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In psychological experiments on recognition and recall, the subject 
clearly conveys information. If a technique could be developed for 
measuring the information transmitted in these situations, meaning- 
ful comparisons could be made between subjects' performances under 
different conditions. With this end in view, a mathematical technique 
is developed for measuring the information in a message where no 
information is transmitted by the order in which the symbols com- 
posing the message arc received. The theory is presented in four 
stages. At each stage assumptions or, as at stage IV, approximations 
are made which enable the information transmitted by a subject to be 
estimated by performing fewer experiments than at the previous 
stage. A crucial assumption at stage I I I  involves minimizing the in- 
formation subject to certain parameters being held constant. The 
assumptions are discussed, and the theory is illustrated by calculating 
the information transmitted in recall and recognition tasks by a set 
of subjects in an actual experiment. Further applications are briefly 
discussed. 

1. INTRODUCTION 

Stated in general terms, the problem which this paper at tempts to 
solve is as follows. A set G comprising g dissimilar symbols is selected 
from a set K of total number k and is sent by a source. Thcse symbols 
arc trafismitted to a receiver which selects a set Q consisting of q dis- 
similar symbols, where Q c K. We at tempt  to discover how much in- 
formation is transmitted over the channel bctwccn source and receiver, 
given that  there is no correlation between the order in which the symbols 
arc sent and the order ill which they arc received. 

This problem has arisen ill the course of psychological experiments on 
rccognition and recall. Ill experiments on recall a subject is presented 
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with g dissimilar symbols (the set G), and is later asked to recall as many 
as he can: for example, supposing g is 15, a given subject may recall 15 
of which 10 are contained in the set G, and five are not contained in G; 
whereas another subject may recall only eight but all eight are containcd 
in G. Because of the difficulty of comparing the performance of subjects 
who recall a different number q of symbols in this way, many experi- 
menters have restricted the number which subjects are to recall---e.g., 
in the present example a subject might always be instructed to recall 
15; if this results in the subject making guesses, this will tend to reduce 
his level of performance. In the past, psychologists have made very crude 
attempts to cope with the problem of differential numbers of errors oc- 
curring when the number of symbols to be selected by the subject is not 
specified in advance; e.g., a score may be computed based on giving 
points for every symbol correctly recalled and taking away an arbitrary 
number of points for every symbol incorrectly recalled (el. Hunter, 1957, 
p. 18). At prcsent there is no rational technique for comparing the per- 
formance of subjects who perform in these different ways, nor for com- 
paring their performances under conditions where the numbers g and k 
are changed. This problem becomes particularly acute if we wish to com- 
pare rccognition with recall. In rccognition experiments a subject is first 
shown a set G of g symbols which is selected from a set M, and is latcr 
presented with the set K, where G c K c-- M, from which he makes his 
actual choice. Under these conditions it has frequently been found (e.g. 
Postman el al., 1948; of. further references there cited) that rccognition 
is superior to recall in so far as more symbols are correctly recognized 
by the subject than are correctly recalled. However, subjects are not 
ncccssarily more efficient at rccognition in the sense that they convey 
more information when recognizing than when rccalling. Thus they may 
make more correct responses in recognition only at the expense of making 
more errors; and, more importantly, in recognition experiments as prc- 
viously conducted, they have been selecting from a set K which is smaller 
than the total set M from which symbols might have been transmitted; 
whercas in recall, selection has to be made from the total set M. If the 
amount of information transmitted in recall and rccognition can be 
measured, then we have a rational method of comparing the efficiency 
of performance on the two tasks, and of different performances on the 
same task. 

Several authors (e.g. Brown, 1959) have stressed the desirability of 
applying information theory to the results of experiments on memory, 



NONSEQUENTIAL MESSAGES 317 

but the appropriate mathematical techniques have not so far been de- 
veloped. The aim of this paper is to begin the task of supplying this 
need: as will be shown below, the development of the mathematical 
techniques opens up a new field of experimentation, because it becomes 
possible to compare meaningfully subjects' performances under widely 
different conditions. 

2. ENTROPY AND INFORMATION 

We commence by introducing the symbols which wiU be used in the 
subsequent account. The operation of sending the set G and receiviug 
the set Q will be said to constitute an experiment. The intersection of G 
and Q defines a set R of r dissimilar symbols, and we shall say that the 
rccciver selects r correct symbols. In view of the relations K ~ G ~ R 
a n d K ~ Q ~ R w e h a v c k > _ _ g _ _ >  randk_~  q~_r.  The number q may 
be greater than, equal to, or less than g. For reasons which will be dis- 
cussed later it is convenient to introduce thrce further symbols. The 
quantity s is defined as the avcrage value of r over an infinitely long 
series of experiments; pr is defined as the probability of the receiver se- 
lecting r correct symbols for a given k, g, and q. Thirdly, an "S" symbol 
is defined as any one combination of symbols which can be sent in one 
experiment in G, or which can be received in one experiment in Q. 
Where the word "symbol" alone is used it will refer to the individual 
symbols in K, G, or Q: each diffcrcnt sclection of g symbols from ]~ con- 
stitutes an "S" symbol, and each different selection of q symbols from k 
constitutcs an "S" symbol. 

The problem to be solved is to find an expression for I,  the average 
amount of information transmitted per experiment. In what follows we 
develop successively four expressions for evaluating I. The results at 
caeh stage will be used in the succeeding stages. Each succeedi,~g stage 
enables us to evaluate I with fewer experiments; but iu order to do this, 
extra assumptions have to be made at each stage. Assumptions will be 
introduced at the stage at which they become necessary, bu~ the discus- 
sion of the validity of the assumptions in the context of a psychological 
experiment will be postponed until section 3. 

STAGE I 

Assumptions 
(1) The numbcrs I~, g, and q are the same for all experiments of a 

series. 
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(2) In one experiment no symbol occurs more than once in G and 
no symbol occurs more than once in Q. 

(3) There is no correlation between the order in which the symbols 
of G are sent and the order in which the symbols are received in Q. 

(4) The series of experiments constitutes an ergodie sequence: i.e. 
the probabilities of sending a given "S"  symbol and of receiving a given 
"S"  symbol do not change over the series of experiments. This implies 
that pr for cach value of r does not change over the series of experiments. 

Derivation 
If the above assumptions hold, it is possible to derive an expression 

for I by a direct application of Shannon's (1948) formulae to the "S"  
symbols. Thus 

I = HA + H ~ - -  Ha8 (1) 

where Ha is the entropy of the source, Hn is the entropy of tile receiver, 
and Han is the joint entropy of the source plus the receiver (i.e. the 
entropy of the whole system). In addition, the entropy of a system is 

p, log p, (2) 
i 

where p~ is the probably of the state i. Tile amount of information con- 
veyed per experiment is therefore 

p, log p, - pj log + log p,j (3) 
i .4 *,1 

where p~ is the probability of the ith "S"  symbol being sent, Pi is tlle 
probability of the f lh "S"  symbol being received, and ply is the proba- 
bility of the ith "S"  symbol being sent and the j th  "S"  symbol being 
received. 

Discussion 
This result is trivial: obtaining it depends merely on the decision to 

consider "S"  symbols as the basic information symbols rather than the 
individual symbols in K. IIowever, derivation of further formulas de- 
pends on taking this step. Unfortunately there will be very many more 
"S"  symbols than there are symbols in K. Thus the possible number of 
"S"  symbols sent is ~Ce and the possible number of "S"  symbols re- 
ceived is kCq ; hence there will be kCe kCq possible states of the whole 
system. For k --- 90, g = 15, and q = 12, this number is about 103~. 
In order to apply Eq. (3) we must evaluate the probability of occurrence 
of each of these states. I t  would clearly be impossible to perform the 
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number of experiments necessary to obtain sufficient data for the evalua- 
tion of these probabilities. We proceed to consider whether by introduc- 
ing further assumptions we can obtain an expression for I which can be 
evaluated o11 the basis of fewer experiments: the principle behind our 
method is to attcmpt to group different "S" symbols into classes. 

STAGZ II 

Assumptio~zs 
(5) The a priori probability of a given symbol being sent or received 

in any experiment is the same for all symbols in K (namely g/k for sym- 
bols sent, and q/k for symbols received). 

(6) There .ire no correlations betwccn the occurrence of given symbols 
either ill the set of symbols sent or in the set of symbols rcceived; i.e., 
the probability of ally symbol G~ occurring ill G is independent of whether 
or not any other symbol G~ is also contained in G; similarly the proba- 
bility of any symbol Q~ occurring in Q is independent of whether or not 
any other symbol Qj is also contained in Q. 

(7) Given that a symbol Gh occurs in G, there is an equal probability 
of any two symbols Qi and Qi occurring in Q if G^, Qi, and Qi are differ- 
ent symbols; i.e. 

PQ,(G,)  = i ' o j ( a , )  

In addition, for any symbols Qi and Qs, 

P~,(G,) = P,~i(Gj) 

where Q, and G~ are the same symbol and Qj and Gj are the same symbol. 
Derivalion 
From assumptions (5) and (6) above it follows that every way of 

sclccting g symbols from K is cqui-probablc. Applying equation (2), 
the entropy of the source is 

HA = --log (kCo)-I = 10g kCa 

In an analogous way the entropy of the receiver is 

H 8  = log kCq 

From assumption (7) it follows that every state in which r symbols of Q 
are contained in G is equi-probable. Tim receiver may select r symbols 
from g in gC, ways, and there are k-gC~_, ways in which it may select the 
remaining q -- r symbols from those excluded from G. The total number 
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of states of the source plus receiver is therefore kCg aC~ ~-gCq_~. The 
entropy of the combined system of source plus receiver is hence given by  

H,IB = - - ~  p, log (kCg ~C, "-gC~_r) -1 pr 
$. 

We find (1) evaluates to 

where 

I = ~ p, log ~,p, (4) 
i* 

~, = k!r l (g  - r ) ! ( q  - r ) ! ( k  -- g -- q -t- r ) !  (5) 
q!(k - q)!g!(k - g)! 

If the sets R, Q, and G coincide, then q = g, 'and every pr is zero except 
pq = 1. In this case it is easy to see tha t  

I = logkCg = H~ = HB 

This is an example of noiseless transmission, every state of the source 
determining uniquely a state of the receiver. If, on the other hand, the 
set Q are chosen at  random (subject to the condition that  they are dis- 
similar), then, since the probability pr of r of these symbols being con- 
tained in the set G is act k-gCq_r/kCq, we immediately obtain the ex- 
pected result that  I = 0 by substituting this cxprcssion for p~ in Eq. (4).  

Discussion 
Making use of Eq. (4),  we can now estimate I if wc know the proba- 

bilities pr .  In the case formerly discussed, where q = 12, r can take 13 
values, and in order to estinmte I wc need only to perform enough ex- 
periments to obtain an estimate of the probabili ty of occurrence of each 
of these 13 values. This could clearly be achieved to within a good ap- 
proximation in little more than 100 experiments. Thus it is practicable 
to apply formula (4).  We now ask whether by  introducing any further 
assumptions wc can obtain an expression for I which could be evaluated 
on the basis of fewer experiments. The  principle behind the next stage 
is tha t  we assume that  for a given s, the values of p, are distributed in a 
random way. The sense in which the word " random" is used will be dis- 
cussed in Section 3. 

STAGE I I I  

Assumpt ion  (8) 
For given values of k, g, and q, the quantities p, that  characterize the 
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receiver possess values which minimize I subject to a prescribed value 
for s. 

Derivation 
We have to minimize 

I = ~ p, log •,p, 
r 

subjcct to the two conditions 

= Z: rp, (6) 
r 

which follows immediatcly from the definition of s, and 

1 = ~ p, (7) 

The technique for doing this involves the use of Lagrange's Undeter- 
mined Multipliers, and the solution is 

p~ = A e ~ / ~  (8) 

Substituting into (4), and using (6) and (7), we find 

I = log A -t- as (9) 

The constants A and a can in principle be determined from (6) and (7). 
However, it is numerically much easier to select a value of a, calculate 
the corresponding value of A from the equation 

A -* = ~ c~/f~ (10) 
Y 

and then find s from 

s A - '  = ~ rc =r/f~r ( 11 ) 
t 

Asking for the minimum informatiou is very similar to the demand made 
in statistical mechanics that tlmphysical entropy S should be a maxi- 
mum, the analogue of s being the total energy E of the system. A simi- 
lar mathematical procedure has been used to minimize information in a 
different context (Mandelbrot, 1953; Good, 1957). 

At this point it is convenient to turn aside from our program for de- 
veloping formulas for I to discuss a number of topics wlfich the minimiz- 
i,~g procedure raises. The following section, which is largely mathemati- 
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FIo. 1. The crosses show the values of p, against  r for k = 90, q = g = 15. The 
full line has been drawn in to link up adjacent  points .  I t  can be obtained in de- 
tail by replacing factorials by F-funetions in the expression for ~2,. 

cal, may  be omitted by readers interested mainly in tile relation of tile 
theory to problems in psychology. 

TI tE  PROPERTIES OF O~ 8, AND I 

We note tha t  the values of p, given in (8) are defined only for integral 
values of r, though it is of course possible to construct a continuous func- 
tion by  replacing the factorials which occur in ~, by I'-functions. This is 
illustrated in Fig. 1 for tile special case of k = 90, g = q = 15. The value 
of a is 2.7535, and with the aid of (9),  (10), and (11) we find s = 8.9159 
and I = 9.1567. The maxinmm of the curve of p, against r may  of course 
be obtained by differentiation. Tile derivatives of F-functions are not 
particularly simple, however, and instead of finding the maximum of 
p, for a given a, it is much more convenient to determine the value of a 
which makes the pr associated with a particular value of r, say t, a 
maximum. From (8),  

dp, _ dA eat /~  -t- Ale"t/gh 
da da 

I t  is easy to show from (10) and (11) tha t  
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( d A / d a )  = - A s  (12) 

and hence 

( d p d d a )  = A ( t  - s )c" /~2 ,  (13) 

This is zero when s = l. I t  is clear that  the two ways of finding the maxi- 
mum of pr are very similar, and that  the maximum of the pr curve for a 
fixed a will be expcctcd to occur at  a value of r close to s. This is so for 
the example illustrated in Fig. 1. 

From a computational standpoint it is highly desirable to know what 
value of a to select which, when substituted in (10) and (11), leads to a 
prescribed value for s. There is no solution to this problem which is both 
exact and simple. However, wc may use Stirling's approximation (see 
Whit taker  and Watson, 1952) to replace x! by  ( x / e )  z for the factorials 
which occur in ~r,  and it is now a simple mat ter  to diffcrcntiate p~ with 
respect to r. We find 

1 dp,  r ( k - -  g - -  q - l - r )  
- a - -  log 

pr dr (g - r)(q --  r) 

Setting dp~/dr equal to zero, we obtain 

a - -  I o g r ( k -  g -  q + r )  (14) 
(g  - r ) ( q  - r )  

In view of the penultimate sentence of the previous paragraph, we may 
expect that  by  substituting r = l in (14), a value of a will be obtained, 
which, when inserted in (10) and (11), will lead to a value of s very 
close to t. A Ferranti  Mercury digital computer was programmed to run 
over integral values of t and find sequcnccs of values of a, A, s, "rod I .  
Table I contains the rcsults for s and I in the case where k = 90, q = 
g = 15. The quant i ty  l runs from 1 to 14, and it can bc sccn that  the 
values of s are quite close to integers, thus demonstrating the effective- 
ness of (14). The I ,  s curve so obtained is drawn in Fig. 2. 

Every  value of a defines uniquely a value of s (for a given k, g, and 
q) and vice versa. When s -- 0, corresponding to a = - co, the rccciver 
selects q symbols, none of which are included in G. The random distribu- 
tion corresponds to a = 0. As a becomes infinitely large and positive, s 
is equal to the smaller of q and g, and the receiver selects as many cor- 
rect symbols as is possible for the given value of q. 

Under a variation in a ,  Eq. (9) becomes 



TABLE I 

DATA. FOR FIG. 2 

t S I I in bi ts  

1 0.9916 0.778 1.122 
2 1.9952 0.076 0.110 
3 3.0063 0.070 0.101 
4 4.0222 0.595 0.858 
5 5.Ot09 1.580 2.279 
6 6.0615 2.992 4.317 
7 7.0832 4.820 6.953 
8 8.105t 7.067 10.195 
9 9.1280 9.751 14.067 

10 10.1509 12.907 18.621 
11 11.1742 16.594 23.910 
12 12.1990 20.911 30.168 
13 13.2289 26.051 37.583 
14 14.2802 32.496 46.882 

30" 

I 

20"  

I0  

~ . ~  . 

I I ! , I  
3 6 9 12 15 

S 

FIo. 2. Values of I are p lo t ted  against  s for k = 90, q = g = 15. The random 
case corresponds to s = 2.5, for which I = 0. The units in which I is measured 
can be converted to bits  by mult iplying I by logs e. 

324 
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from (12). Hence 

(d I /ds )  = a (15) 

and the slope of the I, s curve is simply a. 
The physical analogue of (15) is d S / d E  = 1/T,  where T is the abso- 

lute temperature. It is interesting to observe that arcccivcr which makes 
fewer correct responses than a random set corresponds to a system at a 
negative absolute temperature. Such systems have been discussed by 
Purcell and Pound (1951). 

To make further progress we must examine the detailed nature of t2,. 
This function is symmetrical in q and g, and all fornmlas derived from 
~2r nmst therefore bc invariant with respect to their interchange. From 
(10), 

21-' = ~ c ar ql(k -- q)!gl(k -- g)! 
, rl(k - -  g - -  q + r ) ! ( g  - -  r ) ! ( q  - -  r)!k! 

( k  - -  q ) l (k ,  - -  g )  ! I gq d" = k ! ( k - - - g - - - q ~  _ l + l ~ - - g - - q + l  

g ( g -  1 ) q ( q -  1) 1 :, 1 
+ ( k _ g ---q + - l  ~-(~'_--g = q + 2 ) ~ e  + " "  

. J  

( k  - q ) ~ ( k  - a )  
= IF(-q,-g;k-g-" q +  1;e") 

where the hypergeometrie function F(a,  fl; ~,; z) is defined in the usual 
way as 

1 + af~ a (a  + 1)B(B + 1) 1 z ~ + 
- - Z  ~ . . . .  
T ~'(T + 1) 2 

From (10) and (11) it is clear that 

s A - ~ =  ( d / d a ) ( A  -~) (16) 

and hence 
( k  - q )  I (k  - ~)! 

sA - l  = qge" k!(k - g - q + 1)1 

�9 F ( - q +  1 , - - g +  l i k - -  g - -  q + 2 ; c  ~) 
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from the well-known properties of hypergeometrie functions (see, for 
example, Whittaker and Watson, 1952, p. 281). 

I t  might be hoped that the procedure for calculating I and s could be 
simplified by using recurrence relations between the appropriate hyper- 
geometric functions. This would certainly be true if an extensive series 
of calculations are to be performed, where contiguous values of k or g 
as well as of q are required. I t  seems most convenient experimentally , 
however, to select only a few values of k and g for special study, and since 
the relevant theory would be straightforward to develop it will not be 
given here. 

STAGE I V  

Interpreting the single response of a sz&ject 
In order to obtain the information I from the appropriate I,  s curve, 

a knowledge of s is required. The precision with which s is known in- 
creases with the number of experiments a subject performs; for moderate 
accuracy 20 experiments would need to be carried out. The final step in 
our program enables us to make some estimate of I when only one ex- 
periment is carried out with a subject. We shall suppose there are a large 
number N of subjects and that ~(u)Su subjects possess values of s which 
lie between s = u and s = u -t- ~u. Of these subjects, a fraction pt of 
them will make t correct responses. We should strictly write p,(u) to in- 
dicate that the values of p, refer to the case of s -- u. I t  is important to 
realize that we cannot reverse the argument; that is, we cannot estimate 
the probability of a subject's value of s lying between u and u -t- ~u on 
the basis of the number of correct responses he makes in one experiment. 

Suppose wc make the assumption that the number of correct responses 
is a true measure of s. Then the information which the r subjects 
will be adjudged to give is 

~~p,(u)~(u)~u(log A,  ~- a,t) = ~(u)~u~"~.I,p,(u) (17) 
$ t 

where the subscripts to A, a, and I indicate that their values are appro- 
priate to s = t. The information that would be ascertained per experi- 
ment if a large number of experiments with each subject were carried out 
is of course 

ff(u)~u(log A,, + a~,u) = r (18) 

Expanding It  in a Taylor's series, and using Lagrange's form for the 
remainder, we find 
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I ,  = I .  -t- (t -- u ) ( d I / d s ) .  -t- I / ~ ( l -  u)2(d2I/ds2)~ 

where the subscripts indicate the values of s at which they must be 
evaluated, and x lies between t and u. Thus 

I+pt(u) = ~ I , p , ( u )  + ~_. p , ( u ) ( t  - u ) a ,  
t t t 

-~ ~_, P,(U)l/~(t -- u)'-(d2I/ds2)~ 
t 

= 1 .  -~ 1/~(d~I/ds~)~-:. p , ( u ) ( l  - u): (19) 
t 

Now from (6) and (13), 

~s = ~ r~p~ = ~ (~ - s)~p. = ~ , ~ .  (~ - s)~A~~ 
r r r 

= ~a~-~ (r -- s)~p, (20) 

while from (15) we have d:I /ds  2 = da/ds.  Thus 

~ .  I , p , ( u )  = I~ -t- l/i(d~I/ds2)~(d"I/ds2)Z~ 

On the assumption that each subject makes his most probable response, 
we should find that the average information transmitted per subject is 

Ifoq - r ~ I ,p , (u )du  (21) 
/ V  �9 t 

This exceeds the true average, namely 

l f f  I~r (22) 

1 f~ (d~I~ (d~I~ -1 

by the amount 

(23) 

which is always positive. (d2I/ds~)x may be greater than, equal to, or less 
than (d2I/ds 2) ~ over the different ranges of the integration; if we make 
the approximation that they are equal, (23) reduces to 1/~, or 0.72 bits. 
We may test the accuracy of this result by choosing special forms for 
r and actually working out (21) and (22) and then subtracting the 
two. If ~(u) is a delta function, i.e. if all subjects possess tile same value 
ofs,  the integrations are trivial. For k = 90, g = q = 15, and s - 
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8.9159, we find (21) is 9.67 and (22) is 9.16. The difference is 0.51, very 
close to 1~. I t  is clear that by replacing (d2I/ds2)~ by ~ 2 (d'I /ds ) ~ we have 
assumed that (d2I/ds 2) does not vary with the place of evaluation; in other 
words, we have approximated the I, s curve in the neighborhood of s = 
u by a parabola. This approximation will be very bad when d2I/ds 2 is 
infinite, that is, when the subject's responses would be always cither 
completely correct or completely incorrect. Fortunately the experimental 
conditions can usually be arranged so that these extreme cases do not 
occur .  

�9 We can therefore summarize this section by stating that if the number 
of corrcct responses a subject makes is interpreted as giving his value of 

�9 s, the information so obtaincd, J,  is rclated to the true information by 
the approximate equation 

I = J - -  1/~ (24) 

The use of this equation will be illustrated later by an example. 

3. RELATION TO EXPERIMENT 

DISCUSSION OF ASSUMPTIONS 

Since the preceding formulas for I have becn developed primarily to 
assist in the evaluation of rcsults in psychological experiments on recog- 
nition and recall, the question is now asked how far the assumptions we 
have had to introduce at each stage are likely to hold in such experi- 
ments. 

Assumption (1), that the numbers k, g, and q are the same for a series 
of experimcnts, can bc made to hold in the following way: k and g are 
directly under the experimenter's control, and q can be held the same 
either by instructing a subject always to give the same number of re- 
sponses or by allowing him to make different numbers of responses and 
performing the calculation of I separately for classes of experiments 
yielding different values of q. Having done this, it is then meaningful to 
compare the amount of information conveyed for different values of q. 

Similarly, assumption (2) can be satisfied by the way in which the ex- 
perimenter selccts symbols to be sent and by instructing a subject not to 
repeat symbols in his responses or by disregarding any repetitions he 
makes. Assumption (3) may in practice not be satisfied in recall; but 
since in recognition a subject is prevented from giving order information 
about the list presented (G), achievement in recognition and recall can 
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only be meaningfully compared if order information transmitted in recall 
is discounted as it is by the present method. 

Assumption (4), that the experiments should constitute an ergodic 
sequence, is basic to any application of information theory and will not 
be further discussed here. I t  is possible that it would ouly be realized in 
practice if a subject was given considerable pretraining on the task: if a 
long series of experiments is performed it is possible to test for whether 
the assumption holds. 

Assumptions (5), (6), and (7) concern the probabilities of receiving 
and sending symbols and the absence of correlations between symbols 
sent and symbols received. In so far as they affect the source, they can 
be satisfied by the method used by the experimenter to select symbols to 
be presented to the subject in (7. I t  seems likely that the assumptions will 
only hold of the symbols selected in Q if symbols of low meaningfulness 
are used: a subject should not then be more likely to select one than an- 
other. I t  would also be necessary that intra-list similarity be low; other- 
wise a subject might tend to recall a symbol similar to one of the symbols 
sent, and this would render assumption (7) invalid; e.g. if a symbol BA 
were sent, a subject might be more likely to recall AB or BE than (say) 
RE. Two further points are worth making on these assumptions: (1) 
I t  is possible to test whether or not they hold; (2) If we are interested 
in comparing relative amounts of information conveyed under different 
conditions rather than in computing the absolute amount of information, 
deriving I in the way outlined above may still give a good method of 
doing this even if these three assumptions are not fully satisfied. Thus 
failure of assumption (7) would only give a false result about relative 
amounts of information conveyed under different experimental condi- 
tions if under different experimental conditions the ratio of "near misses" 
to correct responses made by a subject were to alter. 

Assumption (8) enables us to evaluate I without first computing the 
values of p, from a long series of experiments. This assumption is likely 
to be valid for the following reasons. First, it is essential that any general 
expression for the probabilities p, should include both the random case, 
where p, = 1/9, ,  and the case where the subject makes as many correct 
responses as possible. Secondly, it is highly desirable that the values of 
p, for other cases should correspond to imposing as few constraints upon 
the system as possible. A demand, for example, that all the p, values 
should be zero except one not only fails to include the random case but 
also presupposes that the receiver makes r correct responses and q - r 
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incorrect responses with certainty. In an actual experiment the subject 
would never make responses which he is sure are incorrect. The most un- 
restrictive constraint which we call impose is that the average value of 
r over a large number N of experiments, namely s, should have a pre- 
scribed value. Ill other respects we assume that the subject's responses 
are random, i.e. all ways in which he can achieve N s  corrcct responses 
are cqui-probable. Since randomness is directly related to a lack of in- 
formation, this condition corresponds to finding values of p, which mini- 
mize I. The assumption that the set Q is random subject to s having a 
prescribed value seems reasonable in the absence of further information 
concerning the behavior of the subject. The following argument demon- 
strates that this assumption is in fact equivalent to assumption (8). 
The number of ways a subject can make N s  correct responses in a series 
of N experiments in which he gets r correct n, times is 

[r! (g  - r) ! ( q - - r )  ~fr --  g - q ~ r) - g)! 1"" 
_ N !  

IV n0!nlT-: �9 nq! 

On the assumption that all ways are equi-probable, we can find the most 
probable distribution for the quantities n, by maximizing IV subject to 
the two conditions 

T 

and 

Z Ttr ~ g 
T 

For very large N the result is 

n, = NAe"'/~2, 

Since p, -- m / N ,  we again obtain (8), showing that the principle of 
minimizing I is equivalent to assuming that all ways a subject can 
achieve N s  correct responses are equi-probablc. 

AN EXAMPLE 

A brief example of the application of the formulas here derived to a 
problem of psychology will now be presented. Some of the results of an 
unpublished experiment on recognition and recall will be quoted--a de- 
tailed account of the experiment is in preparation (Davis, Sutherland, 
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and Judd). Subjects were presented with a list of 15 symbols, selected 
out of 90 possible symbols, and were asked either to recall or recognize 
the symbols. There were four conditions--rccall (out of 90 symbols), 
recognition out of a list of 90, recognition out of a list of 60, and recogni- 
tion out of a list of 30. Thus in this experiment, k = 90, 60, or 30; g = 15. 
The number of responses made by subjects was not restricted, and q 
varied between 5 and 17. Since there was only one experiment on each 
subject, it was ncccssary to apply Eq. (24) separately to the rcsult of 
each subject to calculate information. For example, in the recognition 
condition out of 90, two subjects made 13 responses and got 9 correct. 
Using the method set out on page 17, we can plot the curve of I 'lgainst 
s for the values k = 90, g = 15, and q = 13. We find that for s -- 9, 
I = 16.1 bits. Applying the correction given in Eq. (24), the best esti- 
mate of I is 16.1 -- 0.7 bits = 15.4 bits per subject. By successive ap- 
plications of this method for each subject's score, the average informa- 
tion transmitted per subject can be estimated for each condition. I t  
transpired that subjects had transmitted an average of 12.5 bits in re- 
call out of 90, 12.0 bits in recognition out of 90, 10.1 in recognition out 
of 60, and 7.0 in recognition out of 30. Under the four conditions the 
raw scores of the subjects were respectively 149/207, 181/303, 201/295, 
and 250/317, where the first figure indicates the total number of correct 
responses and the second the total number of responses for each condi- 
tion. I t  is clearly impossible to make meaningful comparisons between 
the raw scores: the formulas here derived enable us to make a meaning- 
ful comparison between results obtained under different conditions in 
terms of the average amount of information transmitted per subject. 

FURTtIER APPLICATIONS 

We consider now two further applications of the mathematical tech- 
niques: it will be obvious that some hypotheses which can be tcsted by 
the application of the techniques are themselves suggested by the mathe- 
matical development. 

(1) In the experiment outlined above, when a subject was recogniz- 
ing symbols out of a list of 30 presented to him, he only knew that his 
selection would be made from 30 and not 90 after the initial list (G) of 
[5 had been presented to him. It  is of considerable interest to ask whether 
subjects would perform better in terms of information transmitted, if 
they knew that the symbols in G could only be selected from a list K of 
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30 before the list G was prescntcd. Such an approach should throw light 
on how symbols are coded ill the memory store. 

(2) In recall a subject's probability of being right in responding with a 
given symbol is inversely related to the rank order of that symbol ill 
the sequence of responses made in any one experiment. We can ask the 
question whether a subject is able to stop responding at the point which 
will maximize the information he conveys. Thus whcre subjects made q 
responses, we can consider the probability of each successive response 
being correct, and from a curve so obtained evaluate whether or not the 
subject would have conveyed more information if he had stopped re- 
sponding either before or after the point at which he customarily does. 
Clearly the point at which a subject stops responding may be influenced 
by both experimental and personality variables which would lie of con- 
siderable interest. 
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