles of mass M, is now discussed. It is assumed that m < M.
This defect is located along n ¼ 0; k 6 �1 (see Fig. 2), and it is
assumed that the bonds connecting the particles within the lattice
have stiffness l.

The semi-infinite line defect propagates with constant speed v
through the lattice. As it does so, this represents a succession of
phase transitions as the mass of the particles along n ¼ 0 change
value. The time interval between successive phase transitions is
a=v (where a is the bond length which is normalised to 1).

The variable g ¼ x� vt, where x ¼ ka, is used to define a moving
coordinate system, with centre g ¼ 0; n ¼ 0 (see Slepyan, 2002).

It is assumed that displacements within the lattice are functions
of g, i.e. the displacement uk;n of the particle with position ðk;nÞ
within the lattice, is assumed to have the form

uk;nðtÞ ¼ unðgÞ: ð2:1Þ

About the line n ¼ 0, the displacements satisfy the symmetry
condition

unðgÞ ¼ u�nðgÞ; for n P 0: ð2:2Þ
Fig. 2. A square cell lattice containing a semi-infinite chain of particles having mass
m along n ¼ 0, and the ambient lattice is composed of particles with mass M
ðm < MÞ. All links are assumed to have stiffness l.
The function unðgÞ can be split according to

unðgÞ ¼ uþn ðgÞ þ u�n ðgÞ; ð2:3Þ

with

uþn ðgÞ ¼ HðgÞunðgÞ; and u�n ðgÞ ¼ ð1� HðgÞÞunðgÞ;

with H being the Heaviside function. The left and right-sided Fou-
rier transforms are also used

uF;þ
n ðnÞ ¼

Z 1

0
uþn ðgÞeing dg; Im n > 0;

uF;�
n ðnÞ ¼

Z 0

�1
u�n ðgÞeing dg; Im n < 0:

These transforms lead to the definitions

uF
n;�ðnÞ ¼ lim

Imn!0
uF;�

n ðnÞ;

and then the continuous Fourier transform of the displacement un

uF
nðnÞ ¼

Z 1

�1
unðgÞeing dg;

can be written using the additive split:

uF
n ¼ uF

n;þ þ uF
n;�: ð2:4Þ
2.2. The model for a propagating semi-infinite line defect in a square
lattice

Here, the model describing the propagation of a semi-infinite
line defect is presented. The problem will be shown to reduce to
a Wiener–Hopf equation along n ¼ 0.

2.2.1. Dynamic equations of motion
Due to symmetry (2.2) only the upper lattice half plane is con-

sidered. The equations of motion (n P 1) have the form

M
d2uk;n

dt2 ðtÞ ¼ lðukþ1;nðtÞ þ uk�1;nðtÞ þ uk;nþ1ðtÞ þ uk;n�1ðtÞ � 4uk;nðtÞÞ

ð2:5Þ

and for n ¼ 0, if k < vt,

m
d2uk;0

dt2 ðtÞ¼lðukþ1;0ðtÞþuk�1;0ðtÞþuk;1ðtÞþuk;�1ðtÞ�4uk;0ðtÞÞþqkðtÞ;

ð2:6Þ

whereas if k P vt

M
d2uk;0

dt2 ðtÞ¼lðukþ1;0ðtÞþuk�1;0ðtÞþuk;1ðtÞþuk;�1ðtÞ�4uk;0ðtÞÞþqkðtÞ:

ð2:7Þ

Here, qk is the load applied on the particle with position ðk;0Þ.
Next, (2.1) along with the assumption that the load qkðtÞ ¼ qðgÞ,

allows for transformation of Eqs. (2.5)–(2.7), to

Mv2 d2un

dg2 ðgÞ¼lðunðgþ1Þþunðg�1Þþunþ1ðgÞþun�1ðgÞ�4unðgÞÞ

ð2:8Þ

for n > 0, and for n ¼ 0

v2MðgÞd
2u0

dg2 ðgÞ ¼ lðu0ðgþ 1Þ þ u0ðg� 1Þ þ u1ðgÞ þ u�1ðgÞ

� 4u0ðgÞÞ þ qðgÞ; ð2:9Þ

where
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MðgÞ ¼
M; for g P 0;
m; for g < 0:

�
ð2:10Þ
2.2.2. Solution for the problem inside the lattice for n P 0
The problem (2.8) and (2.9) is now solved using an approach

similar to that presented in Slepyan (2002).
Taking the Fourier transform (outlined in Section 2.1) with

respect to g, yields

0 ¼ uF
nþ1 þ uF

n�1 � 2X1ðn;0þ inv�ÞuF
n; ðn P 1Þ ð2:11Þ

and

ð0þ inv�Þ2uF
0;þ þ bð0þ inv�Þ2uF

0;�

¼ �2ð2� cosðnÞÞuF
0 þ 2uF

1 þ
qF

l
; ð2:12Þ

where b ¼ m=M; v� ¼
ffiffiffiffiffiffiffiffiffiffiffi
M=l

p
v . The symmetry conditions (2.2)

about n ¼ 0 and the result

v2MðgÞd
2u0

dg2 ðgÞ
" #F

¼ Mð0þ invÞ2uF
0;þ þmð0þ invÞ2uF

0;�; ð2:13Þ

which occurs due to regularisation, have also been used in the der-
ivation of (2.12), (see Appendix A and Chapter 2 of Slepyan, 2002).
Here, 0þ in indicates the limit lime!þ0ðeþ inÞ, where 0 < e� 1 is a
regularisation parameter, and in (2.11)

Xað,; zÞ ¼ 1þ 2 sin2ð,=2Þ þ az2

2
: ð2:14Þ

The solution, for n > 0, is sought in the form

uF
n ¼ knuF

1; ðn P 1Þ; ð2:15Þ

where it is required that jkj 6 1. After substitution into (2.11), k can
be determined as a solution of

k2 � 2X1ðn;0þ inv�Þkþ 1 ¼ 0: ð2:16Þ

Due to the presence of the regularisation parameter in (2.16), the
solution can be sought in the form

k ¼ X1ðn;0þ inv�Þ � rðk�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1ðn; 0þ inv�Þ2 � 1

q
; ð2:17Þ

where

k� ¼ X1ðn;0þ inv�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1ðn; 0þ inv�Þ2 � 1

q
and

rðzÞ ¼
1 if jzj 6 1
�1 if jzj > 1:

�

In Section 2.3, when determining the dispersion relations, the reg-
ularisation parameter is set to zero and the following form for k will
be useful

k¼
X1ðn; inv�Þ� signðX1ðn; inv�ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1ðn; inv�Þ2�1

q
for jX1ðn; inv�Þj>1;

�1 for X1ðn; inv�Þ¼�1;

X1ðn; inv�Þ� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X1ðn; inv�Þ2

q
for jX1ðn; inv�Þj<1:

8>>><
>>>:

ð2:18Þ

Next, (2.11) with (2.16) gives the relation uF
1 ¼ kuF

0. Thus (2.12)
gives

ð0þ inv�Þ2uF
0;þ þ bð0þ inv�Þ2uF

0;�

¼ 2½k� ð2� cosðnÞÞ�uF
0 þ

qF

l
: ð2:19Þ

The alternative to the regularisation outlined in Appendix A, is
the use of interface conditions between the defect and the particle
adjacent to the defect tip along n ¼ 0:
mu0ð�0Þ ¼ Mu0ðþ0Þ; m
du0

dg
ð�0Þ ¼ M

du0

dg
ðþ0Þ: ð2:20Þ

In other words the suggested regularisation implies the conserva-
tion of momentum at the node ðg ¼ 0;n ¼ 0Þ. Later, it will be shown
that for a load corresponding to an energy flux from infinity, the
solution to the problem considered here can be constructed and
the above conditions will be satisfied.

2.2.3. The Wiener–Hopf equation
Making the additive split (2.4) for uF

0 in (2.19) provides the Wie-
ner–Hopf equation

Lðn;0þ inv�ÞuF
0;þ þ buF

0;� ¼ �
bqF

2lðk�Xbðn;0þ inv�ÞÞ
; ð2:21Þ

where the kernel function Lðn;0þ inv�Þ is given by

Lðn;0þ inv�Þ ¼ b
k�X1ðn;0þ inv�Þ
k�Xbðn;0þ inv�Þ

: ð2:22Þ

Note that the above function contains the coefficient b. This ensures
that limn!�1 L ¼ 1, which is a necessary condition for the factorisa-
tion of this function in Section 3.

2.3. Dispersion relations for the semi-infinite chain inside the lattice

The zeros and poles of L will now be deduced. They provide
information about the dispersion properties for the lattice contain-
ing a dynamic semi-infinite chain of particles having a contrast in
mass from the ambient lattice. These zeros and poles are found by
replacing 0þ inv� by ix� and obtaining the expressions for the nor-
malised angular frequency x� ¼

ffiffiffiffiffiffiffiffiffiffiffi
M=l

p
x for which the numerator

and denominator are zero.
Once the zeros and poles of the function L, corresponding to

wavenumbers, are identified. the effect of introducing the small
regularisation parameter e > 0 into L will be studied. As in
Slepyan (2002), after incorporating the regularisation parameter
into L the roots and poles of this function, for a given speed, are
then located in the complex plane. The dispersion diagrams will
then be used to determine their location following the regularisa-
tion (Section 2.4). This information will then be used in Section 3
and Appendix C to solve the Wiener–Hopf equation (2.21).

2.3.1. The zeros of Lðn; ix�Þ
Here, by formally setting e ¼ 0 and x� ¼ nv�, the equation

k�X1ðn; ix�Þ ¼ 0; ð2:23Þ

must be solved for x�. Since it is required that jkj 6 1, then the case
jX1ðn; ix�Þj > 1 (jkj < 1) does not provide any solution to the above
equation. Therefore, it remains to consider the case jkj ¼ 1. Using
(2.18), this occurs when jX1ðn; ix�Þj ¼ 1 or jX1ðn; ix�Þj < 1. In both
situations, referring to (2.16) and (2.18), a solution of (2.23) is also
a solution of the equation X1ðn; ix�Þ ¼ �1. It then follows that the
roots of Lðn; ix�Þ are

xð1Þ� ðnÞ ¼ 2j sinðn=2Þj; ðX1ðn; ix�Þ ¼ 1Þ; ð2:24Þ

and

xð2Þ� ðnÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ðn=2Þ

q
; ðX1ðn; ix�Þ ¼ �1Þ: ð2:25Þ
2.3.2. The poles of Lðn; ix�Þ
For the poles of Lðn; ix�Þ, the solutions of the equation

k�Xbðn; ix�Þ ¼ 0 ð2:26Þ

are considered. In Colquitt et al. (2013), an infinite line defect
contained in a square cell lattice was analysed and (2.26) is also
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encountered in that problem. There it was shown, that for
b < 1; ðm < MÞ, (2.26) has the solution

xðbÞ� ðnÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

bð2�bÞ 1þ2sin2ðn=2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðb�1Þ2 sin2ðn=2Þð1þ sin2ðn=2ÞÞ

q� �s
:

ð2:27Þ

The dispersion curves (2.24), (2.25) and (2.27) are given in Figs. 3
and 4, as a function of the dimensionless quantity na=p with
a ¼ 1, in the cases b ¼ 0:1;0:17;0:29289 and 0:7. In both figures,
the dispersion relation for the semi-infinite chain (2.24) is repre-
sented by the dashed curve, whereas the dispersion curves for
ambient lattice are shown as black curves (xð1Þ� ðnÞ < xð2Þ� ðnÞ for all
n 2 R). In each dispersion diagram, the rays x� ¼ nv� are also
included for v� ¼ 0:25;0:4;0:7, for the purpose of illustration when
considering the solution of the Wiener–Hopf equation (2.21) below.

2.4. Description of poles and zeros of L for a given speed

Using the information in Section 2.3, the roots and poles of L for
a given speed are now analysed. In particular, the intersection of
the line x� ¼ nv� with the dispersion curves will be studied. Each
h1

h2

h3

r
(2)
1

r
(1)
1

(a)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

ξ/π

ω
*

(b)

Fig. 3. The dispersion curves (2.24), (2.25) and (2.27) are plotted as functions of the
dimensionless quantity na=p with a ¼ 1, for (a) b ¼ 0:1 and ðbÞ b ¼ 0:17. The rays
x� ¼ nv� are also shown for the normalised speeds v� ¼ 0:25; 0:4 and 0.7.
intersection of this line with a dispersion curve indicates a wave
generated in the lattice with the frequency and wavenumber cor-
responding to that intersection point. These waves are supported
by either the ambient lattice (in the case of an intersection with
the curves given by (2.24) or (2.25)) or the propagating line inclu-
sion (see (2.27)).

For 0 < v� 6 1 (0 < v 6
ffiffiffiffiffiffiffiffiffiffiffi
l=M

p
), the zeros and poles of L are

now discussed in detail. In particular, the position of these roots
and poles in the complex plane after the regularisation parameter
e is introduced, is also analysed. To do this, it is necessary to intro-
duce the group velocity vg for waves propagating in the lattice,
which is defined by vg ¼ dx�=dn, and compare this quantity with
the defect speed (see Slepyan, 2002, Chapter 2). In the following,
the case when v� – vg is considered.

If v� 6 1, the function L has one, three or more pairs of simple
zeros, associated with the intersections of the ray x� ¼ nv� with

xð1Þ� ðnÞ of (2.24), at n – 0; n ¼ �rð1Þ1 ;�rð1Þ2 ; . . . ;�rð1Þ2zþ1. For v� ¼ 0:4,
this root pattern for n=p > 0 is indicated on Fig. 3(a). Here,
the number z decreases as v� increases, and z ¼ 0 for

v� > v ð1Þc � 0:2172. The point n ¼ rð1Þ0 ¼ 0 is a removable singularity
of L.
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Fig. 4. The dispersion curves (2.24), (2.25) and (2.27) are plotted as functions of the
dimensionless quantity na=p with a ¼ 1, for (a) b ¼ 0:29289 and (b) b ¼ 0:7. The
rays x� ¼ nv� are also shown for the normalised speeds v� ¼ 0:25; 0:4 and 0.7.
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The function L also has one, three or more pairs of simple zeros,
associated with the intersections of the ray x� ¼ nv� with xð2Þ� ðnÞ of

(2.25), at n ¼ �rð2Þ1 ;�rð2Þ2 ; . . . ;�rð2Þ2yþ1(see Fig. 3(a)). Here, y is non-

monotonic for increasing v�, and y ¼ 0 for v� > v ð2Þc � 0:3158. Also

note that rð1Þ2zþ1 < rð2Þ1 .
The function L has one, three, or more pairs of simple poles,

which correspond to the intersections of the ray x� ¼ nv� and with
the pole xðbÞ� ðnÞ of (2.27). This occurs at n ¼ �h1;�h2; . . . ;�h2pþ1,
with p being non-monotonic for v� increasing (see Fig. 3(a)). Note

that rð2Þ2yþ1 < h1. If M is fixed and m is allowed to vary, the value of p
is also non-monotonic for different b.

For the above mentioned roots and poles of L, for a given speed
v�, the following conditions also hold at the corresponding inter-
section points of the ray x� ¼ nv� with the dispersion curves:

1. vg < v� at
n ¼ rð1Þ2w�1; w ¼ 1; . . . ; zþ 1;

n ¼ rð2Þ2a�1; a ¼ 1; . . . ; yþ 1; and
n ¼ h2i�1; i ¼ 1; . . . ; pþ 1;
2. vg > v� at
n ¼ rð1Þ2w; w ¼ 1; . . . ; z;

n ¼ rð2Þ2a ; a ¼ 1; . . . ; y; and
n ¼ h2i; i ¼ 1; . . . ;p:
At the intersection points where vg > v�, when the small regu-
larisation parameter e > 0 is introduced, these points are then
located in the lower half of the complex plane (see Slepyan, 2002).
On the other hand, if v� > vg , after regularisation, the corresponding
points will be located in the upper half of the complex plane.

3. The analysis of the Wiener–Hopf equation

In this section, the solution for the Wiener–Hopf equation (2.21)
is derived in two steps. Section 3.1 contains properties of the ker-
nel function L and its Cauchy-type factorisation. In Section 3.2,
using the information regarding roots and poles of L and a partic-
ular choice of the load q that admits an energy flux at infinity,
the solution of the Wiener–Hopf equation (2.21) is derived. For
the general solution to the Wiener–Hopf equation see Appendix C.

3.1. Properties of the function Lðn; 0þ inv�Þ and its factorisation

The kernel function Lðn;0þ inv�Þ satisfies

ReðLðn;0þ inv�ÞÞ ¼ ReðLð�n;0� inv�ÞÞ;

ImðLðn;0þ inv�ÞÞ ¼ �ImðLð�n;0� inv�ÞÞ

and so

ArgðLðn;0þ inv�ÞÞ ¼ �ArgðLð�n; 0� inv�ÞÞ;

where here Arg is the continuous argument of a complex number.
That is, if a complex valued function f : R! C defines a contour
cðnÞ ¼ fz 2 C : z ¼ f ðtÞ; t 2 ð�1; n�g, then the continuous argument
of the function f is

Argðf ðnÞÞ ¼ Im
Z
fz2cðnÞg

dz
z

" #
:

Additional properties of the kernel function Lðn; 0þ inv�Þ include:

lim
jnj!1

Lðn;0þ inv�Þ ¼ 1;
lim
n!0

Lðn;0þ inv�Þ ¼ b: ð3:1Þ

The index of L is defined by

IndðLðn;0þ inv�ÞÞ

¼ 1
2p

lim
n!1

ArgðLðn;0þ inv�ÞÞ � lim
n!�1

ArgðLðn;0þ inv�ÞÞ
� �

ð3:2Þ

and IndðLðn;0þ inv�ÞÞ ¼ 0. This is proved in Appendix B.
The function L satisfies the conditions which are necessary for it

to be split as a product using the Cauchy-type integral:

L ¼ LþL�; L�ðn;0þ inv�Þ

¼ exp � 1
2pi

Z 1

�1

ln Lðs;0þ isv�Þ
s� n

ds
� �

; �Imn > 0; ð3:3Þ

where ‘�’ (‘+’) denotes the function analytic in the lower (upper)
half of the complex plane. Then (2.21) is written as

LþuF
0;þ þ

buF
0;�

L�
¼ bqF

2lL�ðk�Xbðn;0þ inv�ÞÞ
: ð3:4Þ

From (2.22), the Wiener–Hopf equation (2.21) also takes the form:

LþuF
0;þ þ

buF
0;�

L�
¼ b� L

2lL�ð1� bÞð0þ inv�Þ2
qF : ð3:5Þ
3.2. Additive split of the right-hand side of (3.4)

The function q is chosen in such a way that it allows for the
additive split of the right-hand side of (3.4) into þ and � functions.
This is carried out by assuming energy is supplied to the mass at
n ¼ 0; g ¼ 0, by a feeding wave at infinity. This approach, applied
in Slepyan (2001a, 2002), results in the appearance of the regular-
ised Dirac delta function in the right-hand side of (3.4), which
allows for a straight-forward additive split. In what follows, the
additive split is carried out for the point n ¼ 0, for the general case
when all singular points of the right-hand side of (3.4) are consid-
ered, see Appendix C.

According to Chapter 2 of Slepyan (2002), the function u0ðgÞ can
be obtained from a sum of residues which correspond to the singu-
lar points of the integral kernel of the inverse Fourier transform of
uF

0;�. For this reason, behaviour of the term

1
L�ðk�Xbðn;0þ inv�ÞÞ

; ð3:6Þ

in the right-hand side of (3.4) near the point n ¼ 0 is now consid-
ered. As mentioned in Section 2.4, the function L has a removable
singularity at n ¼ 0, and so L� is also bounded in the vicinity of this
point. However, n ¼ 0 is a zero of the expression (2.26), which
results in singular behaviour in the right-hand side of (3.4).

Let the load q have the form

qðgÞ ¼ Að1Þ0 2e expðegÞHð�gÞ; ð3:7Þ

so that qF
þ ¼ 0, and

qF
� ¼

2eAð1Þ0

ðeþ inÞ :

Here e > 0 is treated as a regularisation parameter and the overall
force applied along the defect is independent of e. Formally, the reg-
ularisation parameter can be considered as complex and its non-
zero imaginary part would lead to oscillatory behaviour of the load
q. In the current paper, we assume e is real and positive and hence q
decays exponential as g! �1 with no oscillation.

Note that lime!þ0 q ¼ 0. The root n ¼ 0 of the denominator in
(3.6) (when e ¼ 0) is a point where v� < vg for v� < 1 (see Figs. 3
and 4). Therefore, this point is located in the lower half of the
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complex plane when the regularisation parameter e > 0 is intro-
duced. Since

Lðn;0þ inv�Þ � b� bð1� bÞv2
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

�
p nþ Oðn2Þ; for n! 0;

then this together with (3.7) in (3.5), leads to

LþuF
0;þ þ

buF
0;�

L�
¼ D0 lim

e!þ0

2e
ðeþ inÞðe� inÞ ¼ 2pD0dðnÞ

¼ D0
1

0þ in
þ 1

0� in

� �
; ð3:8Þ

where

D0 ¼ �
iAð1Þ0 b1=2

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

�
p exp

1
p

Z 1

0

ArgðLðs; 0þ isv�ÞÞ
s

ds
� �

: ð3:9Þ

Here, the result

lim
n!0

L�ðn;0þ inv�Þ ¼ b1=2 exp � 1
p

Z 1

0

ArgðLðs; 0þ isv�ÞÞ
s

ds
� �

ð3:10Þ

has been used (which follows from (3.1) and (3.3)).
Unlike the problem for a propagating crack within the lat-

tice, here the kernel Lðn;0þ inv�Þ is bounded for small wave-
numbers tending to zero. In the problem for the crack, the
kernel L exhibits singular behaviour which is Oðn�1Þ. Conse-
quently this leads to the square root singular behaviour of the
functions L� (see Slepyan, 2001a,c). It is possible to find other
examples of problems of the current type where bounded
behaviour of L in the vicinity of the zero wavenumber as in
(3.10) is observed, for instance, Slepyan and Ayzenberg-
Stepanenko (2004) includes the propagation of an inclusion that
consists of bonds with contrasting stiffness from the ambient
square or triangular lattice.

From (3.8) it then follows

uF
0;þ ¼

D0

Lþ

1
0� in

; uF
0;� ¼

D0L�
b

1
0þ in

: ð3:11Þ

In terms of the moving coordinate system, the function u0ðgÞ can be
defined through

u0 ¼ uþ0 þ u�0 ; ð3:12Þ

where the terms u�0 are given by

uþ0 ¼
1

2p

Z 0

�1
uF

0ðnÞe�ingdn; ImðgÞ > 0; ð3:13Þ

u�0 ¼
1

2p

Z 1

0
uF

0ðnÞe�ingdn; ImðgÞ < 0; ð3:14Þ

where ImðgÞ in both cases is treated as a small regularisation
parameter and the function uF

0 is given by the sum of the functions
in (3.11) (see Slepyan, 2002).

4. Physical applicability of the model and concluding remarks

For the load of the form (3.7), the displacements at the defect
tip and at infinity are compared.

According to Slepyan (2002, Chapter 2), the formulae relating
these expressions to displacements at the defect tip and far away
from the tip along the defect are

u0ð�0Þ ¼ lim
p!1

puF
0;�ð�ipÞ; u0ð�1Þ ¼ lim

p!þ0
puF

0;�ð�ipÞ:

Along with (3.10) and (3.11), these limits lead to
u0ð�1Þ ¼
D0

b1=2 exp � 1
p

Z 1

0

ArgðLðs;0þ isv�ÞÞ
s

ds
� �

and u0ð�0Þ ¼ D0

b
: ð4:1Þ

Also, the relations

u0ðþ0Þ ¼ lim
p!1

puF
0;þðipÞ

and

du0

dg
ðþ0Þ ¼ lim

p!1
p½puF

0;þðipÞ � u0ðþ0Þ�;

du0

dg
ð�0Þ ¼ lim

p!1
p½u0ð�0Þ � puF

0;�ð�ipÞ�

are valid, and they lead to the formulae

u0ðþ0Þ ¼ D0;
du0

dg
ð�0Þ ¼ du0

dg
ðþ0Þ ¼ 0:

Recalling b ¼ m=M, together with the preceding limits and (4.1), it
can be shown that conditions (2.20) will be satisfied.

Therefore, according to (4.1) the ratio of the tip displacement to
the displacement along the defect in the far-field is

u0ð�0Þ
u0ð�1Þ

¼ b�1=2 exp
1
p

Z 1

0

ArgðLðs;0þ isv�ÞÞ
s

ds
� �

:

This quantity is plotted for 0 6 v� 6 1 in Fig. 5, for the parameters
b ¼ 0:1;0:175;0:25; 0:5, and 0:75. For low speeds, u0ð�0Þ=u0ð�1Þ
behaves non-monotonically and gives a non-smooth behaviour for
v� tending to 0 (see Fig. 5). For these low values of speed, there occur
many intersections of the ray x ¼ nv� with the dispersion curves in
Figs. 3 and 4, causing the function Arg L to oscillate rapidly and gen-
erate this non-smooth behaviour. Those values of v�, which produce
the non-monotonic behaviour, can be linked to the region of insta-
bility of the model which has been studied through the notion of
energy dissipation of cracks and inclusions propagating through lat-
tices (Slepyan, 2002; Slepyan and Ayzenberg-Stepanenko, 2004).
Note that, as the value of the mass contrast parameter decreases,
the range of speeds for which we have this non-monotonic behav-
iour increases. In the study of the energy dissipation, due to a crack
growing through lattices (Slepyan, 2002), speed regimes giving rise
to non-monotonic behaviour of the energy indicate that, at those
speeds, the models do not describe the physical situation of the
defect moving through the lattice accurately.

The ratio u0ð�0Þ=u0ð�1Þ, also appears to tend to a finite value
for v� ! 0 (the case of a stationary defect). Indeed, since formally
setting v� ¼ 0, it follows from (2.14) that Xbðn;0þ inv�Þjv�¼0 �
X1ðn;0þ inv�Þjv�¼0 (which are approximately equal due to the
presence of the small regularisation parameter), and then L � 1
so Arg L � 0. In this case u0ð�0Þ=u0ð�1Þ � b�1=2.

For larger values of v�, after the ratio u0ð�0Þ=u0ð�1Þ attains its
minimum value in the region 0 < v� 6 1, a smooth monotonic
increase can be observed as the ratio tends to a finite value for
v� ! 1. A similar feature was also observed in the analysis of the
energy release rate of a crack within a lattice. This occurs for large
crack speeds and in this region the model describes the
propagation of a crack through the lattice (Slepyan, 2002). It can
also be concluded that the larger the value of b (i.e. the closer
the lattice approaches the case of a homogeneous lattice), the
smaller the effect of the mass contrast parameter on the
ratio u0ð�0Þ=u0ð�1Þ, as expected. Here, a simple calculation
shows that for b! 1, from (2.22), L! 1. Therefore, when
b! 1; u0ð�0Þ=u0ð�1Þ ! 1 for 0 < v� 6 1. This trend can be seen
in Fig. 5, for increasing b.

Note that u0ð�0Þ=u0ð�1Þ is always greater than 1, for all
0 6 v� 6 1 and for each value of b, which implies the displacement
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associated with the defect tip is always greater than the displace-
ment along this defect at infinity. In Slepyan (2002), energy dissi-
pation due to a crack propagating through a lattice structure was
considered, where, when a bond is broken along the line of the
crack in the lattice, energy is released in the form of dissipative
waves which carry energy from the crack tip into the lattice. In
the present paper, instead of a propagating crack in the lattice,
the situation when there is a propagating inclusion is considered.
Hence, when the particle of mass m at g ¼ 0; n ¼ 0 undergoes a
phase transition, energy is released not only into the ambient lat-
tice as part of this dissipation, but also energy will be channelled
along the inclusion, acting as a waveguide. Localised modes within
this inclusion are generated for frequencies outside the ambient
lattice stop band defined by x2 > 8. This is depicted in Figs. 3
and 4 (the dashed line is the dispersion curve for the inclusion).
From this, in order for these localised modes to be generated, it
is seen that the inclusion is needed to propagate at higher speeds.
Hence, this explains the behaviour of the defect tip displacement in
comparison to the displacements at infinity along this inclusion for
higher speeds.

Here, the solution for the problem of the propagating line
defect inside a square lattice has been presented for a particular
choice of the load q. An advantage of the model is that it allows
for the dispersive nature of the lattice to be studied as dispersion
relations can be obtained explicitly. The influence of the speed of
the defect and its effect on the wave dispersion can also be con-
sidered. This is one of the most valuable features of lattice models
in general and examples of other problems where these features
are discussed include Slepyan (2001a) and Slepyan and
Ayzenberg-Stepanenko (2004). An important aspect of the prob-
lem presented here, is that the lattice allows for localisation of
waves along the defect, due to the defect having smaller density
than the ambient lattice.

Models for propagating defects within lattices considered in, for
instance Slepyan (2001a,c), also allow for the prediction of ranges
of defect speeds for which the models make physical sense. In
Slepyan (2001a,c), this was carried out through the analysis of
the energy characteristics of the propagating defects. This can usu-
ally be predicted by observing smooth monotonic behaviour in the
solution for a range of defect speeds. Here, there is also such
behaviour, and the influence of the mass contrast parameter on
this range of speeds can be determined.
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Appendix A. The regularisation (2.13)

Consider the inertia term

v2MðgÞd
2u0

dg2 ðgÞ;

which appears in (2.9) for the equation of motion along n ¼ 0.
Applying the Fourier transform of this term gives

v2
Z 1

�1
MðgÞd

2u0

dg2 ðgÞe
ingdg

¼v2 lim
r!0

Z 1

0
M

d2uþ0
dg2 ðgÞe

iðnþirÞgdgþ
Z 0

�1
m

d2u�0
dg2 ðgÞe

iðn�irÞgdg

" #( )

¼v2 lim
b!0
r!0

Z 1

�b
M

d2uþ0
dg2 ðgÞe

iðnþirÞgdgþ
Z b

�1
m

d2u�0
dg2 ðgÞe

iðn�irÞgdg

" #( )
;

ðA:1Þ

where the definition of M in (2.10) and the split (2.3) have been
used. Also it is assumed in these integrals r is positive, in accor-
dance with Section 2.1, so that the integrals converge.

Owing to integration by partsZ 1

�b

d2uþ0
dg2
ðgÞeiðnþirÞgdg¼ duþ0

dg
ðgÞeiðnþirÞg

� �1
�b

�ð�rþ inÞ uþ0 ðgÞeiðnþirÞg� 	1
�b

þð�rþ inÞ2
Z 1

�b
uþ0 ðgÞeiðnþirÞgdg:

Next, using the fact that the support of uþ is fg : g P 0g, this
reduces toZ 1

�b

d2uþ0
dg2 ðgÞe

iðnþirÞgdg ¼ ð�rþ inÞ2
Z 1

�b
uþ0 ðgÞeiðnþirÞgdg: ðA:2Þ

Similarly, it can be shownZ b

�1

d2u�0
dg2 ðgÞe

iðn�irÞgdg ¼ ðrþ inÞ2
Z b

�1
u�0 ðgÞeiðn�irÞgdg: ðA:3Þ

Combining (A.2) and (A.3) with (A.1) and allowing r to tend to zero,
yields

v2
Z 1

�1
MðgÞd

2u0

dg2 ðgÞe
ingdg ¼ Mð0þ invÞ2uF

0;þ þmð0þ invÞ2uF
0;�;

which is (2.13).
Appendix B. Evaluation of the index of L

In this section, it is shown that

IndðLðn;0þ inv�ÞÞ ¼ 0:

First, from the definition (3.2) of the index of L, if the function L can
be written as a product

Lðn;0þ inv�Þ ¼
YN

j¼1

Ljðn;0þ inv�Þ; ðB:1Þ
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then

IndðLðn;0þ inv�ÞÞ ¼
XN

j¼1

IndðLjðn;0þ inv�ÞÞ ðB:2Þ

and in order to prove the index of L is zero, the same property needs
to proved for the sum in the right-hand side of (B.2).

B.1. Auxiliary functions

Let

raðn;0þ inv�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 sin2ðn=2Þ þ að0þ inv�Þ2

q
;

saðn;0þ inv�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðraðn;0þ inv�ÞÞ2 þ 4

q
:

ðB:3Þ

Then with (2.14) and (2.17), the following relations hold

ðraðn;0þ inv�ÞÞ2 þ 2 ¼ 2Xaðn; 0þ inv�Þ;

ðsaðn;0þ inv�ÞÞ2 ¼ 2ðXaðn;0þ inv�Þ þ 1Þ;
ðB:4Þ

kðn;0þ inv�Þ ¼
s1ðn;0þ inv�Þ � r1ðn;0þ inv�Þ
s1ðn;0þ inv�Þ þ r1ðn;0þ inv�Þ

: ðB:5Þ

From (2.14) and (B.4)
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Fig. 6. Plot of the real part against the imaginary part of the functions (a) Cðn; eþ inv�
n 2 ½�4p;4p�, b ¼ 0:6; v� ¼ 0:45 and e ¼ 0:5.
�p < arg½ðraðn;0þ inv�ÞÞ2� < p;

�p < arg½ðsaðn;0þ inv�ÞÞ2� < p

and so

�p=2 < arg½raðn;0þ inv�Þ� < p=2;
�p=2 < arg½saðn;0þ inv�Þ� < p=2;

ðB:6Þ

with

Reðraðn;0þ inv�ÞÞ > 0; Reðsaðn;0þ inv�ÞÞ > 0: ðB:7Þ

Here arg denotes the principle argument, where for z 2 C; �p <

argðzÞ 6 p.
Also note that (2.14) and (B.4) give

sign½Imðraðn;0þ inv�ÞÞ� ¼ sign½Imðsaðn;0þ inv�ÞÞ�: ðB:8Þ

Then (B.7), (B.8) and (B.5) imply that k satisfies jkj 6 1.

B.2. Alternate representation for L

Combining (B.4) and (B.5) and (2.22), an alternative representa-
tion for L has the form

Lðn;0þ inv�Þ ¼ b
Cðn;0þ inv�Þ
Dbðn;0þ inv�Þ

ðB:9Þ
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Þ, (b) Dbðn; eþ inv�Þ, of (B.10), and (c) Lðn; eþ inv�Þ in (B.9). The plots are given for
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with

Cðn;0þ inv�Þ ¼ r1ðn;0þ inv�Þ þ s1ðn;0þ inv�Þ;

Dbðn;0þ inv�Þ ¼
ðrbðn;0þ inv�ÞÞ2

r1ðn; 0þ inv�Þ
þ ðsbðn;0þ inv�ÞÞ2

s1ðn; 0þ inv�Þ
:

ðB:10Þ
B.3. Index of the function Cðn; 0þ inv�Þ

Owing to (B.6)–(B.8),

�p=2 < arg Cðn;0þ inv�Þ½ � < p=2; for n 2 R; ðB:11Þ
jCðn;0þ inv�Þj > 0; ðB:12Þ

implying

IndðCðn;0þ inv�ÞÞ ¼ 0: ðB:13Þ
B.4. Index of the function Dbðn; 0þ inv�Þ

Since 0 < b < 1,

arg½rbðn;0þ inv�Þ� 6 arg½r1ðn; 0þ inv�Þ� for n P 0:

Therefore,

�p=2 < arg
rbðn;0þ inv�Þ
r1ðn;0þ inv�Þ

� �
6 0; for n P 0

and so

�p=2 < arg
ðrbðn;0þ inv�ÞÞ2

r1ðn;0þ inv�Þ

" #
< p=2; for n P 0:

Similar reasoning allows for this inequality to be extended to the
case n 2 R, and also leads to the inequality

�p=2 < arg
ðsbðn;0þ inv�ÞÞ2

s1ðn;0þ inv�Þ

" #
< p=2; for n 2 R:

Thus for 0 < b < 1

�p=2 < arg Dbðn;0þ inv�Þ
� 	

< p=2; for n 2 R ðB:14Þ

and due to (B.7)

jDbðn;0þ inv�Þj > 0: ðB:15Þ

These facts give rise to

IndðDbðn;0þ inv�ÞÞ ¼ 0:
B.5. Index of the function Lðn; 0þ inv�Þ

Finally, this along with (B.1), (B.2) and (B.13) yields

IndðLðn;0þ inv�ÞÞ ¼ 0: ðB:16Þ

As an example, the plot of the functions Cðn;0þ inv�Þ;
Dbðn;0þ inv�Þ; Lðn;0þ inv�Þ are given in Fig. 6. In particular, for

the chosen parameter values, Fig. 6(a) and (b) satisfy the
conditions (B.11) and (B.12); and (B.14) and (B.15) are satisfied,
respectively. Also the plot Fig. 6(c) shows the path L traces in the
complex plane for n 2 ½�4p;4p�. It can be seen that this contour
in the complex plane does not contain or pass through the origin,
which is predicted by (B.16).
Appendix C. An extended class of right-hand sides in the
Wiener–Hopf equation (3.4)

In this section, the general procedure for solving the Wiener–
Hopf equation ð3:4Þ is described. By linear superposition, it will
be shown below that (3.4) can be written in the form

LþuF
0;þ þ

buF
0;�

L�
¼ � b

l
A0

1
0þ in

þ 1
0� in

� ��

þ
Xzþ1

w¼1

AðþÞw
1

0þ iðn� rð1Þ2w�1Þ
þ 1

0� iðn� rð1Þ2w�1Þ

" #(

þAð�Þw
1

0þ iðnþ rð1Þ2w�1Þ
þ 1

0� iðnþ rð1Þ2w�1Þ

" #)

þ
Xyþ1

q¼1

BðþÞq
1

0þ iðn� rð2Þ2q�1Þ
þ 1

0� iðn� rð2Þ2q�1Þ

" #(

þBð�Þq
1

0þ iðnþ rð2Þ2q�1Þ
þ 1

0� iðnþ rð2Þ2q�1Þ

" #)

þ
Xp

i¼1

CðþÞi

1
0þ iðn� h2iÞ

þ 1
0� iðn� h2iÞ

� ��

þCð�Þi

1
0þ iðnþ h2iÞ

þ 1
0� iðnþ h2iÞ

� �
�
; ðC:1Þ

where the numbers p; z, and y depend on the normalised speed v�
and A0 ¼ �lD0=b (see (3.9)). Note that the required split for the
right-hand side into ‘+’ and ‘�’ functions is achieved in the above
equation.

In order to factorise the right-hand side of (3.4), the singular
points must be identified. Non-trivial solutions of (3.4), correspond
to the poles of (3.6), which according to the Section 2.4, occur for

the wavenumbers n ¼ rð1Þ2w�1; r
ð2Þ
2q�1; h2i for w ¼ 1; . . . ; zþ 1; q ¼

1; . . . ; yþ 1 and i ¼ 1; . . . ; p. Note that the wavenumbers n ¼ h2i�1

for i ¼ 1; . . . ; pþ 1, are removable singularities of the right-hand
side of (3.4), since they appear as roots of

k�Xbðn;0þ inv�Þ ¼ 0; ðC:2Þ

when e ¼ 0 and on the dispersion diagram v� > vg at these points,
implying that these are poles of L� located in the upper half of
the complex plane.

In addition to the singular points of (3.6), it is important to
mention that while the point n ¼ rð1Þ ¼ 0 is a removable singu-
larity of the function L, it is a singular point of (3.6), since it
is root of (C.2) when e ¼ 0. This case was already treated in
Section 3.

Asymptotes of (3.6) near singular points and choices for the exter-
nal load q: As mentioned in Section 3.2, the function u0ðtÞ will be
represented as a sum of residues which correspond to the singular
points of the integral kernel of the inverse Fourier transform of uF

0;�.
For this reason, behaviour of the right-hand side of (3.4) near sin-
gular points of (3.6) is now considered, and appropriate choices of
the function qðgÞ will also be given.

(i) In the vicinity of the singularity of 1=L� at n ¼ rð1Þ2w�1, the func-
tion in (3.6) has the asymptotic representation

1
L�ðk�Xbðn;0þ inv�ÞÞ

� Cð1Þ2w�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0þ iðn� rð1Þ2w�1Þ

q : ðC:3Þ

Now consider the external load

q ¼ Að1Þ2w�1

ffiffiffiffiffiffi
2e
p

exp �feþ irð1Þ2w�1gg
� �

HðgÞ;

with Að1Þ2w�1 being the intensity of the load, so that
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qF ¼ Að1Þ2w�1

ffiffiffiffiffiffi
2e
p

e� iðn� rð1Þ2w�1Þ
:

This, along with (C.3) in (3.4) gives

LþuF
0;þ þ

buF
0;�

L�

¼ � bAð1Þ2w�1Cð1Þ2w�1

2l
lim
e!þ0

ffiffiffiffiffiffi
2e
p

ðe� iðn� rð1Þ2w�1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ iðn� rð1Þ2w�1Þ

q

¼ � bAð1Þ2w�1Cð1Þ2w�1

l
pdðn� rð1Þ2w�1Þ:

In connection with the limit above, see Slepyan (2002, Chapter 2).
The additive split can now be achieved through the Dirac delta
function, so that

LþuF
0;þ þ

buF
0;�

L�
¼ � bAð1Þ2w�1Cð1Þ2w�1

2l
1

0þ iðn� rð1Þ2w�1Þ
þ 1

0� iðn� rð1Þ2w�1Þ

" #
:

(ii) A similar additive split can also be made when considering
the wavenumbers n ¼ rð2Þ2q�1, q ¼ 1; . . . ; yþ 1, where now in the
vicinity of n ¼ rð2Þ2q�1,

1
L�ðk�Xbðn;0þ inv�ÞÞ

�
Cð2Þ2q�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0þ iðn� rð2Þ2q�1Þ
q

and the external load

q ¼ Að2Þ2q�1

ffiffiffiffiffiffi
2e
p

exp � eþ irð2Þ2q�1

n o
g

� �
HðgÞ

should be considered.
(iii) For n in the vicinity of the singularities h2i; i ¼ 1; . . . ; p,

1
L�ðk�Xbðn;0þ inv�ÞÞ

� C2i

0� iðn� h2iÞ

and if the q is chosen as

q ¼ 2eB2i expðfe� ih2iggÞHð�gÞ

with

qF ¼ 2eB2i

eþ iðn� h2iÞ
;

then the Wiener–Hopf equation (3.4) takes the form

LþuF
0;þ þ

buF
0;�

L�
¼ � bB2iC2i

2l
lim
e!þ0

2e
ðe� iðn� h2iÞÞðeþ iðn� h2iÞÞ

¼ � bB2iC2i

l pdðn� h2iÞ

¼ � bB2iC2i

2l
1

0þ iðn� h2iÞ
þ 1

0� iðn� h2iÞ

� �
:

Note that for the wavenumbers n ¼ �rð1Þ2w�1; �rð2Þ2q�1, and �h2i a
similar split of the right-hand side of (3.4) can be made to that
described in (i)–(iii) above.

Consulting parts (i)–(iii) above and by applying an argument of
linear superposition with Eq. (3.4), Eq. (C.1) is derived.

C.1. The solution of the Wiener–Hopf equation

The solution of (C.1) is then
uF
0;þ ¼ �

b
lLþ

Xzþ1

w¼1

AðþÞw

0� iðn� rð1Þ2w�1Þ
þ Að�Þw

0� iðnþ rð1Þ2w�1Þ

( ) 

þ
Xyþ1

q¼1

BðþÞq

0� iðn� rð2Þ2q�1Þ
þ

Bð�Þq

0� iðnþ rð2Þ2q�1Þ

( )

þ
Xp

i¼1

CðþÞi

0� iðn� h2iÞ
þ Cð�Þi

0� iðnþ h2iÞ

( )
þ A0

0� in

!
; ðC:4Þ

uF
0;� ¼ �

L�
l

Xzþ1

w¼1

AðþÞw

0þ iðn� rð1Þ2w�1Þ
þ Að�Þw

0þ iðnþ rð1Þ2w�1Þ

( ) 

þ
Xyþ1

q¼1

BðþÞq

0þ iðn� rð2Þ2q�1Þ
þ

Bð�Þq

0þ iðnþ rð2Þ2q�1Þ

( )

þ
Xp

i¼1

CðþÞi

0þ iðn� h2iÞ
þ Cð�Þi

0þ iðnþ h2iÞ

( )
þ A0

0þ in

!
: ðC:5Þ

Then for the solution u0ðgÞ, the inverse Fourier transform should be
applied in accordance with (3.12)–(3.14).

References

Ballarini, R., 1990. A rigid line inclusion at a bimaterial interface. Eng. Fract. Mech.
37 (1), 1–5.

Bigoni, D., Dal Corso, F., Gei, M., 2008. The stress concentration near a rigid line
inclusion in a prestressed, elastic material. Part II. Implications on the shear
band nucleation, growth and energy release rate. J. Mech. Phys. Solids 56
(2008), 839–857.

Carta, G., Jones, I.S., Brun, M., Movchan, N.V., Movchan, A.B., 2013. Crack
propagation induced by thermal shocks in structured media. Int. J. Solids
Struct. 50, 2725–2736.

Colquitt, D.J., Nieves, M.J., Jones, I.S., Movchan, N.V., Movchan, A.B., 2012. Trapping
of a crack advancing through an elastic lattice. Int. J. Eng. Sci. 61, 129–141.

Colquitt, D.J., Nieves, M.J., Jones, I.S., Movchan, N.V., Movchan, A.B., 2013.
Localisation for a line defect in an infinite square lattice. Proc. R. Soc. A 469,
20120579.

Craster, R.V., Kaplunov, J., Postnova, J., 2010. High-frequency asymptotics,
homogenisation and localisation for lattices. Q. J. Mech. Appl. Math. 63 (4),
497–519.

Dal Corso, F., Bigoni, D., Gei, M., 2008. The stress concentration near a rigid line
inclusion in a prestressed, elastic material. Part I. Full-field solution and
asymptotics. J. Mech. Phys. Solids 56, 815–838.

Hills, N.L., 1965. Semi-infinite diffraction gratings. II. Inward resonance. Commun.
Pure Appl. Math. 18, 389–395.

Hills, N.L., Karp, S.N., 1965. Semi-infinite diffraction gratings – I. Commun. Pure
Appl. Math. 18, 203–233.

Hochstadt, H., 1989. Integral Equations. John Wiley & Sons, New York.
Koiter, W.T., 1964. Couple-stresses in the theory of elasticity, I and II. Proc. K. Ned.

Akad. Wet. Ser. B 67, 17–44.
Mishuris, G.S., Movchan, A.B., Slepyan, L.I., 2009a. Localization and dynamic defects

in lattice structures. In: Ruiz, P.D., Silberschmidt, V.V. (Eds.), Computational and
Experimental Mechanics of Advanced Materials, CISM International Centre for
Mechanical Sciences. Springer, pp. 51–82.

Mishuris, G.S., Movchan, A.B., Slepyan, L.I., 2009b. Localised knife waves in a
structured interface. J. Mech. Phys. Solids 57, 1958–1979.

Mishuris, G., Piccolroaz, A., Radi, E., 2012. Steady-state propagation of a Mode III
crack in couple stress elastic materials. Int. J. Eng. Sci. 61, 112–128.

Morini, L., Piccolroaz, A., Mishuris, G., Radi, E., 2013. On the fracture criteria for
dynamic crack propagation in elastic materials with couple stresses, Int. J. Eng.
Sci. 71, 45–61.

Movchan, A.B., Haq, S., Movchan, N.V., 2007. Localised defect modes and a macro-
cell analysis for dynamic lattice structure with defects. In: Vibration Problems
ICOVP 2005, Springer Proceedings in Physics, vol. 111, pp. 327–336.

Movchan, A.B., Brun, M., Movchan, N.V., 2012. Wave defect modes in structured
media. In: Romeo, F., Ruzzene, M. (Eds.), Wave Propagation in Linear and
Nonlinear Periodic Media, Analysis and Applications, International Centre for
Mechanical Sciences, Courses and Lectures, vol. 540. Springer, Vienna, pp. 1–31.

Nieves, M.J., Movchan, A.B., Jones, I.S., Mishuris, G.S., 2013. Propagation of Slepyan’s
crack through a non-uniform elastic lattice. J. Mech. Phys. Solids 61, 1464–1488.

Noble, B., 1958. Methods Based on the Wiener–Hopf Technique for the Solution of
Partial Differential Equations. International Series of Monographs on Pure and
Applied Mathematics, vol. 7. Pergamon Press, New York.

Osharovich, G.G., Ayzenberg-Stepanenko, M.V., 2012. Wave localization in stratified
square-cell lattices: the antiplane problem. J. Sound Vib. 331, 1378–1397.

Özturk, T., Poole, W.J., Embury, J.D., 1991. The deformation of Cu–W laminates.
Mater. Sci. Eng. A 148, 175–178.

http://refhub.elsevier.com/S0020-7683(14)00140-1/h0015
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0015
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0020
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0020
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0020
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0020
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0025
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0025
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0025
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0030
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0030
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0035
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0035
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0035
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0040
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0040
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0040
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0045
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0045
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0045
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0050
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0050
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0055
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0055
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0060
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0065
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0065
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0070
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0070
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0070
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0070
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0075
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0075
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0080
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0080
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0135
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0135
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0135
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0085
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0085
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0085
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0085
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0090
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0090
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0095
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0095
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0095
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0100
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0100
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0105
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0105


M.J. Nieves et al. / International Journal of Solids and Structures 51 (2014) 2990–3001 3001
Slepyan, L.I., 2001a. Feeding and dissipative waves in fracture and phase transition.
I. Some 1D structures and a square-cell lattice. J. Mech. Phys. Solids 49, 469–
511.

Slepyan, L.I., 2001b. Feeding and dissipative waves in fracture and phase transition.
II. Phase-transition waves. J. Mech. Phys. Solids 49, 513–550.
Slepyan, L.I., 2001c. Feeding and dissipative waves in fracture and phase transition.
III. Triangular-cell lattice. J. Mech. Phys. Solids 49, 2839–2875.

Slepyan, L.I., 2002. Models and Phenomena in Fracture Mechanics. Springer, Berlin.
Slepyan, L.I., Ayzenberg-Stepanenko, M.V., 2004. Localized transition waves in

bistable-bond lattices. J. Mech. Phys. Solids 52, 1447–1479.

http://refhub.elsevier.com/S0020-7683(14)00140-1/h0110
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0110
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0110
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0115
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0115
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0120
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0120
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0125
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0130
http://refhub.elsevier.com/S0020-7683(14)00140-1/h0130

	Dynamic response of a growing inclusion in a discrete system
	1 Introduction
	2 Dynamic semi-infinite chain inside the lattice
	2.1 Main notations and description of the problem
	2.2 The model for a propagating semi-infinite line defect in a square lattice
	2.2.1 Dynamic equations of motion
	2.2.2 Solution for the problem inside the lattice for ? 
	2.2.3 The Wiener–Hopf equation

	2.3 Dispersion relations for the semi-infinite chain inside the lattice
	2.3.1 The zeros of ? 
	2.3.2 The poles of ? 

	2.4 Description of poles and zeros of L for a given speed

	3 The analysis of the Wiener–Hopf equation
	3.1 Properties of the function ? and its factorisation
	3.2 Additive split of the right-hand side of (3.4)

	4 Physical applicability of the model and concluding remarks
	Acknowledgements
	Appendix A The regularisation (2.13)
	Appendix B Evaluation of the index of L
	B.1 Auxiliary functions
	B.2 Alternate representation for L
	B.3 Index of the function ? 
	B.4 Index of the function ? 
	B.5 Index of the function ? 

	Appendix C An extended class of right-hand sides in the Wiener–Hopf equation (3.4)
	C.1 The solution of the Wiener–Hopf equation

	References


