COLOR SYMMETRY AND GROUP THEORY

Richard L. ROTH
Deparment of Mathematics, University of Colorado, Boulder, CO 80309, USA

Received 26 June 1978
Revised 3 March 1980 and 12 August 1980

Abstract

The theory of color symmetry is developed in this pades from a group theoretical point of view. The transitive colorings of a design are classified by the subgro.ps of the symmetry group. A theory of compound coloring is developed. The theory of partial color symrietry is used to analyze the effect of restricting or enlarging the symmetry group involved.

Introduction

The theory of color symmetry is a relatively new hranch in the theory of symmetry. Its motivation comes from the fields of chemistry and art. Shubnikov, starting in the 1940's, was one of the first to pioneer its development in crystallography (particularly black-white symmetry). A recent reference for the "Russian school" is [9]. The Dutch artist Escher independently began to investigate the use of color symmetry in his fascinating drawings; see [6]. The algebraic approach to the subject, using the theory of permutation representitions of groups, was initiated by van der Waerden and Burckhardt in their influential 1961 paper [10]. This approach was developed further by MacDonald and Street in [4] and by others [7] and [8]. Some other recent references are [1] and [5].

Sections 1 and 2 present the basic group-theoretic approach, adapied and expanded from the material in [4]. The emphasis is on using the group to "coordinatize" the design. In Section 3 a theory of compound coloring is described which allows for more complex coloring of designs. Section 4 presents a theory of partial color symmetry. This is applied to help clarify the relationship between the distinct notions of equivalence of colorings and equivalunt color patterns as discussed in [4] and [5].

1. Basic theory

Assume that one has a symmetrical geometric figure, crystal structure or ornamental design. This has associated with it a group of symmetries. Group theory affords a tool in studying and developing such designs. Color symmetry is an extension of this approach. The illustrative examples will be planar figures and
we will use the term "ornamental design" or "design" throughout, but the theory is applicable to many situations, such as crystallography, where a suitable symmetry group is available.

Example. The symmetry group of the square is the dihedral group D_{4} of order 8 . See Fig. 1. Let a represent a rotation counter-clockwise 90°. Let b be a reflection in the horizontal axis. We shall always compose symmetries from left to right: thus $b a$ is the reflection b followed by rotation $a ; b a$ is reflection in the diagonal axis (lower left to upper right). Similarly $b a^{3}$ is the reflection in the other diagonal axis, $b a^{2}$ is the reflection in the vertical axis. G is generated by a and b : $a^{4}=e=b^{2}, b a b=a^{3} ; G=\left\{e, a, a^{2}, a^{3}, b, b a, b a^{2}, b a^{3}\right\}$.

In general, the basic design is assumed to be originally without color. Then the design is to be colored using a finite number of colors; that is, certain regions (or subsets) of the design are assigned colors. We do not assume that the entire design is colored. Further, the regions are not necessarily figures already drawn in the design; in many cases a basic unit of the design may be subdivided into several regions receiving possibly different colors (see for example Fig. 15 where the design consists of an aray of squares but each square is then subdivided into 8 triangles for the purpose of coloring). The following definition is based on the "consistency" condition for color syrnmetry due to Loeb [3, p. 103].

Definition. Assume that there is given an ornamental design with symmetry group G to which colors have been dded. An element $g \in G$ is called a color symmetry if all portions colored by one given color are mapped by g onto portions colored by one color (i.e. if any region colored red is mapped onto one colored yellow then all red regions are mapped onto yellow regions). Thus g is assuciaied with a permutation of the set of colors and we say that " g permutes the colors consistently." If each g in G is a color symmetry we say that the assignment of colors is a symmetric coloring of the design. (In [1] the term "perfect coloring" is used.) For short we will often simply say "coloring".

Fig. 1.

Fig. 2.

For example, in Fig. 2, the square has been colored with i colors. Rotation a maps white regions onto green and vice versa. The blue regions are rotated cnto orange regions which are in turn rotated onto yellow regions, etc. In short, a is associated with the permutations: white \leftrightarrow green, blue \rightarrow orange \rightarrow yellow \rightarrow red \rightarrow blue. The reflection b is associated with the permutation white \leftrightarrow green, yellow \leftrightarrow blue, with red and orange being left fixed. The reflection ba fixes white and green, while interchanging yellow with orange, and red with blue. A similar statement holds for each of the 8 symmetries of the group.

In \S eneral let the numbers $1,2, \ldots, n$ denote the n colors used in a symmetric coloring. If $g \in G$ maps all regions colored i onto regions colored j and h maps all regions colored j onto regions colored k, then clearly $g h$ maps all regions colored i onto regions colored k. It is thus easily seen that we have associated with G a permutation representation on the set of colors; alternatively we may say that there is a_{a} action of G on the set of colors; the set of colors is G-set.

We look first at the transitive case; by this is meant that given any pair of colors i and j there is an element $g \in G$ taking color i to color j. In other words, the permutation representation is transitive; by extension we refer to the coloring as a "transitive coloring" of the design. The example shown in Fig. 2 is not transitive. In Fig. 3 we have illustrated a transitive coloring of the square. Here the rotation a takes blue to red to green to yellow to blue while the reflection b fixes blue and green, an $:$ interchanges red with yellow.

Fig. 3.

As is well known, the study of transitive permutation representations of a group G is facilitated by using the corresponding stabilizer subgroups. Each subgroup H of finite index in G yields a transitive permutation representation, using right multiplication on the set of right cosets of G modulo H; also, given any transitive permutation representation on n symbols, if H is the stabilizer subgroup of one of the symbols, the representation is equivalent to that on the right cosets of G modulo H. (See for example, Hall's book [2, section 5.3].) This now gives an easy way to determine the transitive colorings of an ornamental design with symmetry group G (see $[4,10]$). To begin with, a collection of fundamental regions to be colored is selected in one-to-one correspondence with the elements of the group.

Definition. A sequence of fundamental reg:ons $\left\{A_{i}\right\}$ for an ornamental design with symmetry group G is a set of disjoint regions (subsets) in the design having the pronerty that given any two regions A_{i}, A_{i}, there exists a unique symn. cry g in G such that g maps the region A_{i} onto the region A_{i}.

In selecting a sequence of fundamental regions we allow considerable flexibility. One may often have the situation that the union of the regions essentially covers the whole design (except for boundaries), but this is not assumed since one may wish to leave portions of the design uncolored or neutral. Moreover, while in some situations there may be a "natural" sequence of fundamental regions for G that one has the option of using, this is not even always the case and in general many choices of fundamental regions are possible. For example, if the group has reflections, the axes of the reflections are often chosen to be among the boundaries of the regions (as we have done in the case of the square, in Fig. 4; compare Fig. 1). On the other hand in many of Escher's periodic drawings the symmetry group has no réections; the fundar ental regions take the shape of animals. If the design has certain repeated shapes it may be convenient sometimes to use them or to subdivide them to get a sequence of fundamental regions but we don't make any assumptions on the relationship of the fundamental regions chosen for the coloring to the figures that may appear in the design.

The design is then "coordinatized" using the group G. An arbitrary region in

Fig. 4.
the sequence, denoted Ω, is selected to be the "starting" region. For each region A there is a unique summetry g in G mapping Ω onto A; label region A with the element g. In short, for each $g \in G$, the region Ωg is labelled " g ". See Fig. 4 where we have divided the square into 8 triangles which form a sequence of fundamental regions. These have been labelled using the elements of D_{4}.

If g and h are two elements of G then the region labelled $g h$ is that obtained by applying the symmetry gh to the region Ω; i.e. it is the region $\Omega(g h)$. But $(\Omega g) h=\Omega(g h)$. Thus we can make the following important observation.

Basic Principle of Coordinatization. The symmetry h maps the region labelled g onto the region labelled gh.

The operations of the elements of G on the collection of fuidamental regions in fact give a permutation representation of G on the collection of fundamental regions which is equivalent to the regular or Cayley representation of G on itself by right multiplication.

Let H be a subgroup of finite index in G and let $G=H \cup H x_{2} \cup \cdots \cup H x_{n}$ be the right coset decomposition (let " $x_{1} "=e$). The subgroup H corresponds to a set of regions in the figure as does each right coset $H x_{i}$. If we choose n colors: $1,2, \ldots, n$, and color the regions for $H x_{i}$ with color i for each i, this will yield a coloring of the design such that the stabilizer of color 1 is precisely the subgroup H and the permutations of the colors correspond to the permutations on the right cosets of H by right multiplication by elements of G. For if $H x_{i} g=H x_{j}$, then in the design, the regions labelled with elements of $H x_{i}$ are colored with color i and those labelled by $H x_{i}$ are color d by color j, we see that g maps precisely the set of regions colored by i onto th. set of regions colored by j.

For example, if H is the subgroup $\{e, b\}$ then we have the ight coset decomposition $H=\{e, b\}, H a=\{a, h a\}, H a^{2}=\left\{a^{2}, b a^{2}\right\}, H a^{3}=\left\{a^{3}, b a^{2}\right\}$. Assigning blue to H, red to $H a$, green to $H a^{2}$ and yellow to $H a^{3}$ we get the coloring which was illustrated in Fig. 3 as may be seen by comparing it to Fig. 4.

As is well known, conjugate subgroups yield equivalent permutation representations of G. Thus it might well be expected that the corresponding colorings would be essentially the same. This, however, is not the case, as was pointed out in [4]. For example if $H_{1}=\left\{e, b a^{2}\right\}$, then H_{1} is conjugate to H. In Fig. 5 we color the square using the coset decomposition for H_{1}. Blue is assigned to H_{1}, red to $H_{1} a$, sreen to $H_{1} a^{2}$ and yellow to $H_{1} a^{3}$. It is clear that this is a rather different coloring from that shown in Fig. 3 which was the coloring associated with the subgroup H.

To analyze the situation more closely we attempt to define carefully the notion of eq ivalence for colorings of an ornamental design. It should be remarked that other approaches are possible, and the idea of equivalence used by MacDonald and Street in [4] is somewhat different from the one that follows. A further analysis of their point of view is given in Section 4.

Fig. 5.
Definition. Two symmetric colorings C_{1}, C_{2} of a given design are called equivalent if the design colored by C_{1} may be transformed to the design colored by C_{2} by
(a) applying a symmetry element g of the symmetry group G to the design colored by C_{1}, or
(b) relabelling the colors in C_{1} (i.e. changing the colors in a one-one fashion), or
(c) a combination of operations of type (a) and (b).

Since the application of a symmetry element g to the colored design has the same apparent effect as a 'relabelling' of the colors we have the following lemma.

Lemma 1.1. If two symmetric colorings are equivalent, then the first may be transformed to the recond by simply relab:lling the colors; that is they are already equivalent under a : ansformation of type (b) alone.

Let P denote a partition of a group G into a finite number of subsets: $P: G=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$. Let $g \in G$. Then $G=G g:=S_{1} g \cup S_{2} g \cup \cdots \cup S_{n} g$ gives a second partitior of G which we will denote $P g$. If $P=P g$ we say that the partition is g-invariant (this means that g permutes the collection of subsets S_{i}). If $P g=P$ for all $g \in G_{1}$ where G_{1} is a subgroup of G, then P is called G_{1}-invariant.

Let a collection of fundamental regions be colored irensitively, as described earlier, and let S_{i} be the set of g in G such that Ωg is colored by color i. Then $G=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$ is a G-invariant partition $0_{i}^{*} G$ and it is clear from the definition of equivalence that two such colorings are equivalent precisely if they correspond to the san.e G-invar ant partition of G.

Lemma 1.2. Let P be a G-invariant partition: $G:=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$ and assume that $e \in S$. Then S_{1} is a subgroup and P is the right coset decomposition moduio S_{1}.

Proof. If $h \in S_{1}$ then $P h^{-1}=P$, and $S_{1} h^{-1}=S_{1}$, since $e=i h^{-1} \in S_{1} h^{1}$. Thus S_{1} is a subgroup and if $g \in S_{i}$, then $S_{1} g=S_{i}$.

The next theorem tollows from Lemma 1.2 and the discussion preceding it.

Theorem 1.3. Let there be given an ornamental design with symmetr, group G and a collection of fundamental regions. Select one region Ω as the "starting" region. To each subgroup H of finite index in G choose $[G: H]$ colors and consider the transitive symmetric coloring of the design associated with it as described earlier. Then any transitive symmetric coloring of the design (with the same collection of fundamental regions) is equivalent to one of these colorings. If $\mathrm{H}_{1}, \mathrm{H}_{2}$ are two subgroups of G with $H_{1} \neq \mathrm{H}_{2}$, then the corresponding colorings are not equivalent.

This means that the choice of region Ω established a one-one correspondence between the set of equivalence classes of transitive colorings and the set of subgroups of \mathcal{G}. A different region Ω would entail a different correspondence.

2. The colorings associated with a subgroup H

Given a subgroup H of finite index in G, there is a corresponding transitive permutation representation of G as discussed earlier. If we select a starting region Ω, coordinatize the design by elements of the group and assign colors to each of the right cosets modulo H, we get a symmetric coloring of the design associated with this permutation representation. This coloring, as discussed in Section 1, will be called the principal coloring associated with H. (It should be emphasized that in using this terminology the choice of this coloring as "principal coloring" is arbitrary since it depends on the particular choice of Ω as starting region.) There cin, however, exist several inequivalent colorings associated with the same permutation representation of G, as was first noted in [4]. Had we chosen a different fundamental region to be the starting region Ω we might have gotten a non-equivalent coloring. Under the operations of the subgroup H, the set of regions is partition d into orbits and it is the choice of orbit which determines which coloring is rbtained. Rather than choosing different starting regions we take a different approach. If we associate the collection of fundamental regions with the elements of the group as before, then applying any symmetry g to the design corresponds to multiplying the elements of the group on the right by g. The orbit under the action of H which contains a particular element g_{0} is the set of images $g_{0} h$ with $h \in H$; i.e., it is the left coset $g_{0} H$. So the set of orbits may be identified with the set of left cosets of H in G.

Let $\left\{x_{1}=e, x_{2}, \ldots, x_{n}\right\}$ be a set of right coset representatives for H in G. Then $\left\{x_{1}^{-1}=e, x_{2}^{-1} \ldots, x_{n}^{-1}\right\}$ is a set o^{c} left coset represertatives. Let there be a set of n colors chosen in one-one correspondence with the right coset representatives $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Choosing any left coset $x_{i}^{-1} H$ we get a coloring of the design as follows: color the elements of the set $x_{i}^{-1} H x_{j}$ with color j for $j=1,2, \ldots, n$. This assigns to the orbit $x_{i}^{-1} H$ the color 1 and as before the elements $H x_{i}$ of the group are precisely those symmetries which map regions colored with color 1 onto regions colored with color $j . H$ is as usual the stabiiizer subgroup for color 1. For
the case that $x_{i}^{-1}=$? the coloring obtained is the principal coloring. Now we have described n colorings associated with H (and the corresponding permutation representation of G). Let us call a subset of the form $x_{i}^{-1} H x_{i}$ a tiset (for want of a better name) and consider the following n by n array of bisets.

Associate with each row j the color j, for $j=1,2, \ldots, n$. Notice that the top row lists the left cosets, i.e., the orbits of H. The i th column, starting with $x_{i}^{-1} H$, gives the coloring just described.

Any coloring of the design which corrr sponds to the given transitive permutation representation on these n colors must be given by one of the columns in the biset array. For H being the stabilizer of color 1 , if g is colored with color 1 , the :egions labelled $g H$ are precisely those colored 1 . $H x_{i}$ is precisely the set of elements in the group taking color 1 onto color j; hence, $g H x_{i}$ a:e labels of the regions in the design which are colored j. But $g H=x_{i}^{-1} H$ for some i, and we see that the coloring is just that given by column i. Note that the first column on the left is the principal coloring associated with H, i.e., the coloring discussed in Section 1.

For example, let G be the group of the square and $H=\{e, b\}$. Choose $\left\{e, a, a^{2}, a^{3}\right\}$ as the right coset representatives. The complete biset array, with rows assigned the colors blue, red, green, and yellow, is as follows:

| Biue | H | $=\{e, b\}$ | $a^{2} H$ | $=\left\{a^{3}, b a\right\}$ |
| :--- | :---: | ---: | :--- | ---: |$\quad a^{-2} H=\left\{a^{2}, b a^{2}\right\} \quad a^{-3} H=\left\{a, b a^{3}\right\}$

Thus, in Fig. 3 the square is colored by the first column, i.e., the column under H (the principal coloring). In Fig. 6 the square has been colored by the 2nd column (the column headed by $a^{-1} H$).

Theorem 2.1. Every coloring of the design which affords the permutation representation with stabilizer H is described by a column in the biset array. The coloring for column i, headed by the left coset $x_{i}^{-1} H$, is eq ivalent to the principal coloring for the conjugate subgrcıp $\bar{H}=x_{i}^{-1} H x_{i}$.

Proof. The first statement has aiready been discussed. The coloring for the i th

Fig. 6.
column in the biset array corresponds to a G-invariant partition of G and $e \in x_{i}^{-1} H x_{i}=\bar{H}$. Hence by Lemma 1.2 this is equivalent to the principal coloring based on \bar{H}.

Corollary 2.2. The coloring in column i of the biset array for H is equivalent to the principal coloring for H precisely if x_{i} is in the normalizer of H, i.e., $x_{i}^{-1} H x_{i}=H$. Ali the coluins yield equivalent colorings precisely if H is normal in G (since by Theorem 1.3, principal colorings for distinst subgroups are non-equivalent).

Corollary 2.3. If there are precisely k distinct conjugate subgroups of H (counting H itself), then there are precisely k inequivalent colorings for the transitive permutation representation associated with H.

In the example, with $H=\{e, b\}$, the first and 3 rd columns give equivalent colorings as do the 2nd and 4th columns. $a^{-2} H a^{2}=H, a^{-1} H a \neq H$. In fact, $a^{-1} \mathrm{Ha}=\mathrm{H}_{1}=\left\{e, b a^{2}\right\}$. Notice that the coloring in Fig. 5, the principal coloring for H_{1}, is equivalent, though not identical, to that in Fig. 5 , which is based on the column headed by $a^{-i} H$. (This illustrates the second statement of Theorem 2.1.)

Corollary 2.4. The k colorings associated with H are equivalent to the k colorings associated with any subgroup conjugate to H.

Proof. This set of colorings is equivalent to the set of principal colorings for the k subgroups which are conjugate to H.

3. Compound colorings

Suppose in a design we have the sequence of fundamental regions $\left\{R_{i}\right\}$. In each region R_{i} we choose a pair of subregions A_{i} a.d B_{i} in such a way that if $g \in C$ is the unique symmetry mapping R_{i} onto R_{i}, then g maps A_{i} onto A_{i} and B_{i} unto B_{i}. This gives two sequences of fusdamental subregions $\left\{A_{i}\right\},\left\{B_{i}\right\}$; each separately could $b \in$ selected as the sequence to be colored. In Fig. 7 we illustrate a possivility for the square.

Fig. 7.

Fig. 8.

Note that the two eiements A_{i}, B_{i} are regarded as associated since they are together in the larger fundamental rigion. In practice various treatments are possible. The 2 subregions need not fill out the fundamental region, or indeed they may overlap or even coincide; n the latter case one might use a set of "patterns" to "color" one of the sequences, superimposing it on the set of colors used for the other sequence. In Fig. 8 the outer rings of the circles could be thought of as the sequence $\left\{A_{i}\right\}$, while the inner circles could be the second sequence $\left\{B_{i}\right\}$ and the association of A_{i} with B_{i} is evident. The space outside the larger circle could be left uncolored (or treated as a third sequence). A wellknown intricate design of Escher's involves tricolored moths with the front wings being colored differently from the body, etc. The sets of front wings, of back wings, of bodies might be regarded as associated sequences of fundamental su'bregions with ihe inoths themselves taken as the original sequence of fundamental regions (see [6, plate 42] and 3, p. 165]). This design and the discussion in [6] were part of the author's motivation to develop a theory of compound coloring.

In a compound coloring the two subsequences are colored in such a way that the symmetries of the group pernute the colors consistently (i.e., are color symmetries). The definition of equivalence given in Section 1 remains the same. Usually, the two elements of an associated pair of subregions will get different colors. However if any pair gets colored the same, this will happen to all the pairs (by the definition of symmetic coloring); essentially one then has a simple, transitive coloring of the type considered earlier but for convenience we allow these "trivial" compound colorings too. There are two types of compound colorings. In type I, the same set af colors is used to color the two sequences $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$. Since a symmetry element must permute the colors consistently, the same permutation representation of G must be used. In type II, disjoint sets of colors are used for the two sequences.

To anaiyze ard construct thes z colorings, we first "coordinatize" the design as in Section 1. A startung region Ω is selected from the fundamental sequence $\left\{R_{i}\right\}$ and each R_{i} is labelled by a unique element g from the symmetry group G. Each
 also be used to label A_{i} and S_{i}. For example in Fig. 7, using the notation and
starting region selected earlier in the paper, regions A_{8} and B_{8} are labelled by the reflection b, while the label a^{2} is attached to the regions A_{5} and B_{5}, etc.

Type II compound colorings, using disjoint sets of colors for the two sequences, are easier to analyze than type I so we discuss them briefly here before discussing type I in detail. Choose a subgroup H and cclor the sequence $\left\{A_{i}\right\}$ with the principal coloring based on H. Similarly, for the sequence $\left\{B_{i}\right\}$ choose a subgroup K (not necessarily distinct from H) and color the sequence $\left\{B_{i}\right\}$ with the principal coloring based on K. It is thus easily seen that the inequivalent compound colorings of type II are in one-to-one correspondence with the set of ordered pairs of subgroups of G. Fig. 2 illustrates a coloring of this type. One may regard the situation as giving an intransitive permutation representation of G. Another point of view is that the ordered pairs of colors could be regarded as a new set of "colors", and thus we have a transitive representation on this new set of "colors". The stabilizer subgroup would then $\mathrm{b}: ~ H \cap K$.

Type I compoundings are more involved. Here we shall make use of the biset array discussed in Section 2. Assume that we are given a transitive perm station representation of G on n colors with stabilizer subgroup H. Choose two cciamns from the biset array; use one column to color the sequence $\left\{A_{i}\right\}$ and another column to color the sequence $\left\{B_{i}\right\}$. More specifically, we have assigned to each row j of the biset array the color j. Now to each associated pair (A_{k}, B_{k}) was assigned an element $g \in G$. Inspect the column selected for the first sequence $\left\{A_{i}\right\}$; if g lies in row r, then A_{k} receives color r; if g lies in row s of the column selected for ite second : equence, then B_{k} will be colored s.

For example, referring back to the bist t array given in Section 2 using $H=\{e, b\}$, we might color the sequence $\left\{A_{i}\right\}$ of outer regions using the first column and the inner triangles $\left\{B_{i}\right\}$ using the second column. See Fig. 9. (For exariple B_{8} was labelled b and b lies in the yellow row of the second column of the biset array, so \boldsymbol{B}_{8} is colored yellow.) The inner coloring is the same as that used in Fig. 6 while the outer is that used in Fig. 3.

Clearly any pair of columns can be used, and more complicated compound colo ings using 3 or 4 sequences of subregions can be made using 3 or 4 columns of the biset array to color them.

We now consider how many inequivalent compound colorings of type I there are for a given design. pair of associated sequences $\left\{A_{i}\right\},\left\{B_{i}\right\}$, and permutation repr ssentation with stabilizer subgroup H. By Corollary 2.3 if there are k distinct conjugates to H in G, then there are exactly k inequivalent simple colorings for the corresponding permutation representation.

Theorem 3.1. Assume that H has index n in G and that there are k distinct subsroups conjugate to H . Then there are $n k$ inequivalent compound colorings of type I affording the transitive permutation representation with stabilizer H.

Proof. By the above discussion and Section 2, any compound coloring of type I,

Fig. 9.
using the sequences $\left\{A_{i}\right\},\left\{B_{i}\right\}$, which affords a ransitive permutation representation with stabilizer H corresponds to a choice of a column of the biset array isay that headed by $x_{s}^{-1} H$) to color the sequence $\left\{A_{i}\right\}$ and a column of the array (say that headed by $\left.x_{t}^{-1} H\right)$ to color the sequence $\left\{B_{i}\right\}$. Denote this compound coloring by the symbol $\left[x_{s}^{-1} H, x_{t}^{-1} H\right.$]. (For example, the compound coloring in Fig. 9 would be denoted $\left[H, a^{-1} H\right]$.) If we restrict our attention at first to the sequence of regions $\left\{A_{i}\right\}$, then by Corollary 2.3 there are precisely k different ways to choose the coloring for the sequence $\left\{A_{i}\right\}$. This coloring having been chosen, however, the n possible choices of columns for the sequence $\left\{B_{i}\right\}$ will give inequivalent compound colorings. For suppose that the compound coloring [$x_{\mathrm{s}}^{-1} H, x_{\mathrm{t}}^{-1} H$] is equivalent to the compound colosing [$x_{\mathrm{s}}^{-1} H, x_{\mathrm{u}}^{-1} H$]. By Lemma 1.1, it would suffices to permute the colors in the second compoind coloring to make it identical to the first; however since they are already identical with respect to the first sequence $\left\{A_{i}\right\}$, such a permutation of the colors must be the trivial one, so the two compound colorings $\left[x_{s}^{-1} H, x_{1}^{-1} H\right]$ and $\left[x_{s}^{-1} H, x_{u}^{-1} H\right]$ ane identical. By the way these coloring are defined, color 1 has been assigned precisely to the elements of the sequence $\left\{B_{i}\right\}$ which are labelled by the coset $x_{i}^{-1} H$ in the first coloring; while in the second coloring, color 1 was assigned to those elements of $\left\{B_{i}\right\}$ labelled by the coset $x_{i}^{-1} H$. Since the compound colorings are identical, we have that $x_{t}^{-1} H=x_{u}^{-1} H$. Thus there are $k n$ inequivalent possibilities. [i;

4. Partial color symmetry

Suppose that an ornamental design has symmetry group G and assume that colors have been assigned to various regions. Let C_{i} be a subgroup of G. We wish to consider the situation that the elements of G_{1} are color symmetiie, but the other elements of G might not be. This is called partial color symmetry.

Definition. Let G_{1} be a subgroup of the full symmetry group G. If the elements of G. are color symmetries the design is said to be colored G_{1}-symmetricallv and we have a G_{1} particity symmetric coloring (ab̀breviated " G_{1} PSC"). Two G_{1} PSC's
are called cquivalent if one may be transformed to the other by
(a) a symmetry element g in G,
(b) a relabelling of the colors,
(c) a combination of the above operations.

Note that since some elements of G might not be color symmetries, Lemma 1.1 does not apply.

If the symmetries not in G_{1} are ignored, we could simply regard the design as having symmetry group G_{1} and conside r the symmetric colorings for G_{1}. However in choosing fundamental regions for G_{1} it seems convenient to choose appropriate clusters of fundamental regions for \mathbf{G}. Let $\left\{A_{i}\right\}$ be a set of fundamental regions for G, Ω the starting region, and latel the elements of $\left\{A_{i}\right\}$ by elements of G as before. Let Y be a set of left coset representatives for G modulo G_{1} and assume $e \in Y$ Then $G=Y G_{1}=\bigcup Y g: g \in G_{1}$. This gives a partition of G; each subset $Y g$ with $g \in G_{1}$ is distinct and describes a collection of fundamental regions for G. Y will be the subset of G corresponding to the cluster of G regions whose union will be used as the starting region for G_{1}; similarly the union of the regions named by the elements of the set $Y g\left(g \in G_{1}\right)$ is to form a typical fundamental region for G_{1}, and it is clear that these sets do form a suitable collec:ion of fundamental regions for G_{1}. In practice the elements of Y would be chesen preferably to be adjacent and so that the above fundamental regions Y_{s} would have some convenient compact shape; however, for the general the rry we will simply assume by the phrase " $G=Y G_{1}$ " that G_{1} is a subgroup of G, Y a set of left coset representatives and $e \in Y$. An important special case will be when Y is a subgroup and G_{1} is a normal subgroup, so that G is a semi-direct product.

In what follous it is helpful to keep in mind two points of view. One may have a design with symmetry group G and select an appropriate subgroup G_{1} and subset Y; or one may start with a design with symmetry group G_{1} and consider what happens when further symmetries are adjoined and a larger group G containing G_{1} and appropriate subset Y is selected. In the first case, many choices for G_{1} and Y may occur; also with a particular G_{1}, different choices for Y are possible. In the second case various choices for the larger symmetry group G are also possible; however the starting region for G_{1} will then be subdivided into smaller fundamental regions for G, and the labels for these latter regions will give the elements of Y.

Example 1. Using the square as before, $G=D_{4}$. Let $G_{1}=\left\langle a^{2}, b\right\rangle$, a klein four subgroup, and let $Y=\{e, b a\}$. Then $G=Y e \cup Y a^{2} \cup Y b \cup Y b^{2}$, and this gives a description fo; a sequence of 4 fundamental regions for G_{1}. The G_{1} fundamental regions are squares each of which may be decomposed into iwo riangular fundamental regions for G. In this case G is a semi-direct product of C_{1} and Y. See Fig. 10.

Definition. A Y-G1 partially symmetric coloring (abbreviated "Y-G1PSC") is a

1 ig. 10.
G_{1} PSC such that each cluster $Y g, g \in G_{1}$ is colored uniformly. Given any subgroup H of finite index in G_{1}, we have the corresnonding transitive G_{1} coloring which gives rise to a $Y-G_{1}$ partially symmetric coloring, called the $Y-G_{1} P S C$ based on subgroup H.

Example $\mathbb{1}$ (contd.). We note that $G_{1}=\left\langle a^{2}, b\right\rangle_{\text {in }}$:as three subgroups of index 2 , namely $H_{1}=\langle b\rangle, H_{2}=\left\langle b a^{2}\right\rangle$, and $H_{3}=\left\langle a^{2}\right\rangle$. The three $Y-G_{1}$ PSC's based on these subgroups are illustrated in Fig. 11. The first two are equivalent Y-G1PSC's while the third is in fact a G-symmetric coloring.

In this example we have taken the first point of view; we started with a design with symmetry group G and chose a subgroup G_{1}. To consider essentially the same example from the second point of view (i.e., starting with a design with symmetry group G_{1} and enlarging the group), suppose that we start with a square which has a horizontal bar marked down the middle which we call the "marked square" (see Fig. 12); or we might consider a non-square rectangle (which could be thought of as approximating the original square). Then $G_{1}=\left\langle a^{2}, b\right\rangle$ would in fact be the group of symmetries of the figure in each case. and we have described the three possible colorings with two colors. See Figs. 13 and 14.

As colorings of the marked square, or of the rectangle, these are three non-equivalent symmetric colorings. Yet there is an apparent similarity between colorings which use the subgroups H_{1} and H_{2}. In the case of the marked square (Fig. 13) if the original underlying figure is ignored and one just examines the rectangular patches of color which have been added, one sees that the color patterns remaining are the same (after a rotation of 90°) while in the case of the

$H_{1}=\langle b\rangle$

$H_{2}=\left\langle b a^{2}\right\rangle$

$H_{3}=\left\langle a^{2}\right\rangle$

Fig. 11.

Fig. 12. The marked square.
rectangle they are very similar. What we have is two G_{1}-symmetric colorings which are not equivalent but which are equivalent $Y-G_{1}$ PSC's for $G=Y G_{1}$.

In general it frequently happens that two inequivalent colorings give rise to color patterns which are congruent (or related closely) under some geometric transformation not in the original symmetry group G_{1}, as above with the case of the marked square. By the color pattern arising from a coloring we refer here to the geometric object consisting of the colored regions, as distinguished from the original design itself. Which additional symmetries are to be used may depend on the needs of a giver situation and this is not always clear; in Example 1 if the rectangles were used originally instead of the marked squares then one must decide whether to allow the 90° rotation. since the "color patterns" (in Fig. 14) are not actually congruent. See [4, section 3] where a similar example is discussed. We will not attempt to give a formal definition of "equivalent color patterns" here, noting that there is involved a decision as to which larger symmetry group G, with $G \supseteq G_{1}$, is to be used. However, somewhat informally, we will say that the color patterns arising from transitive colorings of a design with symmetry group G_{1}, based on the subgroups H and K, will be called "equivalent" if for some appropriate larger group $G, G=Y G_{1}$, the fundainental regions for G_{1} decompose into the clusters Yg of fundamental G-regions, and the $Y-G_{1}$ PSC's base 1 on H and K are equivalent.

As in Section 1, the language of partitions is convenient. If a set $\left\{A_{i}\right\}$ of fundamental regions for G is chosen and one region is selected as the starting region, then we may identify G as before with this set. An assignment of colors to

Fig. 13.

Fig. 14.
these regions which is a G_{1} PSC will correspond to a G_{1}-invariant partition of G. It will be a $Y-G_{1}$ PSC precisely if Y is contained in one of the subsets of the partition, for then $Y g$ is contained in a subset whenever $g \in G_{1}$. Fer each subgroup H of finite index in G_{1}, the $Y-G_{1}$ PSC based on H gives rise to the partition $P_{H}: G=Y H \cup Y H x_{2} \cup \cdots \cup Y H x_{n}$, where $x_{1}=e, x_{2}, \ldots, x_{n}$ are right coset representatives for H in G_{1}.

Lemma 4.1. (a) Let $P: G=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$ be $a G_{1}$ invariant partition of G such that $Y \subseteq S_{1}$, and let H be the stabilizer in G_{1} of S_{1}; i.e., $H=\left\{g \in G_{1}: S_{1} g=S_{1}\right\}$. Then $P=P_{H}$.
(b) If P is any G_{1} invariant parition of G and $g \in G$, then $P g$ is $g^{-1} G_{1} g$ invariant.

Proof. (a) Since $Y \subseteq S_{1}$ and H stabilizes $S_{1}, Y H \subseteq S_{1}$. If $x \in S_{1}$, then $x=y g$, where $y \in Y, g \in G_{1}$. Then $y g \in S_{1}$ implies $S_{1} g=S_{1}$ and $g \in H$. So $S_{1} \subseteq Y H$; hence $S_{:}=Y H$. Letting $x_{1}=e, x_{2}, \ldots, x_{n}$ be right coset representatives for G_{1} modulo H, it's clear that $Y H x_{2}, \ldots, Y H x_{n}$ are the other subsets for the partition.
(b) $\operatorname{Pg}\left(g^{-1} x g\right)=P x g=P g$ whenever $x \in G_{1}$.

By Lemma 4.1(a), there is a one-to-one correspondence between the $G_{1^{-}}$ invariant partitions of G with Y contained in one of the subsets and the subgroups H of G_{1}. Two $Y-G_{1}$ PSC's corresponding to partitions P_{1} and P_{2} are equivalent precisely when $P_{1} g=P_{2}$ for some $g \in G$. Hence, if the $Y-G_{1}$ PSC based on H is actually a G-symmetric coloring, P_{H} is G-invariant and the $Y-G_{1} P S C$ based on H is not equivalent to that based on any other subgroup of G_{1}. Under appropriate conditicis the converse will also be true. The folloving proposition considers the question of when a $Y-G_{1}$ PSC is in fact a G-symmetric coloring.

Proposition 4.2. Assiuite there is given a design with symmetry group $G=Y G_{1}$.
(a) The following conditions are equivalent:
(1) The $Y-G_{1}$ PSC based on H is a G-symmetric coloring.
(2) P_{H} is G-invariant.
(3) YH is a subgroup of G.
(4) $\mathrm{YHy}=\mathrm{YH}$ for all $y \in \mathbb{Y}$.
(b) Each of the conditions (1), (2), (3) or (4) implies condition (5):
(5) The $Y-G_{1}$ PSC based on H is not equivalent to that bc sed on any other subgroup of G_{1}.
(c) If G_{1} is a normal subgroup of G and Y is a subgroup (the case of the semi-direct product), then condition (5) is equivalent to each of the conditions (1), (2), (3) or (4).

Proof. (a) The equivalence of (1) and (2) is clear. If (3) holds then P_{H} is just the right coset decomposition of G modulo $Y H$, which is G-invariant. Conversely Lemma 1.2 shows that (2) \Rightarrow (3).
(3) clearly implies (4). Suppose (4) holds. $Y H(y h)=Y H h=Y H$, so $Y H$ is closed under products. Given $y \in Y$, there exists $x \in Y H$ such that $x y=e$ since $e \in Y H=Y H y$; so $y^{-1}=x \in Y H$. Also $h^{-1} \in Y H$. Hence $(y h)^{-1}=h^{-1} y^{-1}$ lies in YH . Thus YH is a subgroup.
(b) See remarks preceding this proposition.
(c) Assume $G=Y G_{1}$ is a semi-direct product of the subgroup Y and the normal subgroup G_{1} and that condition (5) holds. Let $y \in Y$. Then $P_{H} y$ is the partition $G=Y H y \cup \cdots \cup Y H x_{n} y$. But y normalizes G_{1}, so $Y H y=Y y K=Y K$, where $K=y^{-1} H y$ is a subgroup of G_{1}. By Lemma 4.1(b), $P_{H} y$ is $y^{-1} G_{1} y=G_{1}$ invariant. Hence by Lemma 4.1(a), $P_{H} y=P_{K}$, so by condition (5), $H=K$ and $Y H y=Y H$ for all y, which is condition (4).

The significance of condition (4) is that one may test the C-invariance of a $Y-G_{1}$ PSC by simply ascertaining whether the set of regions colored by color 1 is invariant under the symmetries in Y.

Theorem 4.3. Suppose that G_{1} is normal in G, and let H and K be subgroups of finite index in G_{1}. Then the $Y-G_{1}$ PSC's based on H and K are equivalent if and only if there exists $\mathrm{y} \in \mathrm{Y}$ such that $\mathrm{y}^{-1} \mathrm{Hy}=\mathrm{K}$ and $\mathrm{Y} \subseteq Y H y$.

Proof. Suppose that there exists $g \in G$ such that $P_{H} g=P_{K}$; that is, $Y H g \cup Y H x_{2} g \cup \cdots \cup Y H x_{n} g$ is the same partition of G as $Y K \cup Y K z_{2} \cup \cdots \cup$ $Y K z_{n}$. Then $Y H g=Y K z_{i}$ for some i and $Y H g z_{i}^{-1}=Y K$. Hence there exists $y \in Y$, $k \in K$ such that $g z_{i}^{-1}=y k$. So $Y K=Y H g z_{i}^{-1}=Y H y k$ and $Y K=Y H y$. But the set of elements in G_{1} which stabilize $Y K=Y H y$ is K on the one hand and $y^{-1} H y$ on the other hand, since y normalizes G_{1}. Hence $y^{-1} H y=K$ and also $Y \subseteq Y K \subseteq$ YHy.

Conversely, suppose that $y^{1} H y=K$ and $Y \subseteq Y H y$ for some $y \in Y$. Then $P_{H} y$ is the partition $G=Y H y \cup \cdots \cup Y H x_{n} y$. This is $G_{1}=y^{-1} G_{1} y$ invariant by Lemma 4.1(b). Since $Y \subseteq Y H y$ and the stabilizer of $Y H y$ is $y^{-1} H y=K$, Lemma 4.1(a) shows that $P_{H} y=P_{K}$.

In Theorem 4.3, if Y is a subgrcup, and hence G is the semi-direct product $Y G_{1}$, then the condition $Y \subseteq Y H y$ will always hold, and the theorem takes a
simpler form. The equivalences among the $Y-G_{1}$ PSC's are simply found by considering the automorphisms of G_{1} induced by the elements of Y. Further, for any $g \in G_{1}, y \in Y,(Y g) y=(Y y)\left(y^{-1} g y\right)=Y\left(y^{-1} g y\right)$. Thus the effect of applying y to the clusters Yg , regarded as G_{1} fundamental regions and so labelled, is the same as the automorphism of G_{i} induced by y. On the other hand if G_{1} is not normal in G, the situation is less easy to analyze. We give a number of results which are often applicable.

Proposition 4.4. Suppose that the Y-G1 PSC's based on H and K are equivalent under a transformation $g \in G$ such that $g^{-1} G_{1} g=G_{1}$. Then there exists $y \in Y$ witn $y^{-1} G_{1} y=G_{1}, y^{-1} H y=K, \quad Y \subseteq Y H y$. Conversely, if there $\in x i s t s y \in Y$ with $y^{-1} G_{1} y=G_{1}, y^{-1} H y=K$ and $Y \subseteq Y H y$, then the $Y-G_{1}$ PSC's based on H and K are equivalent.

Proof. The proof of Theorem 4.3 carries over essentially; note that in the first part, since $y=g z_{i} k^{-i}$ with k and $z_{i} \in G_{1}$, we still have that $y^{-1} G_{1} y=G_{1}$.

Note that Proposition 4.4, which applies in the most general case, is less complete than Theorem 4.3, since if G_{1} is not a normal subgroup of G, there m\& y be further equivalences of $Y-G_{1}$ PSC's. In general, if $P_{\mathbf{H}} g=P_{K}$ but g doesnt normalize G_{1}, then we can't conclude that H and K are related by an automorphism of G_{1} (see Example 3 at end of this section.). However in some cases we may be able to replace G_{1} by a larger color symmetry group G_{2}, to which Proposition 4.4 does apply.

Lemma 4.5. Suppose $P_{H} g=l_{K}$ and $g^{-1} G_{1} g \neq G_{1}$. Then the subgroup of G wh.ch leaves P_{H} invariant is strictly larger than G_{1}.

Proof. Since P_{K} is G_{1}-invariant, $P_{H}=P_{K} g^{-1}$ is $g G_{1} g^{-1}$ invariant by Lemma 4.1(a). Hence P_{H} is invariant under the subgroup generated by G_{1} and $g G_{1} g^{-1}$.

Theorem 4.6. Suppose that $P_{\mathrm{H}} g=P_{\mathrm{K}}, \mathrm{g}^{-1} G_{1} g \neq G_{1}$, and g^{2} normalizes G_{1}. Set $G_{2}=\left\langle G_{1}, g^{-1} G_{1} g\right\rangle$. Then P_{H} and P_{K} are both G_{2} invariant. Further, a subset Y_{2} of Y exists, with $e \in Y_{2}$, such that $G=Y_{2} G_{2}$ with Y_{2} being a sei of lef: coset representatives for G modulo G_{2}; and the corresponding colorings may be regarded as equivalent $Y_{2}-G_{2}$ PSC's based on the appropriate stabilizing subgroups $H_{1} \equiv H$ and $K_{1} \supseteq K$. There exists $y \in Y_{2}$ (hence also $y \in Y$) such that y normalizes $G_{2}, y^{-1} H_{1} y=K_{1}$, and $Y_{2} \subseteq Y_{2} H_{1} y$.

Proc\&. Since $g^{-2} G_{1} g^{2}=G_{1}$, we have $g^{-1} G_{1} g=g G_{1} g^{-1}$. Since $P_{H} g=P_{K}, P_{K}$ is $\mathrm{g}^{-1} G_{1} g$ invariant by Lemma 4.1(a), hence is G_{2}-invariant. Similarly P_{H} is als G_{2}-invariant and also g normalizes G_{2}. Since $G_{2} \supseteq G_{1}$, the product $Y G_{2}$ contain
$Y G_{1}=G$, and hence it equals G. Thus G is a union of left cosets of the form $y G_{2}$ with $y \in Y$. Some of these cosets will coincide but we may choose (using the axiom of choice if necessary) one y in Y to represent each distinct coset and this yields a subset Y_{2} of Y as left coset representatives for G modulo G_{2}; we may assume $e \in Y_{2}$. (This choice is not unique but some thoices may make more suitable geometric clusters.) Let H_{1} be the subgroup of G_{2} leaving the subset YH invariant in tine partition P_{H}, and similarly let K_{1} be the stabilizer subgroup of $Y K$ in P_{K}. By Lemma 4.1(a) we see that $P_{\mathrm{H}}=P_{\mathrm{H}_{1}}$ and $P_{\mathrm{K}}=P_{\mathrm{K}_{1}}$, the partitions corresponding respectively to the $Y_{2}-G_{2}$ PSC's based on subgroups H_{1} and K_{1}. Also $P_{H_{1}} g=P_{K_{1}}$. Hence by Proposition 4.4 there exists $y \in Y_{2}$ such that $y^{-1} G_{2} y=$ $G_{2}, y^{-1} H_{1} h=K_{1}$, and $Y_{2} \subseteq Y_{2} H_{1} y$.

Finally we note one more case that can be treated as in Theorem 4.3.
Theorem 4.7. Let $G=Y G_{1}$ and $\left[G: G_{1}\right]=p$, where p is prime. Then the Y G_{1} PSC's based on subgroups H and K are equivalent \Leftrightarrow there exists $y \in Y$ such that $y^{-1} G_{1} y=G_{1}, y^{-1} H y=K$ and $Y \subseteq Y H y$.

Proof. Suppose we have such equivalence. Then $P_{H} g=P_{K}$ for some $g \in G$. If g normalizes G_{1}, then Proposition 4.4 applies. If not, then by Lemma $4.5, P_{\mathrm{H}}$ and P_{K} are invariant under subgroups of G properly larger than G_{1}; hence they are G-invariant since $\left[G: G_{1}\right]$ is prime. This means $P_{H}=P_{K}$, so $H=K$, and the conclusion is trivial. The converse follows by Proposition 4.4.

Example 2. Let G be the symmetry group of the design consisting of an infinite array of squares (G is of $\mathrm{t}, \mathrm{pe} \mathrm{p} 4 \mathrm{~m}$). $G=\langle x, y, a, b\rangle$ wher, x and y are translations, a is a rotation of 90° counter-clockwide and b is a horizontal reflection. See Fig. 15 where the array of squares has been subdivided into triangular fundamental regions labelled by the elements of the group.
We have the relations $x y=y x, a^{4}=b^{2}=e, b^{-1} a b=a^{-1}, a^{-1} x a=y, a^{-1} y a=x^{-1}$, $b^{-1} x \boldsymbol{x}=\boldsymbol{x}, \boldsymbol{b}^{-1} \boldsymbol{y b}=\boldsymbol{y}^{-1}$. (Note that equations in the group can often be calculated conveniently from the figure in a geometric manner by using the basic principle of coordinatization discussed in Section 1). Let $G_{1}=\left\langle x^{2}, y^{2}, b y, b a^{2} x\right\rangle$: by and $b a^{2} x$ are reflections and G_{1} is a subgroup of type pmm. G_{1} is a normal subgroup of G as can be checked by conjugating each generator of G_{1} by each generator of G. For example, $a^{-1}\left(b a^{2} x\right) a=b y \in G_{1}, a^{-1}(b y) a=b a^{2} x^{-1}=b a^{2} x \cdot\left(x^{2}\right)^{-1} \in G_{1}$, etc. G_{1} is of index 8 in G, and we choose $Y=\langle a, b\rangle$, the dihedral group of order 8 , as a set of coset representatives, with $G=Y G_{1}$. We now consider the design consisting of the infinite array of rectangles, as show. in Fig. 16(a); its symmetry group \bar{G}_{1} is of type pmm generated by translations z and w and reflections s and t. Using dotted lines each rectangle is divided into 4 subrectangles and these form the fundamental regions for \bar{G}_{1}. We may informally enlarge the group of symmetries if in the array the rectangles are replaced by squares and the dotted

Fig. 15.
lines are replaced by solid lines. The new design (see Fig. 16(b) has symmetry group of type p 4 m and using the notation just introduced we may identify \bar{G}_{1} with G_{1}, so that $z=x^{2}, w=y^{2}, s=b y$ and $t=b a^{2} x$. Each fundamental region for G_{1} will be broken up into 8 triangular fundamental regions for G. We have $G=Y G_{1}$, a semi-direct product, with the subgroup Y of order 8 acting as automorphisms of the normal cubgroup G_{1}, permuting the subgroups of G_{1} and hence permuting the corresponding transitive colorings of the original design (see the comments concerning the case of semi-direct products following Theorem 4.3). It is then possible to have as many as 8 different possible colorings of the rectangular array which correspond to equivalent $Y-G_{1}$ PSC's, and hence equivalent color patterns; see [4 , example 4.3] for an illustrated example.

Fig. 16.

Example 3. We now consider an example where G_{1} is not normal in G and Y is not a subgroup. We start again with the design consisting of an array of squares which has symmetry group G_{1} of type p4m. :.t. $G_{1}=\langle x, y, a, b\rangle$ where x and y are translations, a is a rotation of 90° and b is a reflection; G_{1} is thus the group we called " G " in Example 2 and Fig. is nay be used as reference. If each square were subdivided into 4 smalle squares the new design would have s! mmetry group G, also of type p 4 m , where G_{1} is of index 4 in G. The tiangular fundamental regions for G_{1} would each break up into four triangular fundamental regio is for G; the original starting region labelled e would decompose into the regions labelled by elements of Y. See Fig. 17. If one chooses the new starting region as illustrated theri Y is the set $\{e, h, k, h k\}$ where h and k are reflections in the axes illustrated, and Y is not a subgroup. $G=Y G_{1}$ and it can be seen that G_{1} is not normal in G as follows. G_{1} contains the rotation a of order 4 whose center C is the center of one of the original squares. Tre reflection h maps C onto D, a point on the boundary of one of the original squares. Thus $h^{-1} a h$ is a rotation of order 4 whose center is D; so $h^{-1} a h \notin G_{1}$. (See Fig. 17.)

Now let $H=\left\langle a^{2}, b a, x^{2}, x y\right\rangle$ and $K=\left\langle a^{2} x, b a, .^{2}, x y\right\rangle$. Then $H \triangleleft G_{1}$, but $K \notin G_{1}$ (note that $a^{-1}(b a) a=b a\left(a^{2}\right)$ lies in H but not in K, while the other conjugates of the generators of \boldsymbol{H} by generat(rs of G_{1} ic in H); so there can be no automorphism of G_{1} taking H onto K. The colorings of the original design (with symmetry group G_{1}) based on H and K are illustrated in Fig. 18 (use Fig. 15 as a reference). The color patterns are "equivalent" and correspond to equivalent $Y-G_{1} P S C$'s; the equivalence is effected by the reflection h. Theorem 4.3 doesn't apply (nor does Proposition 4.4) since h doesn't normalize G_{1}. However Theorem 4.6 would be applicable, since $h^{2}=e$ which does normalize G_{1}. The subgroup G_{2} described in Theorem 4.6 would be $\left\langle G_{1}, k\right\rangle$; this is also a subgroup of type p 4 m (a design with symmetry group G_{2} could be constructed using the array of squares formed by the diagonals of the original array of squares with symmetry group G_{1}). [$\left.G: G_{2}\right]=2$ and $G_{1}<G_{2} \triangleleft G$. The two colorings are G_{2} color symmetric. A suitable choice for Y_{2} is $\{e, h\}$.

Fig. 17.

Fig. 18.

Example 4. In Fig. 19(a) we have a design with symmetry group $G_{1}=D_{3}=\langle s, t\rangle$, the dihedral group of order \bar{o}, where s is a rotation of order 3 and t is a reflection. D_{3} has three conjugate subgroups $\langle t\rangle,\langle t s\rangle$ and $\left\langle t s^{2}\right\rangle$, each of index 3 , and the three colorings which correspond to these are illustrated in Fig. 20. The first two colorings have color patterns which appear similar. By regarding $D_{\text {: }}$ as a subgroup of $G=D_{6}$, we can see that the color patterns are "equivalent". The symmetry group of the design will be enlarged to D_{6} if the three dotted boundary lines are replaced by longer heavy lines congruent to the three rays in the original design (see Fig. 19(b)). Let u be the rotation of order 6 so that $u^{2}=s$. Then $G=Y G_{1}$ with $Y=\{e, t u\}$. The first two colorings correspond to equivalent $Y-D_{3}$ PSC's while the third coloring corresponds to a D_{6}-symmetric coloring. The first two subgroups $\langle t\rangle$ and $\langle t s\rangle==\left\langle t u^{2}\right\rangle$ are conjugate by the element $t u$ in Y. This illustrates Theorem 4.3; even though we have three subgrours of G_{1} which are conjugate by elements of \mathcal{G} (in fact, by elements of G_{1}), just the first two $Y-G_{1}$ PSC's are equivalent because just the first two subgroups are conjugate using an element of Y. (Precisely which pair of subgroups yield equivalent $Y-G_{1}$ PSC's is dependent on the original arbitrary choice of starting region.)

Fig. 19.

Iig. 20.

5. Equivalence

We give some further comments here on the kinds of equivalences that arise. There seem to be in fact three points of view on equivalences for color symmetry which need to be distinguished.
(I) The equivalence of symmetrical colorings of a design: here the design is given, as in a coloring book, and the problem is how to color it symmetrically. This was discussed in Section 1 of this paper.
(II) Equivalence of the color patterns arising from the colorings: her the original design is deemphasized and the arrangement of the colored regions is stressed. This appears to be the point of view stressed in [4]. The study of equivalent $Y-G_{1}$ PSC's in Section 4 is then often useful in analyzing this situation. See the discussion following Example 1.
(III) Equivalence of color symmetry groups: this is a point of view found frequently in the literature. Here a "color symiretry group" is usually defined to be a symmetry or crystallographic group G together with a subgroup H of finite index. The color symmetry groups for G using subgroups H and K are equivalent if there is an automorphism of G taking H onto K, where this automorphism is induced by conjugation by a geometric symmetry from some appropriate larger group (for example, the group of affinf transformations). See Schwarzenberger's recent book [9, p. 39].

Theorem 4.3 shows the relation between the second and third viewpoints: equivalence of color patterns may in many cases a^{-r} : from the equivalence of color symmetry groups. But as Example 3 show: , re can also be equivalent cow patterns even when the color yn:me: y groups are not equivalent. Moreover, Example 4 shows that equivatent color symmetry groups don't always yield equivalent color patterns (e.g., compare . first and third colorings in Fig. 20).

References

[1] B. Grunbaum and G.C. Shephard, Perfect colorings of the transitive tilings and patterns in the plane, Discrete Math. 20 (1977) 235-247.
[2] M. Hall Jr., The Theory of Groups (Macmillan, New York, 1959).
[3] A.L. Loeb, Color and Symmetry (Wiley-Interscience, New York, 1971).
[4] S.O. MacDonald and A.P. Street, On crystallographic color groups, Lecture Notes in Math. 560 (Springer-Verlag, Berlin, 1976) 149-157.
[5] S.O. MacDonald and A.P. Street, The analyis of color symmetry, Lecture Notes in Math. 686 (Springer-Verlag, Berlin, 1978) 210-222.
[6] CH. MacGillavry, Fantasy and Symmetry, the periodic drawings of M.C. Escher (Harry N. Abrams, New York, 1976).
[7] R.L.E. Schwarzenberger, N-dimensional Crystallography (Pitman, San Frıncisco, London, Melbourne, 1980).
[8] M. Senechal, Point groups and color symmetry, Z. Kristallographie 142 (1975) 1-23.
[9] A.V. Shubnikov and V.A. Koptsik, Symmetry in Science and Art (translated from Russian) (Plenum Press, London, 1974).
[10] B.L. van der W/aerden and J.J. Burckhardt, Farbgruppen, Z. Kristallographic (115 (1961) 231-234.

