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The probability for two monic polynomials of a positive degree n
with coefficients in the finite field Fq to be relatively prime turns
out to be identical with the probability for an n × n Hankel matrix
over Fq to be nonsingular. Motivated by this, we give an explicit
map from pairs of coprime polynomials to nonsingular Hankel
matrices that explains this connection. A basic tool used here is the
classical notion of Bezoutian of two polynomials. Moreover, we give
simpler and direct proofs of the general formulae for the number of
m-tuples of relatively prime polynomials over Fq of given degrees
and for the number of n × n Hankel matrices over Fq of a given
rank.
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1. Introduction

It is a remarkable fact that the probability for two randomly chosen monic polynomials of the same
positive degree with coefficients in the binary field F2 to be coprime is exactly 1/2. This observation
appears to go back at least to an exercise in the treatise, first published in 1969, of Knuth [9, §4.6.1,
Ex. 5] (see also Remark 4.2). More recently, it was made by Corteel, Savage, Wilf, and Zeilberger [2]
in 1998 in the course of their work on Euler’s pentagonal sieve in the theory of partitions, and it led
them to ask for a “nice simple bijection” between the coprime and the non-coprime ordered pairs of
monic polynomials of degree n over F2. This was answered first by Reifegerste [12] in 2000 and by
Benjamin and Bennett [1] in 2007. The latter deals with the more general case of polynomials over
any finite field Fq where the probability turns out to be 1 − (1/q) instead of 1/2. Since there are q2n

ordered pairs of monic polynomials over Fq of degree n, this means that
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∣∣CPPn(Fq)
∣∣ = q2n − q2n−1 = q2n−1(q − 1), (1)

where CPPn(Fq) denotes the set of ordered pairs of coprime monic polynomials over Fq of degree n.
In effect, Benjamin and Bennett gave an explicit surjective map from CPPn(Fq) onto the set of ordered
pairs of non-coprime monic polynomials over Fq of degree n in such a way that the cardinality of
each fiber is q − 1.

A couple of years prior to [2] and working on a seemingly unrelated topic, Kaltofen and Lobo
[8] observed that the probability for an n × n Toeplitz matrix with entries in Fq to be nonsingular
is exactly 1 − (1/q). In fact, this observation can be traced back to Daykin [3] who had essentially
proved the same result (and also a more general one) in 1960 with Hankel matrices in place of
Toeplitz matrices. Since there are q2n−1 Toeplitz matrices (or equivalently, Hankel matrices) of size
n × n with entries in Fq , this means that∣∣TGLn(Fq)

∣∣ = ∣∣HGLn(Fq)
∣∣ = q2n−1 − q2n−2 = q2n−2(q − 1), (2)

where TGLn(Fq) (resp.: HGLn(Fq)) denotes the set of all n × n nonsingular Toeplitz (resp.: Hankel)
matrices with entries in Fq .

One of the main aims of this paper is to explain the uncanny coincidence that the probability in
both of the above situations turns out to be the same or, more precisely, the fact that the formulae
(1) and (2) differ just by a factor of q. We do this by giving an explicit surjective map from CPPn(Fq)

onto HGLn(Fq) such that each fiber has cardinality q. This readily yields a similar map with HGLn(Fq)

replaced by TGLn(Fq). As a consequence, we obtain new proofs of (1) and (2) by combining any one
of the known proofs with this surjective map. We further add to this collection of proofs by giving
alternative, short and completely self-contained proofs of more general versions of (1) and (2).

2. Preliminaries

Let F be a field. Recall that a matrix M = (mij) with entries in F is said to be a Toeplitz matrix
(resp.: Hankel matrix) if mij = mrs whenever i − j = r − s (resp.: i + j = r + s). Thus every n × n
Toeplitz (resp.: Hankel) matrix over F looks like (an+i− j) (resp.: (ai+ j−1)) for a unique (2n − 1)-tuple
(a1, . . . ,a2n−1) ∈ F 2n−1.

We denote by Tn(F ) (resp.: Hn(F )) the set of all Toeplitz (resp.: Hankel) matrices with entries in
F and, as in the Introduction, set

TGLn(F ) = Tn(F ) ∩ GLn(F ) and HGLn(F ) = Hn(F ) ∩ GLn(F ).

The following simple observation shows that at least as far as enumerative and bijective combina-
torics is concerned, Toeplitz and Hankel matrices are the same.

Proposition 2.1. There is a bijection between Tn(F ) and Hn(F ), which induces a bijection between TGLn(F )

and HGLn(F ).

Proof. Let E be the n × n matrix with 1 on the antidiagonal and 0 elsewhere, i.e., E = (δi,n− j+1)

where δ is the Kronecker delta. Then E is nonsingular and the map given by A �→ AE sets up the
desired bijection. �

As usual, F [X] will denote the set of polynomials in one variable X with coefficients in F . Recall
that for any u, v ∈ F [X] of degree � n, the nth order Bezoutian (matrix) of u and v is the n ×n matrix
Bn(u, v) = (bij) determined by the equation

u(X)v(Y ) − v(X)u(Y )

X − Y
=

n∑
i, j=1

bij X i−1Y j−1.

The coefficients bij are not hard to determine explicitly; in fact, if u = ∑n
i=0 ui Xi and v = ∑n

i=0 vi Xi ,
then upon letting uk = vk := 0 for k > n, we have
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bij =
min{i, j}∑

s=1

(vs−1ui+ j−s − us−1 vi+ j−s) for 1 � i, j � n.

It is clear from the definition that if u and v have a nonconstant common factor then the system of
homogeneous linear equations corresponding to Bn(u, v) has a nontrivial solution, and hence Bn(u, v)

is singular. It is a classical fact that the converse is also true; we record this below for convenience
and refer to the survey article [5] of Helmke and Fuhrmann for a proof.

Proposition 2.2. Let u, v ∈ F [X]. Assume that deg u = n and deg v � n. Then Bn(u, v) is nonsingular if and
only if u and v are coprime.

As an illustration, consider u, v ∈ F [X] such that v is the constant polynomial 1 and u(X) = u0 +
u1 X + · · · + un Xn with u0, u1, . . . , un ∈ F . Then

u(X) − u(Y )

X − Y
=

n∑
k=1

uk
Xk − Y k

X − Y
=

n∑
k=1

uk

k∑
i=1

Xi−1Y k−i =
n∑

i, j=1

ui+ j−1 Xi−1Y j−1,

where, by convention, uk := 0 for k > n. Thus the nth order Bezoutian Bn(u,1) has un on its antidi-
agonal and 0 below that. In particular, if deg u = n, i.e., if un �= 0, then u and v are coprime, and
moreover Bn(u, v) is nonsingular.

3. An explicit surjection

Fix a positive integer n and a field F . As in the Introduction, let

CPPn(F ) := {
( f , g) ∈ F [X]2: f , g are coprime and both are monic of degree n

}
.

Moreover, let us consider

Pn(F ) := {
(u, v) ∈ F [X]2: u is monic,deg u = n, and deg v < n

}
, and

HPn(F ) := {
(u, v) ∈ Pn(F ): u and v are coprime

}
.

We may refer to an element of Pn(F ) as a Padé pair and an element of HPn(F ) as a Hermite pair.

Lemma 3.1. CPPn(F ) is in bijection with HPn(F ).

Proof. The map given by ( f , g) �→ ( f , g − f ) does the job. �
Lemma 3.2. Let (u, v) ∈ Pn(F ). Then there are unique ai ∈ F , i � 1, such that

v(X)

u(X)
=

∞∑
i=1

ai

Xi
. (3)

Proof. Write u(X) = Xn[1 − u∗(1/X)] for a unique u∗ ∈ F [X] with no constant term. Expanding as a
formal power series, we obtain

v(X)

u(X)
= X−n v(X)

∞∑
j=0

u∗(1/X) j .

This yields the desired ai ∈ F . �
Definition 3.3. For (u, v) ∈ Pn(F ), we define Hn(u, v) to be the n × n Hankel matrix whose (i, j)th
entry is ai+ j−1 for 1 � i, j � n, where a1,a2, . . . are as in (3).
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The following result which relates Hn(u, v) to the nth order Bezoutian Bn(u, v) is classical and
is sometimes referred to as Barnett’s factorization. We include a proof for the sake of completeness,
especially since the proofs found in the literature are often a bit involved and tend have an additional
assumption that the polynomials u and v are coprime, i.e., (u, v) is a Hermite pair rather than a Padé
pair.

Proposition 3.4. Bn(u, v) = Bn(u,1)Hn(u, v)Bn(u,1) for any (u, v) ∈ Pn(F ).

Proof. Let R(T ) := v(T )/u(T ) and let ai , i � 1, be as in (3). Then

R(Y ) − R(X)

X − Y
=

∞∑
i=1

ai

i∑
j=1

Xi− j Y j−1

Xi Y i
=

∞∑
k,�=1

ak+�−1 X−kY −�.

Now if u(X) = u0 + · · · + un−1 Xn−1 + Xn with u0, . . . , un−1 ∈ F and un := 1, then

u(X)v(Y ) − v(X)u(Y )

X − Y
= u(X)

R(Y ) − R(X)

X − Y
u(Y )

=
(

n∑
r=0

ur Xr

)( ∞∑
k,�=1

ak+�−1 X−kY −�

)(
n∑

s=0

usY s

)

=
∑

i, j�n

( ∑
k,��1

ui+k−1ak+�−1u�+ j−1

)
Xi−1Y j−1,

where, by convention, ut = 0 for t > n and at = 0 for t � 0. Comparing the coefficients of Xi−1Y j−1

for 1 � i, j � n, we obtain the desired result. �
Theorem 3.5. There is a surjective map σ : CPPn(F ) → TGLn(F ) such that for any A ∈ TGLn(F ), the fiber
σ−1({A}) is in one-to-one correspondence with F . In particular, |CPPn(Fq)| = q|TGLn(Fq)|.

Proof. From Propositions 2.2 and 3.4, we see that Hn(u, v) is nonsingular for any (u, v) ∈ HPn(F ).
Consequently, we obtain a well-defined map η : HPn(F ) → HGLn(F ) given by (u, v) �→ Hn(u, v). Now
let B ∈ HGLn(F ). Then there are unique b1, . . . ,b2n−1 ∈ F such that the (i, j)th entry of B is bi+ j−1
for 1 � i, j � n. Let λ be an arbitrary element of F and set b2n := λ. Since B is nonsingular, there are
unique u0, . . . , un−1 ∈ F such that

B

⎛
⎜⎜⎝

u0
u1
...

un−1

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

bn+1
bn+2

...

b2n

⎞
⎟⎟⎠ . (4)

Next, define un := 1 and v0, v1, . . . , vn−1 to be the unique elements of F given by the following
triangular system of equations:⎛

⎜⎜⎝
v0
v1
...

vn−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

b1 b2 . . . bn

0 b1 . . . bn−1
...

. . .
...

0 0 . . . b1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1
u2
...

un

⎞
⎟⎟⎠ . (5)

Finally, define u, v ∈ F [X] by

u =
n∑

ui Xi and v =
n−1∑

vi Xi .
i=0 i=0
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Then (u, v) ∈ Pn(F ) and if we let ak ∈ F , k � 1, as in (3), then we have

n∑
i=1

vi−1 Xi−1 =
(

n∑
j=0

u j X j

)(∑
k�1

ak X−k

)
=

∑
i�n

(
n∑

j=0

a j−i+1u j

)
Xi−1,

where, by convention, ak := 0 for k � 0. Comparing the coefficients of Xi−1 for −n < i � n, we find
that (5) and (4) are satisfied with b1, . . . ,b2n replaced by a1, . . . ,a2n , respectively. Since un = 1, the
triangular nature of (5) implies that ai = bi for 1 � i � n. Further, successive comparison of (4) with
its counterpart where bi ’s are replaced by ai ’s yields ai = bi for 1 � i � 2n. In particular, B = Hn(u, v).
Now since B is nonsingular, Propositions 3.4 and 2.2 show that u and v are coprime. Thus (u, v) ∈
HPn(F ) and η(u, v) = B . It is clear from the construction above that a Hermite pair (u, v) satisfying
η(u, v) = B is uniquely determined by the matrix B and the element b2n = λ. Also, in view of (4),
distinct values of λ in F give rise to distinct monic polynomials u in F [X] of degree n. This shows that
for each B ∈ HGLn(F ), the fiber η−1({B}) is in one-to-one correspondence with F . Finally, combining
η with the bijections given by Proposition 2.1 and Lemma 3.1, we obtain the desired surjective map
σ : CPPn(F ) → TGLn(F ). �
4. Relatively prime polynomials

The general version of (1) alluded to in the Introduction is the theorem stated below. It may be
noted that this generalizes [2, Prop. 3], [11, Thm. 9] and [10, Prop. 2.4], and also that it is a more
precise form of [1, Cor. 5] and [6, Thm. 1.1]. We remark at the outset that in this theorem, considering
arbitrary polynomials (not necessarily monic) in Fq[X] does not affect the probability.

Theorem 4.1. Let m be a positive integer and n1, . . . ,nm be nonnegative integers. The probability that m monic
polynomials in Fq[X] of degrees n1, . . . ,nm, chosen independently and uniformly at random, are relatively
prime is 1 − q1−m if min{n1, . . . ,nm} � 1 and 1 otherwise.

Proof. Let N(n1, . . . ,nm) denote the number of ordered m-tuples ( f1, . . . , fm) of coprime monic poly-
nomials in Fq[X] such that deg f i = ni for i = 1, . . . ,m. Evidently, it suffices to show that

N(n1, . . . ,nm) =
{

qn1+···+nm (1 − q1−m) if min{n1,n2, . . . ,nm} � 1,

qn1+···+nm if min{n1,n2, . . . ,nm} = 0.
(6)

To this end, we shall assume, without loss of generality, that n1 � · · · � nm . We can partition the set
of ordered m-tuples ( f1, . . . , fm) of monic polynomials in Fq[X] with deg f i = ni for i � i � m, into
disjoint subsets S0, S1, . . . , Snm , where for 0 � d � nm , the set Sd consists of m-tuples whose GCD is of
degree d. Given any monic polynomial h ∈ Fq[X] of degree d and any coprime m-tuple (g1, . . . , gm) of
monic polynomials such that deg gi = ni −d for i = 1, . . . ,m, it is easy to see that (hg1, . . . ,hgm) ∈ Sd .
Conversely, if ( f1, . . . , fm) ∈ Sd , then the polynomial h = GCD( f1, . . . , fm) is monic of degree d and
( f1/h, . . . , fm/h) is an ordered m-tuple of coprime monic polynomials of degrees n1 − d, . . . ,nm − d,
respectively. This shows that |Sd| = qd N(n1 − d, . . . ,nm − d) for 0 � d � nm , and consequently,

qn1+···+nm =
nm∑

d=0

|Sd| =
nm∑

d=0

qd N(n1 − d,n2 − d, . . . ,nm − d). (7)

If nm = 0, we immediately obtain N(n1, . . . ,nm) = qn1+···+nm . On the other hand, if nm � 1, substituting
ni by ni − 1 (i = 1, . . . ,m) in the above relation yields

qn1+···+nm−m =
nm∑

d=1

qd−1N(n1 − d,n2 − d, . . . ,nm − d). (8)

Multiplying Eq. (8) by q and subtracting the result from (7), we obtain N(n1,n2, . . . ,nm) =
qn1+···+nm (1 − q1−m), as desired. �
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Remark 4.2. As indicated in the Introduction, the case m = 2 (and q prime) of the above result appears
as an exercise (# 5 of §4.6.1) in Knuth [9]. The solution outlined by Knuth uses the result obtained
in the previous exercise and in turn, a deep analysis of the Euclidean algorithm. The general result
with arbitrary m and q (but with n1 = · · · = nm = n) given in Corteel, Savage, Wilf and Zeilberger [2]
seems to have been arrived at independently by completely different means. Also, it is indicated in a
footnote in [2, p. 188] that the degrees n1, . . . ,nm could well be different (i.e., one has a result such
as Theorem 4.1 above), and this observation is ascribed to D. Zagier. Many of the subsequent works
(e.g. [1,6,4,12]) cite [2] as an earliest reference for this result (and in fact, the authors of this paper
did the same before it was pointed out by a referee that the result is classical). In retrospect, the key
ideas in the answer by Benjamin and Bennett [1] to the question in [2] about a nice bijective proof
can be traced back to [9, §4.6] and a more detailed analysis by Norton [11] as well as by Ma and von
zur Gathen [10]. In the same vein, the short proof given above of Theorem 4.1, even though it was
discovered independently, can be viewed as an extension of the “alternative proof” that appears in
the solution of Exercise 5 of §4.6.1 in the first edition of Knuth [9], but for some mysterious reason, is
missing in the subsequent editions. Thus, the contents of this section may help resurrect an original
and perhaps the simplest proof. Finally, we remark that nontrivial generalizations of Theorem 4.1 are
studied by Gao and Panario [4] and by Hou and Mullen [6], while an application to a conjecture about
the enumeration of certain Singer cycles is discussed in [7].

5. Hankel matrices over FFFq

The general version of (2) alluded to in the Introduction is the following.

Theorem 5.1. The number N(n, r;q) of n × n Hankel matrices of rank r with entries in the finite field Fq is
given by

N(n, r;q) =
⎧⎨
⎩

1 if r = 0,

q2r−2(q2 − 1) if 1 � r � n − 1,

q2n−2(q − 1) if r = n.

(9)

Before giving a proof of the above theorem, we introduce some notation and prove a few auxiliary
results. Let F be a field and, as before, n a positive integer. Given any n × n matrix A with entries
in F and any positive integers d, i1, . . . , id, j1, . . . , jd such that i1 < · · · < id � n and j1 < · · · < jd �
n, we denote by A[i1, . . . , id| j1, . . . , jd] the d × d submatrix of A formed by the rows indexed by
i1, . . . , id and the columns indexed by j1, . . . , jd . Note that the dth leading principal submatrix of A
is A[1, . . . ,d|1, . . . ,d] and this will be denoted simply by Ad . Define

δ(A) :=
{

0 if Ad is singular for each d = 1, . . . ,n,

max{d: Ad is nonsingular} otherwise.

For r,k ∈ {0,1, . . . ,n}, let Hn(r, F ) := {A ∈ Hn(F ): rank(A) � r}, and moreover,

H(k)
n (F ) := {

A ∈ Hn(F ): δ(A) = k
}

and H(k)
n (r, F ) := Hn(r, F ) ∩ H(k)

n (F ).

Note that HGLn(F ) = H(n)
n (F ) = H(n)

n (n, F ) and also that

Hn(F ) =
n∐

k=0

H(k)
n (F ) and Hn(r, F ) =

r∐
k=0

H(k)
n (r, F ), (10)

where
∐

denotes disjoint union. The main idea in the proof of Theorem 5.1 is to use the above

decompositions and to characterize H(k)
n (Fq) and H(k)

n (r,Fq) suitably so as to be able to determine
their cardinalities recursively. Here is the first step.
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Lemma 5.2. Let A = (ai+ j−1) ∈ Hn(F ). Then

A ∈ H(0)
n (F ) ⇔ a1 = · · · = an = 0. (11)

Moreover, for 0 � r � n − 1,

A ∈ H(0)
n (r, F ) ⇔ a1 = · · · = a2n−r−1 = 0. (12)

In particular, |H(0)
n (Fq)| = qn−1 and |H(0)

n (r,Fq)| = qr .

Proof. If A ∈ H(0)
n (F ), then det(Ak) = 0 for k = 1, . . . ,n. Using this successively, we obtain a1 = · · · =

an = 0. Conversely, if a1 = · · · = an = 0, then it is clear that det(Ak) = 0 for k = 1, . . . ,n, i.e., A ∈
H(0)

n (F ). Next, let 0 � r � n−1 and suppose A ∈ H(0)
n (r, F ). Then a1 = · · · = an = 0, as before. Moreover,

by successively using the vanishing of the (r + 1) × (r + 1) minor det A[n − r,n − r + 1, . . . ,n| j, j +
1, . . . , j + r] for j = 2, . . . ,n − r, we obtain an+1 = · · · = a2n−r−1 = 0 as well. Conversely, suppose
a1 = · · · = a2n−r−1 = 0, then A ∈ H(0)

n (F ) and it is easily seen that every (r + 1) × (r + 1) submatrix of
A has a column of zeros, and so A ∈ H(0)

n (r, F ). �
The following result is an analogue of (11) for H(k)

n (F ) where k � 1.

Lemma 5.3. Let k ∈ {1, . . . ,n − 1} and A = (ai+ j−1) ∈ Hn(F ) be such that Ak is nonsingular. Suppose
x = (x1, . . . , xk) ∈ F k is the unique solution of the system AkxT = (ak+1, . . . ,a2k)

T , i.e., for t = 1, . . . ,k, the
following relation holds:

ak+t = x1at + · · · + xkat+k−1. (13)

Then

A ∈ H(k)
n (F ) ⇔ the relation (13) holds for t = 1, . . . ,n. (14)

Proof. Suppose A ∈ H(k)
n (F ). We will use induction on t to show that (13) holds for t = 1, . . . ,n. The

case when 1 � t � k is known by the hypothesis. So let us assume that t � k + 1 and that (13) holds
for all values of t smaller than given one. Consider the t × t matrix At and successively make the
following t − k elementary column transformations:

Ct − (x1Ct−k + · · · + xkCt−1), . . . , Ck+1 − (x1C1 + · · · + xkCk)

where C j indicates the jth column. This transforms At to the t × t matrix

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 · · · ak h1 · · · ht−k
... . .

. ...
...

...

ak · · · a2k−1 hk · · · ht−1
ak+1 · · · a2k hk+1 · · · ht

...
...

... . .
. ...

at · · · ak+t−1 ht · · · h2t−k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where hm = ak+m − (x1am + · · · + xkam+k−1) for m = 1, . . . ,2t − k − 1. By induction hypothesis, hm = 0
for m = 1, . . . , t − 1, and therefore

det(At) = det
(

A′) = (−1)(t−k)(t−k+1)/2 det(Ak)h
t−k
t .

Since det(At) = 0 and det(Ak) �= 0, it follows that ht = 0, i.e., the relation (13) holds for the given
value of t .
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Conversely, suppose the relation (13) holds for t = 1, . . . ,n. Then we can write vk+1 = x1v1 + · · · +
xkvk , where v j denotes the jth column vector of A. In particular, rank(Ak+1) � k, which implies that

A ∈ H(k)
n (F ). �

Let us pause to observe that the formula (2) for the number of nonsingular Hankel matrices can
already be derived as a consequence of the above results.

Corollary 5.4. |H(0)
n (Fq)| = qn−1 and |H(k)

n (Fq)| = qn+k−2(q − 1) for 1 � k � n. In particular, |HGLn(Fq)| =
q2n−2(q − 1).

Proof. Induct on n. If n = 1, then k is 0 or 1, and the desired formulae are obvious. Suppose
n > 1 and the result holds for positive values of n smaller than the given one. By Lemma 5.2,
|H(0)

n (Fq)| = qn−1. Now suppose 1 � k < n. Then by Lemma 5.3, we see that the map A = (ai+ j−1) �→
(Ak,a2k,an+k+1, . . . ,a2n−1) gives a bijection of H(k)

n (F ) onto H(k)

k (F ) × F n−k . Hence using the induc-

tion hypothesis, |H(k)
n (Fq)| = q2k−2(q − 1)qn−k = qn+k−2(q − 1). Finally, in view of (10), the induction

hypothesis, and an easy evaluation of a telescopic sum, we conclude that |HGLn(Fq)| = |H(n)
n (Fq)| =

|Hn(Fq)| − ∑n−1
k=0 |H(k)

n (Fq)| = q2n−1 − q2n−2. �
If a Hankel matrix in H(k)

n (F ) satisfies a rank condition, the validity of (13) can be pushed a little
further. More precisely, one has the following analogue of (12).

Lemma 5.5. Let k, r be integers with 1 � k � r < n and A = (ai+ j−1) ∈ Hn(F ) be such that Ak is nonsingular.
Suppose x = (x1, . . . , xk) ∈ F k is the unique solution of the system AkxT = (ak+1, . . . ,a2k)

T . Then

A ∈ H(k)
n (r, F ) ⇔ the relation (13) holds for t = 1, . . . ,2n − r − 1. (15)

Proof. Suppose A ∈ H(k)
n (r, F ). Again, we use induction on t . By Lemma 5.3, the relation (13) holds

if 1 � t � n. Assume that n + 1 � t � 2n − r − 1 and that (13) holds for all values of t smaller than
the given one. Define x(0),x(1), . . . ,x(t−1) in F k recursively as follows. First, x(0) := x = (x1, . . . , xk).
Next, if � � 1 and if x(�−1) = (x(�−1)

1 , . . . , x(�−1)

k ) is known, then we let x(�−1)
0 := 0 and let x(�) =

(x(�)
1 , . . . , x(�)

k ) ∈ F k be given by

x(�)
s = xsx(�−1)

k + x(�−1)
s−1 for s = 1, . . . ,k.

Observe that for 1 � � < t and 1 � m < t , we have

k∑
s=1

x(�)
s am+s−1 = x(�−1)

k

k∑
s=1

xsam+s−1 +
k−1∑
s=1

x(�−1)
s am+s =

k∑
s=1

x(�−1)
s am+s, (16)

where the last equality follows from (13) with t replaced by m. Successive application of (16) shows
that

k∑
s=1

x(�)
s am+s−1 =

k∑
s=1

xsam+s+�−1 for 0 � � < t and 1 � m � t − �. (17)

Now consider the (2n − t) × (2n − t) principal submatrix B of A given by

B := A[1,2, . . . ,k, t + k − n + 1, . . . ,n − 1,n|1,2, . . . ,k, t + k − n + 1, . . . ,n − 1,n]
and make the following 2n − t − k elementary column transformations:
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C2n−t −
k∑

s=1

x(n−k−1)
s Cs, C2n−t−1 −

k∑
s=1

x(n−k−2)
s Cs, . . . , Ck+1 −

k∑
s=1

x(t−n)
s Cs,

where C j indicates the jth column. This transforms B to the (2n − t) × (2n − t) matrix

B ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 · · · ak u1,1 · · · u1,2n−t−k
... . .

. ...
...

...

ak · · · a2k−1 uk,1 · · · uk,2n−t−k
at+k−n+1 · · · at+2k−1 v1,1 · · · v1,2n−t−k

...
...

... . .
. ...

an · · · an+k−1 v2n−t−k,1 · · · v2n−t−k,2n−t−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some ui, j, vi, j ∈ F . In fact, for 1 � i � k and 1 � j � 2n − t − k,

ui, j = ai+t+k−n+ j−1 −
k∑

s=1

x(t−n+ j−1)
s ai+s−1

= ai+ j+t−n−1+k −
k∑

s=1

xsai+ j+t−n−1+s−1 = 0,

where the penultimate equality follows from (17) and the last equality follows from (13) since t �
n + 1. Moreover, for 1 � i, j � 2n − t − k,

vi, j = a2t+2k−2n+i+ j−1 −
k∑

s=1

x(t−n+ j−1)
s at+k−n+i+s−1;

also, since t � n + 1, using (17), we have

vi, j = a2t+2k−2n+i+ j−1 −
k∑

s=1

xsa2t+k−2n+i+ j+s−2 if i + j � 2n − t − k + 1. (18)

In particular, vi, j depends only on i+ j whenever i+ j � 2n−t −k+1. Furthermore, if i+ j � 2n−t −k,
then from (13) we deduce that vi, j = 0. Consequently, upon letting v = v1,2n−t−k = · · · = v2n−t−k,1,
we obtain

det(B) = det
(

B ′) = (−1)(2n−t−k)(2n−t−k+1)/2 det(Ak)v2n−t−k.

But since A ∈ H(k)
n (r, F ) and 2n − t � r + 1, we have det(Ak) �= 0 and det(B) = 0. Hence v = 0, and

from (18), we conclude that (13) holds for the given value of t .
Conversely, suppose the relation (13) holds for t = 1, . . . ,2n − r − 1. Then we can write v j =

x1v j−k + · · ·+ xkv j−1 for j = k + 1, . . . ,k + n − r, where v j denotes the jth column vector of A. Hence
the column space of A is spanned by v1, . . . ,vk,vk+n−r+1, . . . ,vn . In particular, rank(A) � k + n − (k +
n − r + 1) + 1 = r. This together with Lemma 5.3 shows that A ∈ H(k)

n (r, F ). �
Corollary 5.6. |H(0)

n (r,Fq)| = qr for 0 � r < n and |H(k)
n (r,Fq)| = qr+k−1(q − 1) for 1 � k � r < n. Conse-

quently, |Hn(r,Fq)| = q2r for 0 � r < n.

Proof. The first assertion follows from Lemma 5.2. Now suppose 1 � k � r < n. By Lemma 5.5, we
see that the map A = (ai+ j−1) �→ (Ak,a2k,a2n−r+k, . . . ,a2n−1) gives a bijection of H(k)

n (r, F ) onto

HGLk(F ) × F r−k+1. Hence by Corollary 5.4, |H(k)
n (Fq)| = q2k−2(q − 1)qr−k+1 = qr+k−1(q − 1). Finally,
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|Hn(r,Fq)| = q2r is obvious when r = 0, whereas if 1 � r < n, then using (10) and an easy evaluation

of a telescopic sum, we conclude that |Hn(r,Fq)| = ∑r
k=0 |H(k)

n (r,Fq)| = q2r . �
We are now ready to prove the main result of this section.

Proof of Theorem 5.1. The case r = 0 is trivial and for r = n, Corollary 5.4 applies. Finally, if 1 � r < n,
then N(n, r;q) = |Hn(r,Fq)| − |Hn(r − 1,Fq)| = q2r − q2r−2, thanks to Corollary 5.6. �

A noteworthy consequence of Theorem 5.1 is that for a fixed positive integer r, the number of
n × n Hankel matrices of rank r remains constant for every n � r + 1.
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