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The theory of color symmetry is developed in this paoer from a group theoretical point of
view. The transitive colorings of a design are classified by the subgro.ps of the symmetry group.
A theory of compound coloring is developed. The theory of partial color symmetry is used to
analyze the effect of restricting or enlarging the symmetry group involved.

Introduction

The theory of color symmetry is a relatively new branch in the theory of
symmetry. Its motivation comes from the fields of chemistry and art. Shubnikov,
starting in the 1940’s, was one of the first to pioneer its development in
crystallography (particularly black-white symmetry). A recent reference for the
“Russian school” is [9]. The Dutch artist Escher independently began to investi-
gate the use of color symmetry in his fascinating drawings; see [6]. The algebraic
approach to the subject, using the theory of permutation representations of
groups, was initiated by van dzr Waerden and Burckhardt in their influenrial 1961
paper [10]. This approach was developed further by MacDonald and Street in [4]
and by others [7] and |8]. Some other recent references are [1] and [5].

Sections 1 and 2 present the basic group-theoretic approach, adapted and
expanded from the material in [4]. The emphasis is on using the group to
‘“coordinatize” the design. In Section 3 a theory of compound coloring is
described which allows for more complex coloring of designs. Section 4 presents a
theory of partial color symmetry. This is applied to help clarify the relationship
between the distinct notions of equivalence of colorings and equivalcnt color
patterns as discussed in [4] and [S].

1. Basic theory

Assume that one has a symmetrical geometric figure, crystal structure or
ornamzntal design. This has associated with it a group G of symmetries. Group
theory 2affords a tool in studying and developing such designs. Color symmetry is
an extension of this approach. The illustrative examples will be planar figures ind
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we will usz the term ‘“‘ornamental design’ or “design’ throughout, but the theory
is applicable to many situations, such as crystallography, where a suitable sym-
metry group is available.

Example. The symmetry group of the square is the dihedral group D, of order 8.
See Fig. 1. Let a represent a rotation counter-clockwise 90°. Let b be a reflection
in the horizontal axis. We shall always compose symmetries from left to right:
thus ba is the reflection b followed by rotation a; ba is reflection in the diagonal
axis (lower left to upper right). Similarly ba’ is the reflection in the other diagonal
axis, ba? is the reflection in the vertical axis. G is generated by a and b:
a*=e=b? hab=a’ G =le, a,a’, a* b, ba, ba®, ba?}.

In general, the basic design is assumed to be originally without color. Then the
design is to be colored using a finite number of colors; that is, certain regions (or
subsets) of the design are assigned colors. We do not assume that the entire design
is colored. Further, the regions are not necessarily figures already drawn in the
design; in many cases a basic unit ¢f the design may be subdivided into several
regions receiving possibly different colors (see for example Fig. 15 where the
design consists of an array of squares but each square is then subdivided into 8
triangles for the purpose of coloring). The following definition is based on the
‘‘consistency”’ condition for color syrametry due to Loeb [3, p. 103]

Definition. Assume that there is given an ornamental design with symimetry
group G to which colors have been :dded. An element ge G is called a color
symmetry if all portions colored by one given color are mapped by g onto
portions colored by one color (i.e. if any region colored red is mapped onto one
colored yellow then all red regions are mapped onto yellow regions). Thus g is
associated with a permutation of the set of colors and we say that *‘g permutes the
colors consistently.” If each g in G is a color symmetry we say that the assignment
of colors is a symmetric coloring of the design. (In [1] the term “perfect coloring” is
used.) For short we will often simply say ‘‘coloring”.
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For example, in Fig. 2, the square has been colored with ) colors. Rotation a
maps white regions onto green and vice versa. The blue regions are rotated c¢nto
orange regions which are in turn rotated onto yellow regions, etc. In short, a is
associcted with the permutations: white < green, blue — orange — yellow —
red — blue. The reflection b is associated with the permutation white <> green,
yellow « blue, with red and orange being left fixed. The reflection ba fixes white
and green, while interchanging yeilow with orange, and red with blue. A similar
statement holds for each of the 8 symmetries of the group.

In general let the numbers 1, 2, ..., n denote the n colors used in a symmetric
coloring. If g e G maps all regions colored i onto regions colored j and h maps ail
regions colored j onto regions colored k, then clearly gh maps all regions colored
i onto regions colored k. It is thus easily seen that we have associated with G a
permutation representation on the set of colors; alternatively we may say that
there is aa action of G on the set of colcrs; the set of colors is G-set.

We lock first at the transitive case; by this is meant that given any pair of colors
i and j there is an element ge G taking color i to color j. In other words, the
permutation representation is transitive; by extension we refer to the coloring as a
‘“transitive coloring™ of the design. The example shown in Fig. 2 is not transitive.
In Fig. 3 we have illustrated a transitive coloring of the square. Here the rotation
a takes blue to red to green to yellow io blue while the reflection b fixes blue and
green, an:; interchanges red with yellow

red red
green blue
green blue
//
yellow yellow

fig. 3.
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As is well known, the study of transitive permutation representations of a group
G is facilitated by using the corresponding stabilizer subgroups. Flach subgroup H
of finite index in G yields a transitive permutation representation, using right
multiplication on the set of right cosets of G modulo H; also, given any transitive
permutation representation on n symbols, if H is the stabilizer subgroup of one¢: of
the symbols, the representation is equivalent to that on the right cosets of G
modulo H. (See for example, Hall's book [2, section 5.3].) This now gives an easy
way to determine the transitive colorings of an ornamental design with symmetry
group G (see [4, 10]). To begin with, a collection of fundamental regions to be
colored is selected in one-to-one correspondence with the elements of the group.

Definition. A sequence of fundamental regions {A;} for an ornamental design with
symmetry group G is a set of disjoint regions (subsets) in the design having the
proverty that given any two regions A,, A;. there exists a unique symn..«ry g in G
such that g maps the region A; onto the region A,

In selecting 2 sequence of fundamental regions we allow considerable flexibility.
One may often have the situation that the union of the regions essentially covers
the whole design (except for boundaries), but this is not assumed since one may
wish to leave portions of the design uncolored or neutral. Moreover, while in
some situations there may be a “natural” sequence of fundamental regions for G
that one has the option of using, this is not even always the case and in general
many choices of fundamental regions are possible. For example, if the group has
reflections, the axes of the reflections are often chosen to be among the bound-
aries of the regions (as we have done in the case of the square, in Fig. 4; compare
Fig. 1). On the other hand in many of Escher’s periodic drawings the symmetry
group has no rc!.cctions; the fundar.ental regions take the shape of animals. If the
design has certain repeated shapes it may be convenient sometimes to use them or
to subdivide them to get a sequence of fundamental regions but we don’t make
any assumptions on the relationship of the fundamental regions chosen for the
coloring to tke figures that may appear in :he dexign.

The design is then “coordinatized™ using the group G. An arbitrary region in

a bu/
ba?® 7 e
{region )
a® b
ba3 a®

Fig. 4.
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the sequence. denoted {2, is select>d to be the “starting” region. For each region
A there is a unique svmmetry g ir G mapping {2 onto A label region A with the
element g. In short, for each ge G, the region {2g is labelled “g”. See Fig. 4
where we have divided the square into 8 triangles which form a sequence of

fundamental regions. These have been labelled using the elements of D,,.

If g and h are two elements of G then the regicn labelled gh is that obtained
by applying the symmetry gh to the region (2; i.e. it is the region (2(gh). But
(2¢)h = (gh). Thus we can make the following important observation.

Basic Principle of Coordinatization. The symmetry h maps the region labelled g
onto the region labelled gh.

The operations of the elements of G on the collection of fu.idamental regions
in fact give a permutatinn represen:ation of G on the collection of fundamental
regions which is equivalent to the regular cr Cayley representation of G on itself
by right multiplication.

Let H be a subgroup of finite index in G and let G=HUHx,U- - -UHx, be
the right coset decomposition (let ““x,”” = ¢). The subgroup H corresponds to a set
of regions in the figure as does each right coset Hx,. If we choose n colors:
1,2,....n and color the regions for Hx; with color i for each i, this will yield a
coloring of the design such that the stabilizer of color 1 is precisely the subgroup
H and the permutations of the colors correspond to the permutations on the right
cosets of H by right multiplication by elements of G. For if Hxg = Hx;, then in
the design, the regions labelled with elements of Hx; are colored with color  and
those labelled by Hx; are color :d by color j, we see that g maps precisely the set
of regions colored by i onto th. set of regions colored by j.

For example, if H is the subgroup {e, b} then we have the .izht coset decompos-
ition H ={e, b}, Ha ={a, ba}, Ha?={a? ba*}, Ha*={a’, ba"}. Assigning blue to
H, red to Ha, green to Ha? and yellow to Ha’ we get the coloring which was
illustrated in Fig. 3 as may be seen by comparing it to Fig. 4.

As s well known, conjugate subgroups yield equivalent permutation represen-
tations of G. Thus it might well be expected that the corresponding colorings
would be essentially the same. This, however. is not the case, as was pointed out
in [4). For example if H, ={e, ba®}, then H, is conjugate to H. In Fig. 5 we color
the square using the coset decomposition for H,. Blue is assigned to H,, red to
H,a, sreen to H,a’ and yellow to H,a’. It is clear that this is a rather different
coloring from that shown in Fig. 3 which was the coloring associaied with the
subgroup H.

To analyze the situation more closely we attempt to define carefully the notion
of eq rivalence for colorings of an ornamental design. It should be remarked that
other approaches are possible, and the idea of equivalence used by MacDonald
and Street in [4] is somewhat different from the one that follows. A further
analysis of their point of view is given in Section 4.
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Definition. Two symmetric colorings C;, C, of a given design are called equival-
ent if the design colored by C; may be transformed to the design colored by C, by

(a) applying a symmetry element g of the symmetry group G to the design
colored by C,, or

(b) relabelling the colors in C, (i.e. changing the colors in a one-one fashion),
or

(c) a combination of operations of type (a) and (b).

Since the application of a symmetry element g to the colored design has the
same apparent effect as a ‘relabelling” of the colors we have the following lernma.

Lemma 1.1. If two symmetric colorings are equivalent, then the first may be
transformed to the second by simply relab-lling the colors; tha: is. thev are already
equivalent under a .-ansformation of type (b) alone.

Tet P denote a partition of a group G into a finite number of subsets:
P:G=S,US,U---US,. Let ge G. Then G=Gg=S5,gUS,gli---US,g gives a
second partitior of G which we will denote Pg. If P = Pg we say that the partition
is g-invariant (this means that g permutes the collection of subsets S,). If Pg=:P
for all ge G, where G, is a subgroup of G, then P is called G,-invariant.

Let a collection of fundamental regions be colored irensitively, as described
earlier, and let S; be the set of g in G such that (2g is colored by color"i. Then
G=8US,U---UE, is a G-invariant partition of < and it is clear from the
definition of equivalence that two such colorings are equivalent precisely if they
correspond to the san.e G-invar ant partition of G.

Lemma 1.2. Let P be a G-invariant partition: GG == §;US,U---US, and assume
that e€ S. Then S, is a subgroup and P is the right coset decomposition moduio S,.

Proof. If he S, then Ph™' =P, and S|h '=§,, since e=th ‘e S;h ' Thus §, is
a subgroup and if ge S, then S;g=S,. O

The next theorem tollows from Lemma 1.2 and the discussion preceding it.
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Theorem 1.3. Ler there be given an ornamental design with symmetr, group G and
a ccellection of fundamental regions. Select one region () as the “starting” region. To
each subgroup H of finite index in G choose [G:H] colors and consider the
transitive symumetric coloring of the design associated with it as described earlier.
Then any transitive symmetric coloring of the design (with the same collection of
fundamental regions) is equivalent to one of these colorings. If H,, H, are two
subgroups of G with H, # H,, then the corresponding colori1gs are not equivalent.

This means that the choice of region (2 established a one-one correspondence
between the set of equivalence classes of transitive colorings anc the set of
subgroups of G. A different region {2 would entail a different corre: pondence.

2. The colorings associated with a subgroup H

Given a subgroup H of finite index in G, there is a corresponding transiiive
permutation representation of G as discussed earlier. If we select a starting region
£}, coordinatize the design by elements of the group and assign colors to each of
the right cosets modulo H, we get a symmetric coloring of the design associated
with this permutation representation. This coloring, a< discussed in Section 1, will
bz called the principal coloring associated with H. (It should be emphasized that in
using this terminology the choice of this coloring as ‘“‘principal coloring” is
arbitrary since it depends on the particular choice of {2 as starting region.) There
czn, however, exist several inequivalent colorings associated with the same
permutation representation of G, as was first noted in [4]. Had we chosen a
different fundamental region to be the starting region {2 we might have gotten a
non-equivalent coloring. Under the operations of the subgroup H, the set of
rzgions is partitionvd into orbits and it is the choice of orbit which determines
which coloring is «btained. Rather than choosing different starting regions we
take a different approach. If we associate the collection of fundamental regions
with the elements of the group as before, then applying any symmetry g to the
design corresponds to multiplying the elements of the group on the right by g. The
orbit under the action of H which contains a particular element g, is the set of
images goh with he H; i.e., it is the left coset goH. So the set of orbits may be
identified with the set of left cosets of H in G.

Let {x,=e, x5, ..., x,} be a set of right coset representatives for H in G. Then

{x; =e x3' ...,x,'}is a set 0° left coset representatives. Let there be a set of n
colors chosen in one-one correspondence with the right coset representatives
{x,, X5, ..., %,}. Choosing any left coset x;'H we get a coloring of the design as

follows: color the elements of the set x; 'Hx; with color j for j=1,2,...,n. This
assigns to the orbit x; 'H the color 1 and as before the elements Hx; of the group
are precisely those symmetries which map regions colored with color 1 onto
regions colored with color j. H is as usual the stabilizer subgroup for color 1. For



280 R.L. Roth

the case that x; ' = the coloring obtained is the principai coloring. Now we have
described n colorings associated with H (and the correspording permutation
represcntation of G). Let us call a subset of the form x; 'Hx; a tiset (for want of a
better name) and consider the tfollowing n by n array of bisets.

H x3'H -+ x(‘H -+ x7'H]
Hx, x3'Hx, x; 'Hx, . Xn 'Hx,
Hx; x3'Hx; x; 'Hx; x,'Hx,
|Hx, x3'Hx, x; 'Hx, x,'Hx,

Associate with each row j the color |, for j=1,2,..., n. Notice that the top row
lists the left cosets, i.e., the orbits of H. The ith column, starting with x; 'H, gives
the coloring just described. .

Any coloring of the design which corresponds to the given transitive permuta-
tion representation on these n colors must be given by one of the columns in the
biset array. For H being the stabilizer of color 1, if g is colored with color 1, the
vegions labelled gH are precisely those colored 1. Hyx; is precisely the set of
elements in the group taking color 1 onto color j; hence, gHx; ate labels of the
regions in the design which are colored j. But gH = x;'H for some i, and we see
that the coloring is just that given by column i. Note that the first column on the
left is the principal coloring associated with H, i.e., the coloring discussed in
Section 1.

For example, let G be the group of the square and K ={e, b}. Choose
{e,a,a’, a* as the right coset representatives. Thc complete biset array, with
rows assigned the colors blue, red, green, and yellow, is as {ollows:

Blue H ={e, b} a ‘H={a’,ba} a ’H={a* ba>} a *H={a, ba?
Red Ha={a,%a} a 'Ha={e ba’} a’Ha={a? ba®} a3Ha:=={a? b}

Green Ha®={a? ba*} a 'Ha?={a, ba®} a2Ha*=/{e, b} a3Ha*={a> ba}
Yellow Ha*={a> ba*} a 'Ha®*={a>% b} a*Hg*={a,ba} a>Ha*={e, ba%}

Thus, in Fig. 3 the square is colore1 by the first column, i.e., the column under
H (the principal coloring). In Fig. 6 the square has been colored by the 2nd
column (the column headed by a 'H).

Theorem 2.1. Every coloring of the design which affords the permutation represen-
tation with stabilizer H is described by a column in the biset array. The coloring for

column i, headed by t_he left coset x; ' H, is eq ivalent to the principal coloring for the
conjugate subgrc4p H = x;'Hx,.

Proof. The first statement has alreac'y been discussed. The coloring for the ith
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column in the biset array corresponds to a G-invariant partition of G and
e € x, 'Hx, = H. Hence by Lemma 1.2 this is equivalent to the principal coloring
based on H. [J

Corollary 2.2. The coloring in column i of the biset array for H is equivalent to the
principal coloring for H precisely if x; is in the normalizer of H, i.e., x; '"Hx, = H. Al.
the colwins yield equivalent colorings precisely if H is normal in G (since by
Theorem 1.3, principal colorings for distinct subgroups are non-equivaleat).

Corollary 2.3. If there are precisely k distinct conjugate subgroups of H (counting H
itself), then there are precisely k inequivalent colorings for the transitive permutation
representation associated with H.

In the example, with H ={e, b}, the first and 3rd columns give equivalent
colorings as do the 2nd and 4th columns. a ?Ha’=H, a 'Ha# H. In fact,
a 'Ha = H, ={e, ba*}. Notice that the coloring in Fig. 5, the principal coloring for
H,, is equivalent, though not identical, to that in Fig. 5, which is based on the
column headed by a ' H. (This illustrates the second statcment of Theorem 2.1.)

Corollary 2.4. The k colorings associated with H are equivalent to the k colorings
associated with any subgroup conjugate to H.

Proof. This set of colorings is equivalent to the set of principal colorings for the k
subgroups which are conjugate to H. [

3. Compound colorings

Supposc in a design we have the sequence ~f fundamental regions {R;}. In each
region 12, we choose a pair of subregions A; a..d B; in such a way that if ge C 1s
the unique symmetry mapping R; onto R,, then g maps A, onto A; and B, onto
B;. This gives two sequences of fundamental subregions {A;}, {B;}; each separately
could be selected as the sequence to be colored. In Fig. 7 we illustrate a pos:.uility
for the square.
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Note that the two elements A,, B, are regarded as associated since they are
together in the larger fundamental region. In practice various treatments are
possible. The 2 subregions need not fill out the fundamental region, or indeed
they may overlap or even coincide; n the latter case one might use a set of
“patterns” to “color” one of the sequ:nces, superimposing it on the set of colors
used for the other sequence. In Fig. 8 the outer rings of the circles could be
thought of as the sequence {A;}, while the inner circles could be the second
sequence {B;} and the association of \; with B; is evident. The space outside the
larger circle could be ieft uncolored (or treated as a third sequence). A well-
known intricate design of Escher’s involves tricolored moths with the front wings
being colored differently from the body, etc. The sets of front wings, of back
wings, of bodies might be regarded as associated sequences of fundamental
subregions with the noths themselves taken as the original sequence of funda-
mental regions (see [6, plate 42] and ‘3, p. 165]). This design and the discussion in
151 were part of the author’s motivation to develop a theory of compound
coloring.

In a compound coloring the two subsequences are colored in such a way that
the symmetries of the group permnute the colors consistently (i.e., are color
symmetries). The definition of equivalence given in Section 1 remains the same.
Usually, the two elements of an associated pair of subregions will get different
colors. However if any pair gets colored the same, this will happen to all the pairs
{by the definition of symmetiic coloring); essentially one then has a simple,
transitive coloring of the type considered earlier but for convenience we allow
these ‘‘trivial” compound colorings too. There are two types of compound
colorings. In type I, the same set f colors is used to color the two sequences {A;}
and {B;}. Since a symmetry element must permute the colors consistently, the
samc permutation rerresentation of G must be used. In type II, disjoint sets of
colors are used for the two sequences.

To anaiyze and construct thes: colorings, we first ““coordinatize’ the design as
in Section 1. A starting region (! is szlected from the fundamental sequence {R;}
and each R, is labelled by a unijue element g from the symmetry group G. Each
R. contains an associated pair ¢f subregions (A,, /3;), and the same element g will
also be used to label A; and 3, For example in Fig. 7, using the notation and
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starting region selected earlier in the paper, region. A, and By are labelled
by the reflection b, while the label a” is attached to the regions As and B., etc.

Type 1l compound colorings, using disjoint sets of colors for the two sequences,
are easier to analyze than type I so we discuss them briefly here before discussing
tvpe I in detail. Choose a subgroup H and color the sequence {A;} with the
principal coloring based on H. Similarly, for the sequence {B;} choose a subgroup
K (not necessarily distinct from H) and color the sequence {B;} with the principal
coloring based on K. It is thus easily seen that the inequivalent compound
colorings of type Il are in one-to-one correspondence with the set of ordered
pairs of subgroups of G. Fig. 2 illustrates a coloring of this type. One may regard
the sitcation as giving an intransitive permutation representation of G. Another
point of view is that the ordered pairs of colors could be regarded as a new set of
“colors”, and thus we have a transitive representation on this new set of “colors™.
The stabilizer subgroup would then b: HNK.

Type 1 compoundings are more involved. Here we shall make use of the biset
array discussed in Section 2. Assume that we are given a transitive permtation
representation of G on n colors with stabilizer subgroup H. Choose two columns
from the biset array: use ore column to color the sequence {A;} and another
column to color the sequence {B;}. More specifically, we have assigned to each
row j of the biset array the color j. Now to each associated pair (A, By) was
assigned an element g € G. Inspect the column selected for the first sequence {A;};
if g lies in row r, then A, receives color r; if g lies in row s of the column selected
for ihe second :2quence, then B, will be colored s.

Fcr example, referring back to the bisct array given in Secion 2 using
H ={¢, b}, we might color the sequence {A;} of outer regions using the first
column and the inner triangles {B,} using the second column. See Fig. 9. (For
exaraple By waes labelled b and b lies in the yellow row of the second column of
the biset array, so Bg is colored yellow.) The inner coloring is the same as that
used in Fig. 6 while the outer is that used in Fig. 3.

Clearly any pair of columns can be used, and more complicated compound
colo-ings using 3 or 4 sequences of subregions can be made using 3 or 4 columns
of the biset array to color them.

We now consider how many inequivalent compound colorings of type I there
are for a given design. pair of associated sequences {A;}, {B;}, and permutation
repr :sentation with stabilizer subgroup H. By Corollary 2.3 if there are k distinct
conjugates to H in G, then there are exactly k inequivalent simple colorings for
the corresponding perimutation representation.

Theorem 3.1. Assume that H has index n in GG ond that there are k distinct
subs;roups conjugate to H. Then there are nk inequivalent compound colorings of

type 1 affording the transitive permutation representation with stabilizer H.

Proof. By the above discussion and Section 2, any compound coloring of type I,
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using the sequences {A;}, {B;}, which affords a :ransitive permutatio» representa-
tion with stabilizer H corresponds to a choice of a column of the biset array (say
that headed by x_'H) to color the sequence {A;} and a column of the array (say
that headed by x; 'H) to color the sequence {B;}. Denote this compound coloring
by the symbol [x;'H, x,"H]. (For example, the compound coloring in Fig. 9
would be denoted [H, a 'H].) If we restrict our attention at first to the sequence
of regions {A;}, then by Corollary 2.3 there are precisely k different ways to
choose the coloring for the sequence {A,}. This coloring having been chosen,
however, the n possible choices of columns for the sequence {B;} will give
inequivalent compound colorings. For suppose that the compound coloring
(x;'H, x;'H] is equivalent to the componnd coloving {x;'H, x;'H]. By Lemma
1.1, it would suffices to permute the colors in the second compoiind coloring to
make it identica! to the first; however since they are already identical with respect
to the first sequence {A;}, such a permutation of the colors must be the trivial one,
so the two compound colorings [x7'H, x; '"H] and [x]'H, x;'H1 are id:ntical. By
the way these coloring are defined, color 1 has been assigned precisely to the
elements of the sequence {B;} which are labelled by the coset x;”'H in the first
coloring; while in the second coloring, color 1 was assigned to those elements of
{B;} labelled by the coset x;'H. Since the compound colorings are identical, we
have that x;'H = x;;'H. Thus there are kn inequivalent possibilities. [

4. Partial color symmetry

Suppose that an ornamental design has symmetry group G and assume that
colors hav: been assigned to various regions. Let (¢, be a subgroup of G. We wish
to consider the situation that the elements ot G, are color syminetiie’. but the
other elements of G might not be. This is called partial color symmetry.

Definition. Let G, be a subgroup of the full symmetry group 5. If the elements
of G- are color symmetries the design is said to be colored G,-symmetrically and
we bhave a G, partwuiy symmetric coloring (abbreviated “G,PSC”). Two G,PSC’s
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are called equivalent if one may be transformed to the other by

(a) a symmetry element g in G,

(b) a relabelling of the colors,

(c) a combination of the above operations.

Note that siiice some elements of G might not be color symmetries, Lemma 1.1
does not apply.

If the symmetries not in G, are ignored, we could simply regard the design as
having symmetry group G, and consid¢ r the symmetric colorings for G,. However
in choosing fundamental regions for GG, it seems convenient to choose appropriate
clusters of fundamental regions for G. Let {A;} be a set of fundamental regions
for G, (2 the starting region, and latel the elements of {A,} by elements of G as
before. Let Y be a set of left coset representatives for G medulo G, and assume
eeY Then G = YG, = |J Yg: ge G,. This gives a partition of G; each subset Yg
with g e G, is distinct and describes a col'ection of fundamental regions for G. Y
will be the subset of G corresponding to the cluster of G regions whose union will
be used as the starting region for G,; similarly the union of the regions named by
the eleinents of the set Yg (g ¢ G)) is to form a typical fundamental region for G,,
and it is clear that these sets do form a suitable collection of fundamental regions
for G,. In practice the elements of Y would be chesen preferably to be adjacent
and so that the above fundamental regions Y would have some convenient
compact shape; however, for the general thery we will simply assume by the
phrase “G = YG," that G, is a subgroup of G, Y a set of left coset representatives
and e€ Y. An important special case will be when Y is a subgroup and G, is a
normal subgroup, so that G is a semi-direct product.

In what foliows it is helpful to keep in mind two points of view. One may have a
design with symmetry group GG and select an appropriate subgrouo G, and subset
Y; or one muy start with a design with symmetry group G, and consider what
happens when further symmetries are adjoined and a larger group G containing
G, and appropriate subset Y is selected. In the first case, many choices for G,
and Y may occur; also with a particular G,, different choices for Y are possible.
In the second case various choices for the larger symmetry group G are also
possible; however the starting region for G; will then be subdivided into smaller
fundamental regions for G, and the labels for these latter regions will give the
elements of Y.

Example 1. Using the square as before, G = D,. Let G, =(a’ b), a Flein four
subgroup, and let Y ={e, ba}. Then G = YeU Ya>U YbU Yb?, and this gives a
description for- a sequence of 4 fundamental regions for GG,. The G, fundamental
regions are squares each of which may be decomposed into wo iriangular
fundamental regions for G. In this case G is a semi-direct product of (¢; and Y.
See Fig. 10.

Definition. A Y-G, partially symmetric coloring (abbreviated “Y-G,PSC”) is a
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Yba? Ye

Ya? Yb

Fig. 10O

G,PSC such that each cluster Yg, ge G, is colored uniformly. Given any sub-
group H of finite index in G, we have the corresnonding transitive G, coloring
which gives rise to a Y-G, partially symmetric coloring, called tne Y-G,PSC
based on subgroup H.

Example 1 (contd.). We note that G, =(a’, b) ias three subgroups of index 2,
namely H, =(b), H,=(ba?), and H;=(a’). The three Y-G,PSC’s based on these
subgroups are illustrated in Fig. 11. The first two are equivalent Y-G,PSC’s while
the third is in fact a G-symmetric coloring.

In this example we have taken the first point of view; we started with a design
with symmetrv group G and chose a subgroup G,. To consider essentially the
same example from the second point of view (i.e., starting with a design with
symmetry group G, and enlarging the group), suppose that we start with a square
which has a horizontal bar marked down the middle which we call the “marked
square” (see Fig. 12); or we might consider a non-square rectangle (which could
be thought of as approximating the original square). Then G, =(a’, b) would in
fact be the group of symmetries of the figure in each case. and we have described
the three possible colorings with two colors. See Figs. 13 and 14.

As colorings cof the marked square, or of the rectangle, these are three
non-equivalent symmetric colorings. Yet there is an apparent similarity between
colorings which use the subgroups H, and H,. In the case of the marked square
(Fig. 13) if the original underlying figure is ignored and one just exumines the
rectangular patches of color which have been added, one sees that the color
patterns remaining are the same (after a rotation of 90°) while in the case of the

"%///// )
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The Markead Square

Fig. 12. The marked square.

c' .
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which are not equivalent ut which are equivalent Y-G,PSC’s for G = YG,.

In general it frequently happens that two inequivalent colorings give rise to
color patterns which are congruent (or related closely) under some geometric
transformation not in the original symmetry group G,, as above with the caze of

original design itself. Which additiona
the needs of a given situation and thl
rectangles were used originally instead of the marked square:s then one must
decide whether to allow the 90° rotation. since the ‘“‘color patterns” (in Fig. 14)
are not actualiy congruent. See {4, section 3] wnere a s:mlla r exampie is discussed.

=
-}
=
“_’.

-
© 5
g
=y
S
i:T -
1
0
g
7]
3
.3
D
o
!
Lol
1=l
—t
ﬁ
5

JOoT T T

the color patierns arising from transitive caiormgs of a design with symmetry group
G, based on the subgroups H and K will be called ‘‘equivalent™ if for sorie

appropriate larger group G, G = YG,, the fundamental regions for G, decompose
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As in Sec.tlon 1, the language of partitions is convenient. If a set {A;} of
fundamental regions for G is chosen and one region is selected as the starting
region, then we may identify G as before with this set. An assignment of colors to
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these regions which is a G,PSC will correspond t¢c a G,-invariant partition of G.
It will be a Y-G,PSC precisely if Y is contained in one of the subsets of the
partition, for then Yg is contained in a subset whenever ge G,. Fer each
subgroup H of finite index in G, the Y-G,PSC based on H gwes rise to the
partition Py: G=YHU YHx,U---U YHx,, where x,=e, X5,...,Xx, arc right
coset representatives for H in G,.

Lemma 4.1. (a) Let P: G=S,US,U---US, be a G, invariant partition of G such
that Y S,, and let H be the stabilizer in G, of S,: i.e., H={ge G,: S,g=S,}.
Then P = Py,

(o) If P is any G, invariant pariition of G and ge G, then Pg is g7'G,g
invariant.

Proof. (a) Since Y < S, and H stabilizes S;, YH< S,. If x € §,, then x = yg, where
yeY, geG,. Then yge S, implies S,g=8; and ge H. So S, YH: hence
S.=YH. Letting x, =¢, X,,..., X, be right coset representatives for G, modulo
H, it’s clear that YHx,, ..., YHx, are the other subsets for the partition.

{b) Pg(g 'xg)=Pxg=Pg whenever xe G,. O

By Lemma 4.1(3), there is a one-to-one correspcndence between the G-
invariant partitions of G with Y contained in one of the subscts and the
subgroups H of G,. Two Y-G,PSC’s corresponding to partitions P, and P, are
equivalent precisely when P,g = P, for some g € G. Hence, if the Y-G,PSC based
on H is actually a G-symmetric coloring, Py is G-invariant and the Y-G,PSC
based on I is not equivalent to that based on any other subgroup of G,. Under
appropriate conditicns the converse will also be true. The following proposition
considers the question of when a Y-G,PSC is in fact a G-symmetric coloring.

Proposition 4.2. Assuiie there is given a design with symmetry group G = YG,.
(a) The following conditions are equivalent:
(1) The Y-G,PSC based on H is a G-symmetric coloring.
(2) Py is G-invariant.
(3) YH is a subgroup of G.
(4 YHy=YH forall ye .
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(b) Each of the congitivizs (1), (2), (3) or (4) implies condition (5):
(5) The Y-G,PSC based on H is not equivalent to that bc sed on any other
subgroup of G,.
(c) If G, is a normal subgroup of G and Y is a subgroup (the case of the
semi-direct product), then condition (5) is equivalent to each of the conditions (1),
(2), (3) or (4).

Proof. (a) The equivalence of (1) and (2) is clear. If (3) holds then Py is just the
right coset decomposition of G modulo YH, which is G-invariant. Conversely
Lemma 1.2 shows that (2)=>(3).

(3) clearly implies (4). Suppcse (4) holds. YH(yh)= YHh=YH, so YH is
closed under products. Given y = Y, there exists x€ YH such that xy =e since
ee YH=YHy:so y '=xe YH. Also h ‘e YH. Hence (yh) '=h 'y ! lies in
YH. Thus YH is a subgroup.

(b) See remarks preceding this proposition.

(c) Assume G = YG, is a semi-direct product of the subgroup Y and the
normal subgroup G, and that condition (5) holds. Let ye Y. Then Py is the
partition G=YHy U --U YHx,y. But y normalizes G,, so YHy = YyK = YK,
where K =v 'Hy is a subgroup of G,. By Lemma 4.1(b), Pyy s y 'G,y =G,
invariant. Hence by Lemma 4.1(a), Pyy = Py, so by condition (5), H=K and
YHy = YH for all y, which is condition (4). []

The significance of condition (4) is that one may test the (i-invariance of a
Y-G,PSC by simply ascertaining whether the set of regions colored by color 1 is
invariant under the symmetries in Y.

Theorem 4.3. Suppose that G, is normal in G, and let H and K be subgroups of
finite index in G,. Then the Y-G,PSC’s based on H and K are equivalent if and
only if there exists ye Y such that y 'Hy =K and Y < YHy.

Proof. Suppose that there exists ge G such that Pug=P¢:; that is,
YHgU YHx,gU- - -U YHx,g is the same partition of G as YKU YKz,U---U
YKz, Then YHg = YKz, for some i and YHgz;' = YK. Hen:e there exists ye Y,
k € K such that gz, ' = yk. So YK = YHgz; ' = YHyk and YK = YHy. But the set
of clements in G, which stabilize YK = YHy is K on the one hand and y 'Hy on
the other hand, since y normalizes G,. Hence y 'Hy =K and also Yc YK <
YHy.

Conversely, suppose that y 'Hy = K and Y < YHy for some y e Y. Then Pyy is
the partition G = YHyU - - -U YHx,y. This is G, =y 'G,y invariant by Lemma
4.1(b). Since Y< YHy and the stabilizer of YHy is y 'Hy =K, Lcmma 4.1(a)
shows that Pyy=P,. 0O

In Theorem 4.3, if Y is a subgrcup, and hence G is the semi-direct product
YG,, then the condition Y < YHy will always hold, and the theorem takes a
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simpler form. The equivalences among the Y-G,PSC’s are simply found by
considering the automorphisms of G, induced by the elements of Y. Further, for
any g€ G, ye Y, (Yg)y =(Yy)y 'gy)= Y(y 'gy). Thus the effect of applying y
to the clusters Yg, regarded as G, fundamental regions and so labelled, is the
same as the automorphism of G, induced by y. On the other hand if G, is not
normal in G, the situation is less easy to analyze. We give a number of results
which are often applicable.

Proposition 4.4. Suppose that the Y-G,PSC’s based on H and K are equivalent
under a transformation g€ G such that g 'G,g = G,. Then there exists ye Y witn
v'!Gy=G,, y'Hy=K, Yc YHy. Conversely, if there exists yeY with
y 'G,y=G,, y 'Hy=K and Y < YHy, then the Y-G,PSC’s based on H and K
are equivalent.

Proof. The proof of Theorem 4.3 carries over essentially; note that in the first
part, since y = gz;k ' with k and z, € G,, we still have that y 'G,y=G,. O

Note that Proposition 4.4, which applies in the most gereral case, is less
complete than Theorem 4.3, since if G, is not a normal subgroup of G, there mey
be further equivalences of ¥ —G,PSC’s. In general, if Pyg=Px but g doesn't
normalize G,, then we can’t conclude that H and K are related by an automorph-
ism of G, (see Example 3 at end of this section.). However in some cases we may
be able to replace G, by a larger color symmetry group G», to which Proposition
4.4 does apply.

Lemma 4.5. Suppose Pyg = 1% and g 'G,g# G,. Then the subgroup of G wh.ch
leaves Py invariant is strictly larger than G,.

Proof. Since Py is G,-invariant, Py =Pig™ ' is gG,g"' imvariant by Lemma
4.1(a). Hence Py is invariant under the subgroup generated by G, and
gGg”'. O

Theorem 4.6. Suppose that Pyg = Pk, g 'G g+ G,, and g*> normalizes G,. Set
G,=(G,, 27'G,g). Then Py and Py are both G, invariant. Further, a subset Y, of
Y exists, with ecY,, such that G =Y,G, with Y, being a se. of lef: coset
representatives for G modulo G,; and the corresponding colorings may be regarded
as equivalent Y,-G,PSC’s based on the appropriate stabilizing subgroups H, = H
and K,2K. There exists yeY, (hence also yeY) such that y normalizes
G,, v 'H,y=K,, and Y,< Y,H,v.

Proef. Since ¢72G,g”>=G,, we have g 'G,g=gG,g""'. Since Pyg="Py, P i
g 'G,g invariant by Lemma 4.1(a), hence is G,-invariant. Similarly Py is alsc
G,-invariant and also g normalizes G,. Since G, 2 G,, the product YG, contain
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YG, = G. and hence it equals G. Thus G is a union of left cosets of the form yG,
with y = Y. Some of these cosets will coincide but we may choose (using the axiom
of choice if necessary) one y in Y to represent each distinct coset and this yields a
subset Y, of Y as left coset representatives for G modulo G,; we may assume
e€Y,. (This choice is not unique but some choices may make more suitable
geometric clusters.) Let H, be the subgroup of G, leaving the subset YH
invariant in tae partition Py, and similarly let K, be the stabilizer subgroup of YK
in Px. By Lemma 4.1(a) we see that Py =P, and Pg =Py, the partitions
corresponding respectively to the Y,-G,PSC’s based on subgroups H, and K;.
Also Py g = Pg,. Hence by Proposition 4.4 there exists y € Y, such that y 'G,y =
G,.y 'Hh=K,, and Y.c Y,H;y. O

Finally we note one more case that can be treated as in Theorem 4.3.

Theorem 4.7. Let G=YG, and [G:G,]=p, where p is prime. Then the Y-
G, PSC's based on subgroups H and K are equivalent & there exists y € Y such that
y 'G,y=G,, y 'Hy=K and Y < YHy.

Proof. Suppose we have such equivalence. Then Pyg = Pk for some geG. If g
normalizes G,, then Proposition 4.4 applies. If not, then by Lemma 4.5, Py and
Py are invariant under subgroups of G properly larger than G,; hence they are
G-invariant since [G:G,] is orime. This means Py =Py, so H=K, and the
conclusion is trivial. The converse follows by Proposition 4.4. []

Example 2. Let G be the symmetry group of the design consisting of an infinite
array of squares (G is of type p4m). G =(x, y, a, b) wherc x and y are transla-
tions, a is a rotation of 90° counter-clockwide and b is a horizontal reflection. See
Fig. 15 where the array of squares has been subdivided into triangular fundamen-
tal regions labelled by the elements of the group.

We have the relations xy = yx, a*=b*=¢, b 'ab=a"',a 'xa=y,a 'ya=x"",
b~ 'xb=1x, b 'yb =y !. (Note that equations in the group can often be calculated
conveniently from the figure in a geomatric manner by using the basic principle of
coordinatization discussed in Section 1). Let G, = {x?, y?, by, ba’x): by and ba’x
are reflections and G, is a subgroup of type pmm. G, is a normal subgroup of G
as can be checked by conjugating each generator of G, by each generator of G.
For example, a '(ba’x)a=bye G,, a '(by)a =ba’x '=ba’x - (x*) '€ G,, etc.
G, is of index 8 in G, and we choose Y =(a, b), the dihedral group of order 8, as
a set of coset representatives, with G = YG,. We now consider the design
consisting of the infinite array of rectangles. as show:. in Fig. 16(2); its symmetry
group G, is of type pmm generated by translations z and w and reflections s and t.
Using dotted lines each rectangle is divided into 4 subrectangles and these form
the fundamental regions for G,. We may informally enlarge the group of
symmetries if in the array the rectangles are replaced by squares and the dotted

1
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lines are replaced by solid lines. The new design (see Fig. 16(b) has symmetry
group of type p4m and using the notation just introduced we may identify G, with
G,, so that z =x2, w=y? s=by and t = ba’x. Each fundamental region for G,
will be broken up into 8 triangular fundamental regions for G. We have G = YG,,
a semi-direct product, with the subgroup Y of order 8 acting as automorphisms of
the normal cubgroup G,, permuting the subgroups of G, and hence permuting the
corresponding transitive colorings of the original design (see the comments
concerning the case cf semi-direct products following Theorem 4.3). It is then
possible to have as many as 8 different possible colorings of the rectangular array
which correspond to equivalent Y-G,PSC’s, and hence equivalent color patterns;
see [4, examgle 4.3] for an illustrated example.

(@) (b)

rig. 16.
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Example 3. We now consider an example where G, is not normal in G and Y is
not a subgroup. We start again with the design consisting of an array of squarzs
which has symmetry group G, of type p4m. L2t G, =(x, v, a, b) where x and'y
are translations, a is a rotation of 90° and b is a reflection; G, is thus the: group
we called “G” in Example 2 and Fig. 15 may be used as refercnce. If eact. square
were subdivided into 4 smalley squares the new design would have symmetry
group G, also of type p4m, where G, is of index 4 in G. The t‘iangular
fundamental regions for G, would each breuk up into four triangular fundamental
regios for G; the original starting region !abelled e would decompose into the
1egions labelled by elements of Y. See Fig. 17. If one chooses the new starting
region as illustrated ther: Y is the set {e, h, k, hk} where h and k are reflections in
the axes illustrated, and Y is not a subgroup. G = YG, and it can be seen that G,
is not normal in G as follows. G, contains the rotation a of order 4 whose center
C is the center of one of the original squares. 1're reflection h maps C onto D, a
point on the boundary of one of the original squares. Thus h™'ah is a rotation of
order 4 whose center is D; so h™'ah¢ G,. (See Fig. 17.)

Now let H =(a?, ba, x2, xy) and K =(a’x, ba, . %, xy). Then H<1G,, but K4 G,
(note that a™!(ba)a = ba(a?) lies in H but not in K, while the other conjugates of
the generators of H by generatcrs of G, ‘ic in H); so there can be no
automorphism of G, taking H onto K. The colorings of the original design (with
symmetry group G,) based on H and K are illustrated in Fig. 18 (use Fig. 15 as a
reference). The color patterns are ‘“‘equivalent” and correspond to equivalent
Y-G,PSC’s; the equivalence is effected by the reflection h. Theorem 4.3 doesn’t
apply (nor does Proposition 4.4) since h doesn’t normalize G,. However Theorem
4.6 would be applicable, since h*= e which does normalize G,. The subgroup G,
described in Theorem 4.6 vrould be (G,, k}; this is also a subgroup of type p4m (a
design with symmetry group G, could be constructed using the array of squares
formed by the diagonals of the original array of squares with symmetry group G,).
[G:G,]=2 and G,<1G,<G. The two colorings are G, color symmetric. A
suitable choice for Y, is {e, h}.
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COLORING BASED ON H COLORING BASED ON K
Fig. 18.

Example 4. In Fig. 19(a) we have a design with symmeiry group G, = D;=(s, t),
the dihedral group of order 4, where s is a rotation of order 3 and ¢ is « reflection.
Dj; has three conjugate subgroups (t), {ts) and (ts), each of index 3, and the three
colorings which correspond to these are illustrated in Fig. 20. The first two
colorings have color patterns which appear similar. By regarding D-, as a subgroup
of G =D, we can see that the color patterns are “equivalent”. The symmetry
group of the design will be enlarged to D if the three dotted boundary lines are
replaced by longer heavy lines congruent to the three rays in the original design
(see Fig. 19(b)). Let u be the rotation of order 6 so that u?>=s. Then G = YG,
with Y =le, tu}. The first two colorings correspond to equivalent Y-D,PSC’s
while the third coloring corresponds to a Dg-symmetric coloring. The first two
subgroups (i) and (ts) = (tu?) are conjugate by the element tu in Y. This illustrates
Theorem‘4.3; even though we have three subgroups of G, which are conjugate by
elements of G (in fact, by elements of G,), just the first two Y-G,PSC’s are
equivalent because just the first two subgroups are conjugate using an element of
Y. (Precisely which pair of subgroups yield equivalent Y-G,PSC’s is dependent
on the original arbitrary choice of starting region.)

Fig. 19.
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Fig. 20.

5. Equivalence

We give some further comments here on the kinds of equivalences that arise.
There seem to be in fact three points of view on equivalences for color symmetry
which need to be distinguished.

() The equivalence oi symmetricai colorings of a design: here the design is
given, as in a coloring book, and the problem is how to color it symmetrically.
This was discussed in Section 1 of this paper.

(II) Equivalence of the color patterns arising from the colorings: herc ihe
original design is deemphasized and the arrangement of the colored regions is
stressed. This appears to be the point of view stressed in [4]). The study of
equivalent Y-G,PSC’s in Section 4 is then often useful in analyzing this situation.
See the discussion following Example 1.

(III) Equivalence of color symmetry groups: this is a point of view found
frequently in the literature. Here a “color symir.etry group” is usually defined to
be a symmetry or crystallographic group G together with a subgroup H of finite
index. The color symmetry groups for G using subgroups H and K are equivalent
if there is an automorphism of G taking H onto K, where this automorphism is
induced by conjugation by a geometric symmetry from some appropriate larger
group (for example, the group of affine transformations). See Schwarzenberger’s
recent book [9, p. 30].

Theorem 4.3 shows the relation between the second and third viewpoints:
equivalence of color patterns may in many cases a~ : from the equivalence cf
color symmetry groups. But as Example 3 show: . :e can also be equivalent
cowr patterns even when the color ‘vi:me: y groups are not equivalent.
Moreover, Example 4 shows that equivaten. color symmetry groups don’t always
yield equivalent color patterns (e.g.. comparc . - first and third colorings in Fig.
20).
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