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In this work, the effects of non-commutative and commutative vacua on the phase space generated 
by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, 
the commutative and non-commutative cases are compared. To take account the effects of non-
commutativity, two well known non-commutative parameters, θ and β , are introduced. It should be 
emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ
which is related to space sector. Also the different boundary conditions and mathematical interpretations 
of non-commutativity are explored.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

In this work our aim is studying a non-commutative model of 
scalar torsion gravity.

Recently some astrophysical observations have shown that the 
Universe undergoing an accelerated phase era. To justify this unex-
pected result, scientists have proposed some different models such 
as, scalar field models [1–4] and modify theories of gravity [5–8]. 
For the latter proposal one can deal with teleparallel equivalent of 
general relativity [9–12], in which the field equations are second 
order [13]. In addition in this scenario the Levi-Civita connections 
replaced by Weitzenböck connection, where has no curvature but 
only torsion [14].

It is obvious that for the first time, the non-commutative 
formalism between the space–time coordinate was introduced 
by [15]. Also the geometrical concept based on this model re-
cently attracts more interesting namely non-commutative geom-
etry [16–19]. It is notable the recent investigations of string the-
ory, supersymmetry, M-theory and so on [20,21], motivated sci-
entists to study classical and quantum cosmology in such frame. 
The effects of non-commutativity in cosmology have been investi-
gated by two well-known models, i.e. minisuperspace [22,23] and 
phase space [24], while the geometrical structure of the underly-
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ing space–time unchanged [25]. In this work our means is that to 
build up a non-commutative scenario by means of a deformation 
achieved by Moyal product [26], for a scalar torsion gravity [27] in 
both classical and quantum levels. Although the non-minimal cou-
pling term has a richer structure and experiencing the phantom-
divide crossing and so on [9,28,29], but we want to consider the 
simplest form, minimal quintessence-like, of a scalar torsion sce-
nario in comparison to standard quintessence scenario for this in-
vestigation.

The organization of this work is asfollows. In Section 2, a brief 
review about scalar f (T ) gravity cosmology and general properties 
of the model are discussed. In Section 3, the results of our investi-
gations for scalar torsion gravity are discussed in classical level for 
both commutative and non-commutative frames. The Section 4, is 
devoted to the same details of Section 3 but in quantum level. And 
at last the Section 5, is concerned with the conclusion and discus-
sion.

2. General framework

The teleparallel theory of gravity is defined in the Weitzen-
böck’s space–time by the following line element

dS2 = N2dt2 − a2(t)δi jdxidx j , (1)

where N is the lapse function. Also it is considerable that, theory 
can be described in the tangent space, which allows us to rewrite 
the line element (1) as
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/81972185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.07.075
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:h.sh.ahmadi@gmail.com
mailto:a.aghamohamadi@iausdj.ac.ir
mailto:ksaaidi@uok.ac.ir
http://dx.doi.org/10.1016/j.physletb.2015.07.075
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.07.075&domain=pdf


232 H. Sheikhahmadi et al. / Physics Letters B 749 (2015) 231–235
dS2 = gμνdxμdxν = ηi jθ
iθ j , (2)

dxμ = ei
μθ i , θ i = ei

μdxμ , (3)

where ηi j = diag[1, −1, −1, −1] and ei
μei

ν = δ
μ
ν or ei

μe j
μ = δ

j
i , 

and the matrix ea
μ are called tetrads that indicate the dynamic 

fields of the theory.
According to theses fields, the Weitzenböck’s connection is de-

fined as

�α
μν = ei

α∂νei
μ = −ei

μ∂νei
α , (4)

that to be used for construction the main geometrical objects of 
the space–time. The components of the tensor torsion and the con-
torsion are defined respectively as

T ρ
μν ≡ el

ρ
(
∂μel

ν − ∂νel
μ

)
, (5)

K μν
ρ ≡ −1

2

(
T μν

ρ − T νμ
ρ − Tρ

μν
)

. (6)

It was defined a new tensor Sρ
μν , to obtain the scalar equivalent 

to the curvature scalar of general relativity, i.e. Ricci scalar, that is 
as

Sρ
μν ≡ 1

2

(
K μν

ρ + δ
μ
ρ T αν

α − δν
ρ T αμ

α

)
. (7)

Hence, the torsion scalar is defined by the following contraction

T ≡ Sρ
μν T ρ

μν. (8)

In studying the scalar torsion model instead of non-minimal cou-
pling scenario [9,29], the minimal coupling action of the theory is 
defined by generalizing the teleparallel theory, as [27]

A =
∫

d4x|e|
[
ξ T − ζ

1

2
ηi jei

μe j
ν∇μφ∇νφ − V (φ)

]
, (9)

where |e| = √−g and T is the torsion scalar, ξ and ζ are constant. 
Let us choose the following set of diagonal tetrads related to the 
metric (1) as[
ea

μ

] = diag [N,a,a,a] , (10)

the determinant of the matrix (10) is e = Na3. The components of 
the torsion tensor (5) for the tetrads (10) are given by

T 1
01 = ȧ

Na
= T 2

02 = T 3
03 , (11)

and the components of the corresponding contorsion are

K 01
1 = ȧ

Na
= K 02

2 = K 03
3 . (12)

The components of the tensor Sα
μν , in (7), are given by

S1
10 = (

ȧ

Na
) = S2

20 = S3
30 . (13)

By using the components (11) and (13), the torsion scalar (8) is 
given by

T = −6
ȧ2

(Na)2
.

Substituting Eq. (10) into the action (9) the Lagrangian density can 
be achieved as follows

L = Na3
(
−6ξ

ȧ2

2
+ ζ

2
φ̇2 − V (φ)

)
. (14)
(Na) 2N
For more convenience the above constants ξ and ζ can be consid-
ered as ξ = 1/6, ζ = 1/2. Using a new set of variables,

x = a2

2
cosh φ, y = a2

2
sinh φ , (15)

where a2 = 2(x − y)eφ , one can rewrite the above Lagrangian den-
sity as follows

L = ( ẏ2 − ẋ2) − 4(x − y)eφ V (φ) . (16)

Thence, the corresponding Hamiltonian density is

H ≡
∑
α

ẋα ∂L
∂ ẋα

−L = 1

2
(

1

2
P 2

y − 1

2
P 2

x ) + 4(x − y)eφ V (φ) , (17)

where V (φ) = 2V 0 exp [−φ] and V 0 is a constant.

3. The cosmological evolution in classical regime

It is clear the classical solutions of a specific Hamiltonian can 
be easily yielded. However we want to inspect the effects of non-
commutativity in classical level, then compare our results with 
commutative case.

3.1. Commutative algebra

It is well known the Poisson brackets between components of 
the classical phase space variables are as{

xi, x j
} = {

pi, p j
} = 0,

{
xi, p j

} = δi j, (18)

where xi(i = 1, 2) = x, y and pi(i = 1, 2) = px, p y . Assuming N =
1/a, the equations of motion to be as

ẋ = {x,H} = − px

2
, ṗx = {px,H} = −8V 0 , (19)

ẏ = {y,H} = p y

2
, ṗ y = {

p y,H
} = 8V 0 . (20)

Integrating the above equations, get

x(t) = 4V 0t2 − p0xt + x0, px(t) = −8V 0t + p0x (21)

y(t) = 4V 0t2 + p0yt + y0, p y(t) = 8V 0t + p0y , (22)

wherex0, y0, p0x and p0y are integration constants. In addition 
the constraint equation between them, by using the zero energy 
condition, H ≡ 0, yields

p2
0x − p2

0y = −16V 0(y0 − x0) . (23)

It is clear the Eqs. (21) and (22) have the same form of the equa-
tion motion of a particle with a constant acceleration. one can 
apply the condition x > 0, with the bound p2

0x − 16V 0x0 < 0 to 
obtain the constraint p2

0y − 16V 0 y0 < 0 from relation (23), which 
indicates that y > 0. So only half of minisuperspace x > y > 0 is 
covered by dynamical variables. The evolution of scale factor and 
scalar field by combination Eqs. (15), (21) and (22) are given as 
follows

a(t) =
(

8|p0x|(8V 0t3 + 2x0t)
)1/4

, (24)

φ(t) = 1

2
ln

(
8V 0t2 + 2x0

2|p0x|t
)

, (25)

where we suppose x0 = y0 and p0x = p0y , in agreement with 
Eq. (23). Based on Eq. (24), ä < 0 so the Universe is in a decel-
erated phase epoch. According to the Eq. (15), one can define an 
effective scale factor, a2

eff = a2e−φ , which is equal to

a2 = 2(x − y) = 4|p0x|t . (26)
eff
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Hence, it is obvious that the above equation indicates the radiation 
dominated era.

3.2. Non-commutative algebra

This subsection is concerned with the effects of non-commuta-
tivity in a classical cosmology. To investigate the influences of non-
commutativity in classical level, one requires the star product law, 
the Poisson and the Moyal brackets which were discussed in detail 
at [25,26]. The Moyal product law between two arbitrary functions 
of phase space variables, namely Fa = (xi, p j) for i = 1, . . . , l and 
j = l + 1, . . . , 2l, are defined as [26]

( f ∗ g)(F) = exp

[
1

2
αab∂

(1)
a ∂

(2)

b

]
f (F1)g(F2)

∣∣∣∣
F1=F2=F

, (27)

so that

(αab) =
(

θi j δi j + σi j
−δi j − σi j βi j

)
, (28)

where a, b = 1, 2, . . . , 2l, θi j and βi j are the elements of real and 
antisymmetric matrices, σi j is a symmetric matrix and dimension 
of the classical phase space is 2l. Thence the deformed Poisson 
brackets are defined as

{ f , g}α = f ∗ g − g ∗ f . (29)

It is well known, the Poisson brackets between the phase space 
coordinate could be written as

{xi, x j}α = θi j, {xi, p j}α = δi j + σi j,

{pi, p j}α = βi j . (30)

To obtain the usualPoissonbracket forms (18)

{x′
i, x′

j} = θi j, {x′
i, p′

j} = δi j + σi j, {p′
i, p′

j} = βi j , (31)

one can make a transformation as [30]

x′
i = xi − 1

2
θi j p j, p′

i = pi + 1

2
βi j x

j, (32)

where σi j = − 1
8

(
θk

i βkj + βk
i θkj

)
. By considering θ12 = θ and

β12 = β , one able to show that only following Poisson brackets 
could be exist

{
x′, y′} = θ,

{
x′, p′

x

} = {
y′, p′

y

} = 1 − θβ/4,{
p′

x, p′
y

} = β . (33)

In non-commutative case, the Hamiltonian takes a similar form as 
classical ones,

Hnc = 1

2

[
−1

2
p′ 2

x + 1

2
p′ 2

y

]
+ 8V 0

(
x′ − y′) , (34)

but it should be noted in this case, the dynamical variables satisfy 
the deformed Poisson brackets (32), therefore Eq. (34) is reduced 
to

Hnc = 1

2

[ p2
y − p2

x

2
+ β2

8
(x2 − y2) − β

2
(xp y + ypx)

− 4V 0θ(px + p y)
]
+ 8V 0 (x − y) . (35)

Hence, the equations of motion are achieved as
2ẋ = {x,Hnc} = −px − β

2
y − 4θ V 0,

2ṗx = {px,Hnc} = −β2

4
x + β

2
p y − 16V 0 ,

2 ẏ = {y,Hnc} = p y − β

2
x − 4θ V 0,

2ṗ y = {
p y,Hnc

} = β2

4
y + β

2
px + 16V 0 . (36)

Integrating above equations, and after some algebra the dynamical 
variables are attained as

x(t) = Aeβt + Be−βt + Ct + D1 ,

y(t) = −Aeβt + Be−βt + Ct + D2 , (37)

where C ≡ 8(1 − θβ/4)V 0/β and A, B , D1 and D2 are integration 
constants which their values are restricted to satisfy the constraint 
equation Hnc = 0, that is

β2 AB = 4C(D1 − D2) . (38)

Now with a calculation such as the preceding case concern with 
the scale factor, one can obtain

a2
eff (t) = 2

[
2Aeβt + β3 AB

32V 0(1 − θβ
4 )

]
. (39)

To obtain coefficient B , if we impose the condition aeff (0) = 0, the 
Eq. (39) reduces to

a2
eff (t) = 4A

[
eβt − 1

]
. (40)

The asymptotically behavior interpretation about above equation is 
as follows

• For the early time, expanding the exponential function it is 
clear aeff (t) ∝

√
t , which is in agreement with radiation dom-

inated epoch. By the way this case is similar to commutative 
ones.

• At the late time, the effective scale factor is proportional to 
eβt/2, which behaves such as accelerated de Sitter Universe, 
thence it is expected that coefficient β plays the role of �

cosmological constant.

Therefore the importance of the existence of scalar field, φ, in a 
non-commutative scalar torsion gravity, is that the effective scale 
factor can justify the accelerated Universe.

4. The cosmological evolution in quantum regime

This section is concern with the quantization of the cosmologi-
cal model given by action (27) for the free potential case in which 
the canonical quantization gives the Wheeler–De Witt (WD) equa-
tion, H� = 0. For more explanations we refer the reader to [31].

4.1. Commutative algebra

It is well known, by means of the operator forms as pa → −i∂a

and pχ → −i∂χ the Hamiltonian (35) can act as an operator. Con-
sidering a particular factor ordering, the corresponding WD equa-
tion is[

∂2

2
− ∂2

2

]
�(x, y) = 0 . (41)
∂x ∂ y
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Assuming the following change of variables

x = ρ cosh φ and y = ρ sinh φ , (42)

the differential equation (41) can be rewritten as(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

∂2

∂φ2

)
�(ρ,φ) = 0 . (43)

If one consider the following product solution for above equation

�(ρ,φ) = ψ(ρ)e2iα̃φ , (44)

where α is a constant, the Eq. (43) is obtained as

d2ψ

dρ2
+ 1

ρ

dψ

dρ
+ 4

α̃2

ρ2
ψ = 0 . (45)

By considering suitable boundary condition, the eigenfunction of 
above equation could be written as

ψ(ρ) = R cos(2α̃ lnρ) , (46)

where R is integration constant. Therefore, by using the offered 
solution (44) the wave packet corresponding to Eq. (46) is as

�(ρ,φ) =
+∞∫

−∞
wα̃ψα̃(ρ)e2iα̃φdα̃ , (47)

where wα̃ can be introduce as the shifted Gaussian weight func-
tion with constants b and c [32].

4.2. Non-commutative algebra

The noncommutative WD equation corresponding to relation 
(35), for V = 0, is as[
(∂2

x − ∂2
y) + iβ(y∂x + x∂y) + β2

4
(x2 − y2)

]
�(x, y) = 0, (48)

that, with the change of variables (42), reads[( ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

∂2

∂φ2

)
+ 4iβ

∂

∂φ
+ 4β2ρ2

]
� = 0 . (49)

By using the offered product solution (44), the Eq. (49) reduces to

d2ψ

dρ2
+ 1

ρ

dψ

dρ
+ 4

(
α̃2

ρ2
+ β2

16
ρ2 − 1

2
βα̃

)
ψ = 0 . (50)

Before any discussion about the solution of Eq. (50), let’s enumer-
ate some features of it. As the first note, one can see by placing 
β = 0 it reduces to commutative case. Secondly it is interesting 
to note that when the chosen background is flat FLRW, the ef-
fect of θ does not appear. So the β coefficient, plays the more 
key role rather than θ . Solving Eq. (50) leads to a solution based 
on a combination of hypergeometry and associated Laguerre func-
tions, which by reparametrization can be rearranged as Whittaker 
functions, Mμ,ν and Wμ,ν , as

ψα̃ (ρ) = ρ−1
[

Aα̃ Mμ,ν

(
2iβρ2

)
+ Bα̃Wμ,ν

(
2iβρ2

)]
, (51)

where Aα̃ and Bα̃ are superposition coefficients, μ = iα̃/4 and 
ν = iα̃. It should be noted where the argument of both Whit-
taker functions is imaginary, therefore even in classical forbidden 
areas they are convergent. But in a special case which β gets the 
imaginary values the Whittaker functions are divergent. In addi-
tion in this case the Whittaker functions are quickly damped as 
ρ increases. Using Eqs. (44) and (51), the solution of differential 
equation (50), one gets

�(ρ,φ) = ρ−1

∞∫
−∞

e−b(α̃−c)2
M iα̃

4 ,iα̃

(
2iβρ2

)
e2iα̃φdα̃ . (52)

5. Conclusion and discussion

The effects of non-commutative and commutative vacua on the 
phase space generated by a scalar field in a scalar torsion scenario 
have been investigated. For both classical and quantum regimes, 
the commutative and non-commutative cases have been compared. 
The asymptotically behavior interpretation as to effective scale fac-
tor has shown that, for the early time, aeff (t) ∝

√
t , which is in 

agreement with radiation dominated epoch. It is notable for such 
era the non-commutative case is similar with commutative ones. 
Also At the late time, the effective scale factor is proportional to 
eβt/2, which behaves as accelerated de Sitter Universe, thence it 
was expected that coefficient β plays the role of � cosmological 
constant. It is also notable, in a non-commutative scalar torsion 
gravity because of the existence of scalar field, φ, the effective 
scale factor justifies the accelerated Universe. It was understood 
our results for commutative and non-commutative cases in scalar 
torsion cosmology are in good agreement in comparison to f (R)

gravity [25].
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