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Abstract

We consider a problem motivated by the design of Asynchronous transfer mode (ATM) networks. Given a physical network
and an all-to-all traffic, the problem consists in designing a virtual network with a given diameter, which can be embedded in the
physical one with a minimum congestion (the congestion is the maximum load of a physical link). Here we solve the problem
when the physical network is a ring. We give an almost optimal solution for diameter 2 and bounds for large diameters.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The following study was motivated by a question asked by France Telecom R&D concerningATM networks. In such networks,
the traffic requests (or demands) are routed via virtual paths (VPs) (see the book on ATM[2]). This set of virtual paths has to
be chosen to satisfy two goals. On the one hand, one wants to minimize the hop count (number of VPs which are used to route
a request). Indeed, the hop count determines the data transfer rate and delay of communications, as time consuming software
computation has to be performed when packets are switched from one VP to another VP. On the other hand, the virtual paths
have to be routed (embedded) in the physical network. To minimize the bandwidth and the cost of the overall system, one needs
to minimize the load or congestion that is, the number of VPs sharing the same physical link. These two minimization objectives
are contradictory. In fact, the problem can be formulated for general networks, where the traffic is routed in a virtual (or logical)
network that has to be embedded in a physical network. The design of a virtual topology (network, graph) with given hop count
and load is a difficult problem which has been considered by many authors and is called the virtual path layout (VPL) design
problem. We follow the model introduced in[9,11] and refer the reader to the survey of Zaks[13] for more details.

Telecommunication networks are usually modeled by symmetric digraphs, and requests or demands are directed (from a
source to a destination). Here, we suppose that, when there is a request froms to d, there exists also a request fromd to s,
and that furthermore the opposite request takes the same route (but backward) as the original one. That is the case for many
telecommunication networks used in practice. So we will model the physical network by an undirected graphG. Then we will
consider the case of an all-to-all traffic, that is there is one request for each pair of nodes. In that case the maximum hop count
corresponds to the diameter of the virtual graph. The VPL problem consists in finding, if possible, a virtual graph of given
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diameter which can be embedded with a given maximum load inG. One can consider two optimization problems: in the first one
the maximum load is given and one wants to minimize the diameter (see for example[5]). Here we consider the dual problem
whereD is fixed and we want to design a virtual graph with diameter at mostD such that the maximum load is minimized.
Optimal solutions for this problem whenG is a path can be found in[6]. In this paper, we consider the case where the physical
graph is a cycle (ring). Results concerning other physical graphs and set of requests can be found in[4,6,9,11]. We first give a
precise model of the problem. Then we solve the case when the diameter of the virtual graph is 2, showing that the minimum
load is roughlyn/3, wheren is the number of vertices of the cycle, and give tight bounds for larger diameters of the virtual
graph.

2. A model of the problem

LetG= (V , E) andH = (V , E′) be two undirected graphs with the same set of verticesV. An embeddingP of H in G consists
in associating to each edgee of H an elementary pathP(e) (with the same endpoints ase) in G. SoP is a mapping ofE′ into
the set of paths inG. The couple(H, P ) is called a VPL onG. G is called thephysical graphandH is called thevirtual graph.
The edges ofG are calledphysical edgesand the edges ofH are calledvirtual edges. Theload of a physical edge eof the graph
G = (V , E) for the VPL (H, P ), denoted by�(G, H, P, e) is the number of paths ofP(E′) which use the physical edgee:
�(G, H, P, e) = |{e′ ∈ E′s.t.e ∈ P(e′)}|. Themaximum loadis denoted by�(G, H, P ) = maxe∈E{�(G, H, P, e)}.

Let H be a virtual graph onG; H can be embedded in several ways; we will denote by�(G, H) the minimum of�(G, H, P )

over allP. As we said in the introduction we want the diameter ofH to be at mostD. Our aim is to find a virtual graphH which
has theminimum value�(G, H) among all the graphs with diameter at most D. We will denote thisminimum valueby �(G, D).
Finally, we will take as physical graphG the cycleCn with n vertices.

If D = 1 there is only one possible virtual graph, namely the complete graph and�(G, 1) is related to what is called the
edge-forwarding index[12]. The authors of[8] or [12] consider undirected graphs with all-to-all traffic but with one request per

couple (not pair), so their bound is roughly the double of�(G, 1). Anyway, it is not difficult to show that�(C2p, 1) = �p2+1
2 	

and�(C2p+1, 1) = �p(p+1)
2 	 (see for example[9]). This result can also be deduced from[1]. Indeed in the case of cycles, it is

shown in[3] that�(G, 1) is also equal tow(G), the minimum number of wavelengths needed to route the all-to-all traffic in a
wavelength division multiplexing (WDM) network.

3. CaseD = 2

We have the following theorem.

Theorem 1.⌊
n − 1

3

⌋
��(Cn, 2)�

⌊
n + 1

3

⌋
.

Observe that when n equals1 modulo3, the bounds are equal, and so�(C3p+1, 2) = p. We conjecture that the exact value of
�(Cn, 2) is in fact the upper bound(that is, the proposed virtual graph H is optimal), as soon asn�6. Indeed forn= 5,H =C5
has diameter2 so�(C5, 2) = 1.

Conjecture 2. For n�6,

�(Cn, 2) =
⌊

n + 1

3

⌋
.

3.1. Proposed virtual topology

The virtual graphH is constructed as follows: we split the set of vertices into 3 consecutive intervals of same size (or almost
the same size) and join each vertex to the end vertices of the interval to which it belongs. More precisely, the virtual edges are:

• for 1� i ��n
3 − 1, [i, 0] and[i, �n

3],
• for �n

3 + 1� i �n − �n
3 − 1, [i, �n

3] and[i, n − �n
3],

• for n − �n
3 + 1� i �n − 1, [i, n − �n

3] and[i, 0],
• plus the two edges[0, �n

3] and[0, n − �n
3].
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Fig. 1. Virtual graph of diameter 2 and embedding load 8 onC24.
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Fig. 2. SetsP0, P1 andP2.

The path in the physical graph associated to each virtual edge is defined as the shortest path between the corresponding
vertices (there is no virtual edge between two antipodal nodes, so the shortest path is unique). The load of an edge[i, i + 1] with
0� i ��n

3 − 1 orn − �n
3� i �n − 1 is�n

3. The load of another edge[i, i + 1] with �n
3� i �n − �n

3 − 1 isn − 2�n
3 − 1.

So in all cases there is an edge with load�n+1
3 . Fig. 1describes this construction forn = 24.

3.2. Proof of optimality

Consider a virtual graphH of diameter 2 for which the maximum load of the embedding in the cycle is minimized and equal
to �. We partition the vertex setV of Cn into 3 setsPi (i = 0, 1, 2), the indices being taken modulo 3, with almost the same size
(�n

3� |Pi |��n
3	). For example, ifn = 3p + h, h = 0, 1, 2, |P0| = p, |P1| = p + �h

2, |P2| = p + �h
2	. We denote byei the

edge between the setsPi andPi+1. Fig. 2, describes the setsPi and the edgesei . Let theresidual graph, denotedR(H), be the
graph with the same vertex set asCn and containing only the edges ofH joining two vertices in two distinctPi . We denote by
e(Pi, Pj ) the number of edges ofR(H) which join a vertex ofPi to a vertex ofPj . The path inCn associated to a virtual edge
can be either clockwise or counterclockwise. So we do not have necessarily��e(Pi, Pj ). However the path associated to an
edge ofR(H) incident to a vertex ofPi uses one of the physical edgeei or ei−1. So we have, for all distincti, j, k,

e(Pi, Pj ) + e(Pi, Pk)�2�, (1)



S. Choplin et al. / Discrete Applied Mathematics 145 (2005) 368–375 371

and so

e(P0, P1) + e(P1, P2) + e(P2, P0)�3�. (2)

We distinguish three cases:
Case1: There is at least one vertex of degree 0 inR(H). LetPi be the set containing this vertex. InR(H), all vertices ofPj and

Pk must have a neighbor inPi to achieve the maximum distance of 2 to this vertex. Thus we havee(Pi, Pj )+e(Pi, Pk)� |Pj |+
|Pk |.According to (1), ifn=3p or 3p+1, we have��p and ifn=3p+2, we have��p+1; in each case, we have��

⌊
n+1

3

⌋
.

Case2: There is a setPi such that all its vertices have degree at least 2 inR(H). Then we havee(Pi, Pj ) + e(Pi, Pk)�2|Pi |
and, according to (1),��

⌊
n
3

⌋
.

Case3: Otherwise, each setPi contains at least one vertex of degree 1 inR(H) and no vertex of degree 0. Recall that a
connected component ofk vertices has at leastk − 1 edges. We will show that all the connected components ofR(H) except
perhaps three of them have in fact as many edges as vertices, so the number of edges ofR(H) will be at leastn − 3 and by (2),
3��n − 3, therefore���n−1

3 .

Notation. We denote by{Pi → Pj } the subset ofPi containing the vertices which are only adjacent toPj in R(H).

Remark 3. Note that each vertex ofPi of degree 1 (inR(H)) belongs to{Pi → Pj } or {Pi → Pk}.

Suppose that there existx ∈ {Pj → Pi} andy ∈ {Pk → Pi}. By definition,x does not have any neighbor inPk andy
does not have any neighbor inPj ; so to achieve the maximum distance of 2 inH betweenx andy, these vertices must have a
common neighbor inPi in H and then also inR(H). Thusx andy are in the same connected component inR(H) and we have
the following property:

If {Pj → Pi} and {Pk → Pi} are both non-empty then
the vertices of{Pj → Pi} and {Pk → Pi} are in the same
connected component ofR(H).

(3)

We distinguish two sub-cases:
Case3.1. The six sets{Pi → Pj } are non-empty.
Property (3) implies that all the vertices of degree 1 are in at most three connected components ofR(H). These three

components have a number of edges at least equal to their number of vertices minus one. All the other connected components
have only vertices of degree at least 2, so the total number of edges inR(H) is at leastn − 3. We have 3��n − 3 and thus

��
⌊

n−1
3

⌋
.

Case3.2. There is an empty set{Pi → Pj }.
Then each vertex ofPi is connected (inR(H)) to a vertex ofPk so e(Pi, Pk)� |Pi |. Furthermore, by Remark 3, the set

{Pi → Pk} is nonempty.
If {Pj → Pk} is empty, then each vertex ofPj has at least one neighbor inPi ; so e(Pj , Pi)� |Pj | and e(Pi, Pk) +

e(Pj , Pi)� |Pi | + |Pj |. Then (1) implies that��
⌊

n+1
3

⌋
. With the same argument, we have the following fact: if{Pj → Pi}

or {Pk → Pi} is empty, then��
⌊

n+1
3

⌋
.

Otherwise{Pi → Pk},{Pj → Pk}, {Pj → Pi} and{Pk → Pi} are all non-empty and Property (3) gives us that{Pj → Pi},
{Pk → Pi} and{Pi → Pk}, {Pj → Pk} are in at most two connected components ofR(H).

Now it remains to consider the vertices of{Pk → Pj } if any. Let x in {Pk → Pj } andy one of its neighbor inPj . If y has
no neighbor inPi theny is in the set{Pj → Pk} andx belongs to the same connected component (inR(H)) that{Pj → Pk}.
Otherwise, ify has a neighborz in Pi , as{Pi → Pj } is empty,z has a neighbort in Pk . If t does not have a neighbor inPj ,
thent belongs to{Pk → Pi} and thent, x and{Pk → Pi} are in the same connected component, otherwiset has a neighboru
in Pj , and so on. So two cases can happen:x belongs to one of the two connected components formed by the sets{Pj → Pi},
{Pk → Pi} and{Pi → Pk}, {Pj → Pk}, or x is in a connected component with a cycle and then the connected component
that containsx has at least the same number of edges as the number of vertices. Finally, like in Case 3.1, all the other connected
components ofR(H) have only vertices of degree 2. So altogether the total number of edges ofR(H) is at leastn − 2, and thus
3��n − 2, i.e.,���n

3 Table 1.
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Table 1
Summary of upper and lower bounds according to the value ofn in all cases

n Upper bound Lower bound

Case 1 Case 2 Case 3.1 Case 3.2

n = 3p p p p p − 1 p
n = 3p + 1 p p p p p
n = 3p + 2 p + 1 p + 1 p p p

4. CaseD�3

Here we give upper and lower bounds on�(Cn, D) whenD�3.

Theorem 4 (Lower bound).

If D is even, then

⌊
1
2

(
2
3

)2/D
n2/D

⌋
��(Cn, D).

If D is odd, then

⌊
1
2

(
1
2

)2/D
n2/D

⌋
��(Cn, D).

Proof. The proof can be obtained by induction: the inequality is valid forD = 1 as�(Cn, 1)��n2

8  (Section 2) and is valid

for D = 2 as�(Cn, 2)��n−1
3  (Theorem 1). We split the cycleCn into k consecutive pathsPi of balanced size (�n

k
 or �n

k
	).

If there exists somei such that all the vertices ofPi have a neighbor in the virtual graph outsidePi , then the load is at least⌈⌊
n
k

⌋
/2

⌉
because each virtual edge going out ofPi uses one of the two possible physical edges. If no suchi exists, then for all

i, there is at least one vertex ofPi which has no neighbor in the virtual graph outsidePi . Since the diameter of the virtual graph
is at mostD, we deduce that the virtual graph obtained by merging eachPi into one vertexci has a diameter smaller than or
equal toD − 2. In this case, the load�(Cn, D) is greater than�(Ck, D − 2).

• If D is even, then�(Cn, D)�maxk{min{� n
2k

, �1
2(2

3)2/(D−2)k2/(D−2)}}. We choosekmaxsuch that n
2kmax

= 1
2(2

3)2/(D−2)

k
2/(D−2)
max . So we have

⌊
1
2

(
2
3

)2/D
n2/D

⌋
��(Cn, D).

• If D is odd, then�(Cn, D)�maxk{min{� n
2k

, �1
2(1

2)2/(D−2)k2/(D−2)}}. We choosekmax such that n
2kmax

= 1
2(1

2)2/(D−2)

k
2/(D−2)
max . So we have

⌊
1
2

(
1
2

)2/D
n2/D

⌋
��(Cn, D). �

Theorem 5 (Upper bound). If D is even, D = 2p, then

�(Cn, D)� p

2(p − 1)

(
2

3
(p − 1)!(p − 1)

)1/p

n2/2p + o(n2/2p).

If D is odd, D = 2p + 1, then

�(Cn, D)� 2p + 1

4p
(p!)2/(2p+1)

(p

2

)1/(2p+1)
n2/(2p+1) + o(n2/(2p+1)).

Proof. In [6] it is shown that, for any integerD and a pathPn of n vertices,�(Pn, D) is of ordern2/D . Thus, we know that
�(Cn, D) is of order at mostn2/D . To prove our bound, we construct a virtual graph of diameterD as follows:

Let k andD0 be two integers,k < n andD0 < D/2. We split the cycleCn into k consecutive paths of balanced size (�n
k


or �n
k
	), seeFig. 3. For each of these paths, we use an optimal virtual graph in which one of the centers of this path is of

eccentricityD0, we denote by�OA(P� n
k
, D0) and�OA(P� n

k
	, D0) the corresponding optimal loads (OAmeans One-to-All or

broadcast traffic). Then we construct on the physical cycle formed by thek paths (contracted in one of their centers) an optimal
virtual graphH ′ with diameter at mostD − 2D0. Finally, the virtual graphH is the union ofH ′ and the virtual graphs on the
k paths. As the virtual graphs on two paths will not be embedded using the same physical edges, the maximum load will be
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Optimal virtual graph
of eccentricity Do

on the path

on the cycle

Optimal virtual graph

of diameter D−2Do

Fig. 3. Construction of a virtual graph of diameterD on the cycle.

at most�(Ck, D − 2D0) + �(P� n
k
	, D0), so

�(Cn, D)��(Ck, D − 2D0) + �OA(P� n
k
	, D0).

In [10] the authors have shown that the maximum number of vertices of a pathP such that there exists a virtual graphH on P

with �(P, H) = c, and which makes the eccentricity of its centers at mostD0, is
∑min{c,D0}

l=0 2l (c
l
)(

D0
l

), so we can deduce that

1

2

(
D0!

⌈n

k

⌉)1/D0 − D0

2
��OA(P⌈

n
k

⌉, D0)� 1

2

(
D0!

⌈n

k

⌉)1/D0 + 1.

Now we need to determine the best choices fork andD0. As we only want to have asymptotic bounds, we do not care about the

ceiling function. ForD=3 the only possible choice isD0=1 andD−2D0=1.As�OA(Pn
k
, 1)= n

2k
and�(Ck, 1)= k2

8 +o(k2),

an easy computation shows that the optimalk is (2n)1/3 which gives�(Cn, 3)� 3
27/3 n2/3 +o(n2/3). ForD =4, then necessarily

D0 = 1 andD − 2D0 = 2, and we obtain the optimalk =
√

3n
2 , and�(Cn, 4)�

√
2n
3 . Table 2gives the best possible values of the

load forD�7.
Computation (and intuition) indicates that for anyD, the best choice isD0 =�D−1

2 , using this value we obtain the following
upper bounds:

• If D = 2p even,D0 = p − 1, �(Cn, D)�mink{�OA(Pn/k, p − 1) + �(Ck, 2)}so

�(Cn, D)� 1

2

(
(p − 1)!n

k

)1/(p−1)

+ k

3
.

Computation shows that the best choice ofk is

(
3

2(p − 1)

) p−1
p

((p − 1)!n)1/p.

Therefore,

�(Cn, D)� p

2(p − 1)

(
2

3
(p − 1)!(p − 1)

)1/p

n2/2p + o(n2/2p).
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Table 2
Best known load on the cycle according to the diameterD of the virtual graph

D D0 D − 2D0 �OA(Pn/k, D0) Best known load on the cycle forD − 2D0 Best known load on the cycle forD

3 1 1 1
2

n
k

k2

8
3

27/3 n2/3

4 1 2 1
2

n
k

k
3

61/2

3 n1/2

5 1 3 1
2

n
k

3
822/3k2/3 5

824/5n2/5

2 1 1
2

(
2n
k

)1/2
k2

8
5
8 22/5n2/5

6 1 4 1
2

n
k

61/2

3 k1/2
(

3
2

)2/3
n1/3

2 2 1
2

(
2n
k

)1/2
k
3

32/3

2 n1/3

7 1 5 1
2

n
k

5
822/5k2/5 7

824/7n2/7

2 3 1
2

(
2n
k

)1/2 3
27/3 k2/3 7

824/7n2/7

3 1 1
2

(
6n
k

)1/3
k2

8
7
12 21/733/7n2/7

… … … … … …

• If D = 2p + 1 odd,D0 = p, �(Cn, D)�mink{�OA(Pn/k, p) + �(Ck, 1)}.
So�(Cn, D)� 1

2

(
p!n
k

)1/p + k2

8 .

Computation shows that the best choice ofk is
(

2
p

)p/(2p+1)
(p!n)1/(2p+1). Therefore,�(Cn, D)� 2p+1

4p
p!2/(2p+1)

(p
2

)1/(2p+1)
n2/(2p+1) + o(n2/(2p+1)). �

Remark 6. In the context of optical networks, one may also want to determinew(G, D), the minimum number of optical
wavelengths (or colors) such that there exists aV PL (H, P ) onG of diameter at mostD andw(G, D) colors are needed to color
the paths associated to the virtual edges ofH in such a way that two paths using the same physical edge have different colors.
Clearly�(G, D)�w(G, D). ForG=Cn, it is known (see[3]) that�(Cn, 1)=w(Cn, 1).We conjecture that�(Cn, D)=w(Cn, D).
Note that all theV PL given in this paper can easily be colored with a number of colors equal to the maximum load. So for

D = 2,
⌊

n−1
3

⌋
�w(Cn, 2)�

⌊
n+1

3

⌋
. For more details on the determination ofw(G, D), see[7] where a family of graphsGk

such thatw(Gk, 3) = �(Gk, 3) + k2 (with k as large as we want) is exhibited. However, the equalityw(G, 1) = �(G, 1) remains
an unsolved problem (see[3]).

5. Conclusion

We answered a problem arising from the design ofATM networks: the embedding of a virtual graph of diameterD in the cycle,
with the lowest possible load. We gave the quasi-optimal topology of diameter 2 and its embedding in the cycle ofn vertices. We
proved that this topology is optimal forn = 3p + 1 and differs at most by 1 from the optimal in other cases. It will be interesting
to prove Conjecture 2. Diameter 2 allowed us to fix many properties on the virtual graph, and implied a constrained solution.
The problem with a greater diameterD seems more difficult to solve with exact precision since the topology of the virtual graph
is less constrained. To answer the problem in this latter scenario, we gave lower and upper bounds for the lowest load of the
all-to-all communication pattern realized in the cycle withinD hops, and provided the corresponding constructive solution.
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