JOURNAL OF MULTIVARIATE ANALYSIS 22, 65-73 (1987)

Nuclear Subspace of L^{0} and the Kernel of a Linear Measure

Yoshiaki Okazaki

Department of Mathematics, Kyushu University 33, Fukuoka, Japan

AND

Yasuji Takahashi

Department of Mathematics, Yamaguchi University, Yamaguchi, Japan Communicated by T. Hida

Let *E* be a locally convex space. Then *E* is nuclear metrizable if and only if there exists a σ -additive measure μ on *E'* such that $L: E \to L^0(E', \mu)$, $L(x) = \langle x, \cdot \rangle$, is an isomorphism. Let *E* be quasi-complete or barrelled. Suppose that there exists a σ -additive measure ν on *E* satisfying $(E', \tau_{\nu})' \supset E$. Then E'_h is an isomorphic subspace of $L^0(E, \nu)$ and nuclear, where *b* is the strong dual topology and τ_{ν} is the $L^0(E, \nu)$ topology. In the case where *E* is an *LF* space, for a random linear functional $L: E \to L^0(\Omega, \mathfrak{A}, P)$, the next conditions are equivalent: (a) The cylinder set measure μ on *E'* determined by *L* is σ -additive and (b) $x_n \to 0$ in *E* implies that $L(x_n) \to 0$, *P*-a.s.

1. INTRODUCTION

Let *E* be a locally convex space (throughout this paper, we assume *E* is Hausdorff) and *v* be a cylindrical measure on C(E, E'), the σ -algebra generated by $\langle \cdot, x' \rangle$, $x' \in E'$. Consider the pseudo-metric space (E', τ_v) . The dual $K_v = (E', \tau_v)' \subset (E')^a$ is called the Kernel of *v*.

The purpose of this paper is to find a condition for E'_b to be a nuclear subspace of L^0 , particularly, we investigate the condition on the kernel K_v for a suitable measure v. We also investigate the σ -additivity of a cylinder set measure on E' in terms of the almost sure convergence of the corresponding random linear functional. As an application, we give a

AMS 1980 subject classifications: 60B11, 28C20.

Key words and phrases: random linear funtional, cylindrical measure, kernel, nuclearity, *p*-summing operator, convergence in probability.

Received May 25, 1984.

OKAZAKI AND TAKAHASHI

nuclearity condition for a subspace of L^0 by using the almost sure convergence. S. Kwapien and W. Smolenski [4] studied the nuclearity of (E', τ_v) in terms of the kernel K_v in the case where E is a separable Fréchet space. D. Kh. Mouchtari [5, 6] studied the nuclearity of a subspace of L^0 relating to the almost sure convergence. We shall extend the results of Kwapien and Smolenski and of Mouchtari.

2. Nuclearity and σ -Additivity of a Cylinder Set Measure

We denote by E' (resp. E^{α}) the topological (resp. algebraic) dual of E. It is well known that if E is a nuclear space, then for every continuous random linear functional $L: E \to L^0(\Omega, \mathfrak{A}, P)$, there exists a weak * Radon measure on E' supported by a countable union of polar sets of neighborhoods of 0 (Minlos' theorem). We consider the converse problem.

The next assertion is an extension of Mouchtari [6, Theorem 2].

LEMMA 1. Let E be a locally convex space. Suppose that there exists a σ -additive measure μ on C(E', E) such that the natural embedding L: $E \rightarrow L^0(E', \mu), L(x) = \langle x, \cdot \rangle$, is an isomorphism, where C(E', E) denotes the cylindrical σ -algebra. Then E is nuclear.

Proof. Since *E* is metrizable, *E'* is σ -compact in the weak * topology. So we may assume that μ is a Radon measure for the weak * topology. Let *U* be a convex closed neighborhood of 0 in *E* and $E_U = E/\text{Ker} | |_U$ be the normed space associated with *U*. There exists an ε , $0 < \varepsilon < 1$, such that $\{x \in E; \mu(x'; |\langle x, x' \rangle | \le \varepsilon) \ge 1 - \varepsilon\} \subset U$, since *L* has a continuous inverse. Let $\delta > 0$ be $\delta < \varepsilon$. Then, there exists a neighborhood *V* in *E* such that $V \subset U$ and $\mu(V^0) > 1 - \delta$, where $V^0 = \{x' \in E'; |\langle x, x' \rangle | \le 1$ for every $x \in V\}$. We show that the natural mapping τ : $E_V \to E_U$ is *p*-summing for every p > 0. Then the nuclearity of *E* follows by A. Pietsch [7, 4.1.2, p. 70]. For every $x \notin U$, we have $\mu(V^0 \cap \{x'; |\langle x, x' \rangle | > \varepsilon) > \varepsilon - \delta > 0$. Hence it follows that for every $x \notin U$, $[\int_{V^0 \cap \{x'; |\langle x, x' \rangle | > \varepsilon\}} |\langle x, x' \rangle|^p d\mu(x')]^{1/p} \ge [\varepsilon^{p} \cdot (\varepsilon - \delta)]^{1/p}$ for every $x \notin U$. This shows that $|x|_U \le \varepsilon^{-1}(\varepsilon - \delta)^{-1/p}$. $[\int_{V^0} |\langle x, x' \rangle|^p d\mu(x')]^{1/p}$. Thus π : $E_V \to E_U$ is *p*-summing for every p > 0 by the Pietsch's theorem, see A. Pietsch [7, Theorem 2.3.3, p. 40 see also Proposition 4.1.5, p. 7]. This completes the proof.

Remark 1. If *E* is a nuclear metrizable space, then there exists a σ -additive measure μ on *E'* such that $L(x) = \langle x, \cdot \rangle$ is an isomorphism of *E* into $L^{0}(E', \mu)$.

THEOREM 1. Let E be a subspace of $L^{0}(\Omega, \mathfrak{A}, P)$, where $(\Omega, \mathfrak{A}, P)$ is a probability space. Suppose that E is locally convex in the L^{0} -topology and that the identity random linear functional id: $E \rightarrow L^{0}(\Omega, \mathfrak{A}, P)$ induces a σ -additive measure on C(E', E). Then E is nuclear.

Proof. Consider the natural mapping $L(x) = \langle x, \cdot \rangle$ of E into $L^0(E', \mu)$. Then L is an isomorphism. Hence, the assertion follows by Lemma 1.

3. Kernel and Nuclearity of E'

Let v be a cylinder set measure on a locally convex space E and v be the σ -additive extension of v on $(E')^a$. Let $R: E' \to L^0((E')^a, v)$ be the natural mapping given by $R(x') = \langle \cdot, x' \rangle$ and τ_v be the $L^0(v)$ -topology, i.e., the topology of convergence in measure. Put $K_v = R'(R(E'), \tau_v)'$, where $R': (R(E'), \tau_v)' \to (E')^a$ is the transpose of R. We say K_v the kernel of v.

THEOREM 2. Suppose that $v^*(K_v) = 1$, where v^* is the outer measure of v^* . Then $(R(E'), \tau_v)$ is nuclear.

Proof. Note that $K_v = \bigcup_{n=1}^{\infty} R'(V_n^0)$, where $V_n = \{R(x'); v(x;$ $|\langle x, x' \rangle| > 1/n < 1/n \}$. We show the topology τ_v on R(E') is equivalent to the uniform convergence topology τ_u on each $K_n = R'(V_n^0)$. Since $v^{*}(K_{v}) = 1$, τ_{u} is stronger than τ_{v} . Conversely, let $x'_{n} \in E'$ be $R(x'_{n}) \to 0$ in τ_{ν} . For every M > 0, $M \cdot R(x') \rightarrow 0$ in τ_{ν} , so for every *m* there exists N = N(M, m) such that $M \cdot R(x'_n) \in V_m$ for each $n \ge N$. Thus for every $x \in K_m$, it follows that $|\langle x, x'_n \rangle| \leq 1/M$ for $n \geq N$, that is, $\sup_{x \in K_m} |\langle x, x'_n \rangle| \leq 1/M$ for $n \geq N$. This proves that $R(x'_n) \to 0$ uniformly on each K_m . We have proved, in particular, that $(R(E'), \tau_v)$ is a locally convex space. Since K_n is compact in $\sigma((E')^a, E')$, we may consider v as a $\sigma((E')^a, E')$ -Radon measure supported by K_{ν} . Remark that R': $(R(E'), \tau_v)' \rightarrow K_v$ is weakly continuous, one-to-one and surjective. Thus we can form the image measure $\mu = R'^{-1}(v)$, which is a Radon measure on $(R(E'), \tau_v)'$ with the weak * topology. Consider the embedding L: $(R(E'), \tau_v)'$ τ_{ν}) $\rightarrow L^{0}((R(E'), \tau_{\nu})', \mu), L(R(x')) = \langle R(x'), \cdot \rangle$. Then L is an isomorphism. In fact, $R(x'_n) \to 0$ in τ_v if and only if $\langle x, x'_n \rangle \to 0$ in $L^0(\tilde{v})$, and hence if and only if $L(R(x'_n)) \to 0$ in $L^0((R(E'), \tau_y)', \mu)$. Thus we can prove the assertion by Lemma 1.

Let *E* be a quasi-complete locally convex space and *v* be a Radon probability measure on *E*. Then $R: E' \to (R(E'), \tau_v)$ is Mackey continuous. Hence $K_v \subset E$ follows.

The next result is an extension of S. Kwapien and W. Smolenski [4, Theorem 1].

COROLLARY 1. Let E be a quasi-complete locally convex space and v be a Radon probability measure on E. Suppose that $v(K_v) = 1$. Then $(R(E'), \tau_v)$ is nuclear.

The characteristic functional $v^{\hat{}}$ of a cylinder set measure v is defined by $v^{\hat{}}(x') = \int \exp(i \langle x, x' \rangle) dv(x).$

THEOREM 3. Let E be a locally convex space and τ be a locally convex topology on E' which is finer than the weak * topology $\sigma(E', E)$ and is coarser than the Mackey topology τ_k . Suppose that there exists a σ -additive cylindrical measure ν on C(E, E') such that $\nu^{\hat{}}$ is τ -continuous and $K_{\nu} \supset E$. Then E'_{τ} is nuclear and metrizable, and it holds that $\tau = \tau_k$, $K_{\nu} = E$ and R: $E'_{\tau} \rightarrow L^0(E, \nu)$ is an isomorphism.

Proof. By the continuity of v', R is τ -continuous. Taking the transpose, we have $K_v \subset (E'_{\tau})' = E$, hence $K_v = E$. We show the continuity of R^{-1} into E'_{τ_k} . Put $K_n = R'(V_n^0)$ as in the proof of Theorem 2. Then τ_v is the uniform convergence topology on each K_n . Note that $E = \bigcup_{n=1}^{\infty} K_n$. We see R^{-1} : $(R(E'), \tau_v) \to E'_{\sigma}$ is continuous, so R^{-1} : $(R(E'), \tau_v) \to E'_{\tau_k}$ is also continuous. By Lemma 1, we have the assertions.

COROLLARY 2. Suppose that there exists a σ -additive measure v on C(E, E') such that $K_v = E$. Then E'_{tv} is nuclear and metrizable.

Proof. Since $K_v = E$, it follows that $E = \bigcup_{n=1}^{\infty} K_n$, where K_n is the same set as in the proof of Theorem 2. The set K_n is $\sigma(E, E')$ -compact, convex and τ_v is the uniform convergence topology on each K_n . Thus the natural mapping $R: E'_{\tau_k} \to L^0(E, v)$ is continuous. Moreover, $R^{-1}: (R(E'), \tau_v) \to (E', \sigma(E', E))$ is continuous, so that $R^{-1}: (R(E'), \tau_v) \to E'_{\tau_k}$ is continuous. By Lemma 1, we have the assertion.

THEOREM 4. Let E be a quasi-complete or barralled locally convex space and b be the strong dual topology on E'. Suppose that there exists a σ -additive measure ν on C(E, E') satisfying $K_{\nu} \supset E$. Then, E'_b is nuclear, metrizable and R: $E'_b \rightarrow L^0(E, \nu)$ is an isomorphism.

Proof. Consider the transpose R': $(R(E'), \tau_v)' \to (E')^a$. Then $K_n = R'(V_n^0)$ is a $\sigma((E')^a, E')$ -compact subset, where $V_n = \{R(x'); v(x; | \langle x, x' \rangle | > 1/n\} < 1/n\}$. (See the proof of Theorem 2.) Set $L_n = E \cap K_n$. Then we have $E = \bigcup_{n=1}^{\infty} L_n$ and L_n is bounded in E, since $K_v = \bigcup_{n=1}^{\infty} K_n \cap E$. In particular, it holds that $v^*(L_n) \uparrow 1$. First, we show that R: $E'_b \to L^0(E, v)$ is continuous. Suppose that $x'_n \to 0$ uniformly on each L_n . For every $\varepsilon > 0$, take N so that $v^*(L_N) \ge 1 - \varepsilon$ and take M so that

 $|x'_n(x)| \leq \varepsilon$ for every $x \in L_N$ and for every $n \geq M$. Then for every $n \geq M$, we have, putting $A = \{x; |x'_n(x)| \leq \varepsilon$ for every $n \geq M\} \supset L_N$,

$$\int |x'_n(x)|/(1+|x'_n(x)|) dv(x)$$

$$\leq \int_{\mathcal{A}} \varepsilon dv(x) + \int_{\mathcal{A}^c} 1 dv(x) \leq \varepsilon + v(\mathcal{A}^c) \leq 2\varepsilon,$$

which shows that R is continuous in the uniform convergence topology on each L_n , hence also in the strong dual topology b. Next, we show that R^{-1} : $(R(E'), \tau_v) \rightarrow E'_b$ is continuous following S. Chevet [2, Theorem 1]. Since τ_v is metrizable, it is sufficient to show that, for every bounded subset B in $(R(E'), \tau_v)$, $R^{-1}(B)$ is bounded in E'_b . Since E is quasi-complete or barrelled, each bounded subset in $E'_{\sigma(E',E)}$ is also bounded in E'_b . Since $K_v \supset E$, it follows that R^{-1} : $(R(E'), \tau_v) \rightarrow E'_{\sigma(E',E)}$ is continuous. Since we have proved the mapping R: $E'_b \rightarrow L^0(E, v)$ is an isomorphism, by Theorem 1, E'_b is nuclear.

COROLLARY 3. Let E be a quasi-complete or barrelled locally convex space. Suppose that there is a σ -additive measure v on C(E, E') such that $K_v = E$. Then, E'_h is nuclear, metrizable and $b = \tau_k$.

By Theorem 4, we can conclude that for some types of locally convex spaces of infinite dimension, there is no σ -additive measure v on C(E, E') satisfying $K_v \supset E$.

THEOREM 5. Let E be a locally convex space of second category. Suppose that there exists a σ -additive measure on C(E, E') satisfying that $K_v \supset E$. Then, E is of finite dimension.

Proof. By Theorem 4, E'_b is nuclear. In the proof of Theorem 4, we have proved that E is a countable union of bounded subsets. Since E is of second category, it follows that E is normable. Thus E'_b is a nuclear Banach space, so dim $E' < +\infty$.

THEOREM 6. Let E be a barrelled locally convex space. Suppose that there exists a σ -additive measure v on C(E, E') such that $K_v \supset E$ and v is of weakly pth order, p > 0, that is, $\int |\langle x, x' \rangle|^p dv(x) < +\infty$ for every $x' \in E'$. Then E is finite dimensional.

Proof. By Theorem 4, E'_b is nuclear and metrizable. Since E is barrelled, E'_b is quasi-complete (see H. H. Schaefer [8, Theorem 6.1]. Hence, E'_b is a nuclear Fréchet space. Consider the natural mapping R: $E'_b \rightarrow L^p(E, \nu)$. Since R: $E'_b \rightarrow L^0(E, \nu)$ is an isomorphism by Theorem 4, R^{-1} is continuous

with respect to the L^{p} -metric. Noting that $L^{p}(E, v) \subset L^{0}(E, v)$, we can see that R is also continuous by the closed graph theorem. Thus R: $E'_{b} \rightarrow L^{p}(E, v)$ is an isomorphism. In particular, E'_{b} is normable and nuclear; hence dim $E' < +\infty$.

THEOREM 7. Let E be a locally convex space and v be a σ -additive measure on C(E, E') such that $K_v \supset E$ and v is of type p(p > 0) with respect to τ_k , that is, $x \rightarrow \int |\langle x, x' \rangle|^p dv(x) (< +\infty)$ is τ_k -continuous. Then, E is finite dimensional.

Proof. We set $||x'||_p = (\int |\langle x, x' \rangle|^p dv(x))^{1/p}$, $x' \in E'$. Then $|||_p$ is τ_k -continuous. On the other hand, by $K_v \supset E$, it follows that $i: (E', \tau_v) \rightarrow (E', \tau_k)$ is continuous. Hence we have $\tau_k = \tau_v =$ the topology determined by $|||_p$, which shows that (E', τ_k) is normable. By Theorem 3, (E', τ_k) is nuclear, so dim $E < +\infty$.

Remark 2. Let $E = R^{(\infty)}$ be the countable direct sum of real number fields. Then, there is a Radon measure v on E with $K_v = E$, E being a barrelled space of dim $E = +\infty$. Consider the l^2 -norm $|| \quad ||_2$ on E and set $\mu(A) = C \int_A e^{-\|x\|_2} dv(x)$, where C is a normalizing constant. Then, we have $K_v = K_\mu = E$, and $x \to (\int |\langle x, x' \rangle|^p d\mu(x))^{1/p}$ is l_2 -continuous. This shows that, in Theorem 7, we cannot replace τ_k by the strong dual topology b.

4. NUCLEARITY AND A.S. CONVERGENCE

Let E be a subspace of $L^0(\Omega, \mathfrak{A}, P)$. D. Kh. Mouchtari [5] proved that if the convergence in measure and a.s. convergence are equivalent, then E is nuclear by the L^0 -topology. We shall examine the a.s. convergence and the nuclearity.

Let E be a locally convex space and $L: E \to L^0(\Omega_L, P_L)$, $M: E \to L^0(\Omega_M, P_M)$ be two random linear functionals. We say, after R. M. Dudley [3], L and M are equivalent if for every n and every x_1 , $x_2,...,x_n \in E$, and for a Borel set $B \subset \mathbb{R}^n$, it holds that $P_L((L(x_1),...,L(x_n)) \in B) = P_M((M(x_1),...,M(x_n)) \in B)$. Note that if L and M are equivalent, then for every sequence $\{x_n\} \subset E$ and every Borel set $B \subset \mathbb{R}^N$, $P_L((L(x_1))_{i=1}^{\infty} \in B) = P_M((M(x_1))_{i=1}^{\infty} \in B)$ holds.

The next two theorems extend the Theorem 7 of Mouchtari [5].

THEOREM 8. Let E be an LF space and L: $E \to L^0(\Omega, \mathfrak{A}, P)$ be a random linear functional. Then the following conditions are equivalent;

- (a) The cylinder set measure μ on E' induced by L is σ -additive, and
- (b) $x_n \to 0$ in E implies $L(x_n) \to 0$, P-a.s.

Proof. (a) \Rightarrow (b). Let $M: E \to L^0(E', \mu)$ be given by $M(x) = \langle x, \cdot \rangle$. Then, L and M are equivalent. Suppose that $x_n \to 0$ in E. Then, $\mu(x' \in E'; \langle x_n, x' \rangle \to 0) = \mu(E') = 1$. Put $\Omega_0 = \{\omega; L(x_n)(\omega) \to 0\} = \bigcap_k \bigcup_l \bigcap_{m,n,m \ge n > l} \{\omega \mid \max_{n \le j \le m} \mid L(x_j)(\omega) \mid < 1/k\}$. Since L and M are equivalent, we have $P(\Omega_0) = \mu(\bigcap_k \bigcup_l \bigcap_{m,n,m \ge n \ge l} \{x' \mid \max_{n \le j \le m} \mid \langle x_j, x' \rangle \mid < 1/k\} = 1$. Hence, (a) \Rightarrow (b) holds for arbitrary locally convex spaces, not necessarily LF-spaces.

(b) \Rightarrow (a) First, suppose that E is a Fréchet space. Then in this case, by Mouchtari [5, Theorem 7], (b) \Rightarrow (a) holds. Next suppose that $E = \bigcup_{n=1}^{\infty} E_n$, E_n being Fréchet spaces. Consider the restriction $L_n = L | E_n$. Then L_n gives a σ -additive measure μ_n on E'_n , since L_n satisfies (b). Remark that E'_n is σ -compact for the weak * topology, so we may assume that each μ_n is Radon for the weak * topology. Note that $\{\mu_n\}$ forms a projective system on $\{E'_n\}$ by $\pi_n: E'_{n+1} \to E'_n$, where $\pi_n = i'_n$ ($i_n: E_n \to E_{n+1}$ is the injection). By Bourbaki [1, Theorem 2, 4, No. 3], the projective limit μ of $\{\mu_n\}$ exists on $\lim_{t \to \infty} E'_n = E'$. Thus, μ is a σ -additive measure corresponding to L.

THEOREM 9. Let E be an LF space of separable Fréchet spaces $\{E_n\}$ and L: $E \to L^0(\Omega, \mathfrak{A}, P)$ be a random linear functional. Then the following conditions are equivalent:

(a) The cylinder set measure μ on E' induced by L is σ -additive and

(c) there exists $\Omega_0 \subset \Omega$ with $P(\Omega_0) = 1$ such that for every $x_n \in E$, $x_n \to 0$ in E implies $L(x_n)(\omega) \to 0$ for every $\omega \in \Omega_0$.

Proof. $(c) \Rightarrow (a)$ is derived by the above theorem since $(c) \Rightarrow (b)$ in Theorem 8 holds obviously.

(a) \Rightarrow (c) By Dudley [3, Theorem (4.1)], there exists a mapping M: $E \rightarrow F(\Omega, \mathfrak{A}, P)$ such that for each $x \in E$, $M(x) \in L(x)$ and that for suitable $\Omega_0 \subset \Omega$, $P(\Omega_0) = 1$, $x \rightarrow M(x)(\omega)$ is a continuous linear functional for every $\omega \in \Omega_0$, where $F(\Omega, \mathfrak{A}, P)$ is the space of all measurable functions on $(\Omega, \mathfrak{A}, P)$ (not the equivalence class modulo null sets). If $x_n \rightarrow 0$ in E, then $M(x_n)(\omega) \rightarrow 0$ for every $\omega \in \Omega_0$. This means that $L(x_n)(\omega) \rightarrow 0$ for every $\omega \in \Omega_0$.

COROLLARY 4. Let E be a barrelled locally convex space and L: $E \rightarrow L^0(\Omega, \mathfrak{A}, P)$ be a random linear functional. Then, the following conditions are equivalent:

(a) The cylinder set measure μ on E' induced by L is σ (E', E)-Radon,

(b') there exists a sequence of continuous seminorms $\{p_n\}$ in E such that $x_n \to 0$ in $\{p_n\}$ implies $L(x_n) \to 0$, P-a.s., and

(c') there exist continuous seminorms $\{p_n\}$ in E and $\Omega_0 \subset \Omega$ with $P(\Omega_0) = 1$ such that $x_n \to 0$ in $\{p_n\}$ implies $L(x_n)(\omega) \to 0$ for every $\omega \in \Omega_0$.

Proof. (a) \Rightarrow (c') Suppose that μ is $\sigma(E', E)$ -Radon. Since E is barralled, there exists $\{p_n\}$ such that $\mu(\bigcup_n \{x \mid p_n(x) \le 1\}^0) = 1$. So, by Theorem 5, we have (c').

 $(c') \Rightarrow (b')$ is obvious.

 $(b') \Rightarrow (a)$ We may regard L as a continuous mapping from $(E, \{p_n\})$ into $L^0(\Omega, \mathfrak{A}, P)$. Hence, by Theorem 4, μ is a $\sigma(E', E)$ -Radon measure concentrated to $(E, \{p_n\})' \subset E'$.

COROLLARY 5 (Kwapien and Smolenski [4, Theorem 2]). Let E be a linear subspace of $L^0(\Omega, \mathfrak{A}, P)$ with the induced metrizable topology. Then, the following conditions are equivalent:

(a) E is locally convex and the cylinder set measure μ on E' induced by id: $E \rightarrow L^{0}(\Omega, \mathfrak{A}, P)$ is σ -additive,

(b) $x_n \to 0$ in E implies $L(x_n) \to 0$, P-a.s.,

(c) there exists $\Omega_0 \subset \Omega$ with $P(\Omega_0) = 1$ such that $x_n \to 0$ in E implies $L(x_n)(\omega) \to 0$ for every $\omega \in \Omega_0$, and

(d) E is nuclear.

Proof. (a) \Leftrightarrow (d) follows by Lemma 1 and Minlos' theorem.

 $(d) \Rightarrow (c)$ follows by Theorem 9.

 $(c) \Rightarrow (b)$ is obvious. Suppose (b) holds. By Mouchtari [4, Theorem 5], *E* is locally convex. Hence by Theorem 8, (a) holds.

Let *E* be a locally convex space. We say that the topology of *E* is given by a family of L^0 -semi-metrics if for every neighborhood *U* of 0, there exists a continuous random linear functional *L*: $E \to L^0(\Omega_L, \mathfrak{A}_L, P_L)$ and $\varepsilon > 0$ such tat $P(|L(x)| \le \varepsilon) \ge 1 - \varepsilon$ implies $x \in U$ for $x \in E$.

THEOREM 10. Let E be a locally convex space. Then the following conditions are equivalent;

(1) The topology of E is given by a family of L^0 -semimetrics, and for every continuous random linear functional $L: E \to L^0(P)$, there exists a weak * Radom measure μ on E' supported by a contable union of polar sets of neighborhoods of 0 with $\int \exp(i\langle x, x' \rangle) d\mu(x') = \int \exp(iL(x)(\omega)) dP(\omega)$ for every $x \in E$, and

(2) E is nuclear.

Proof. $(2) \Rightarrow (1)$ is the Minlos' theorem.

(1) \Rightarrow (2) Let U be a convex balanced closed neighborhood of 0. There exists a random linear functional L: $E \rightarrow L^0(P)$ such that $P(|L(x)(\omega)| \leq \varepsilon) \geq 1 - \varepsilon$ implies that $x \in U$. Let μ be the weak * Radon measure corresponding to L. Let $\delta > 0$ be arbitrary so that $\delta < \varepsilon$. There exists a convex balanced closed neighborhood V of 0 such that $V \subset U$ and $\mu(V^0) > 1 - \delta$ by the assumption of (1). Then, $\pi: E_V \rightarrow E_U$ is p-summing for every p > 0 by the way same to Lemma 1. This proves the theorem.

REFERENCES

- [1] BOURBAKI, N. (1969). Eléments de Mathématique, Integration, Chapitre 9, Hermann, Paris.
- [2] CHEVET, S. (1978). Quelques nouveaux résultats sur les mesures cylindrique. In Lecture Notes in Math., No. 644, Springer-Verlag, Berlin/Heidelberg/New York.
- [3] DUDLEY, R. M. (1969), Random linear functionals. Trans. Amer. Math. Soc. 136 1-24.
- [4] KWAPIEN, S., AND SMOLENSKI, W. (1982). On the nuclearity of dual space with convergence in probability topology. Z. Wahrsch. Verw. Gebiete 59 197-201.
- [5] MOUCHTARI, D. KH. (1970). On almost sure convergence in linear spaces of random variables. *Theory Probab. Appl.* 15 337-342.
- [6] MOUCHTARI, D. KH. (1973). Certain general questions of the theory of probability measures in linear spaces. *Theory Probab. Appl.* 18 64–75.
- [7] PIETSCH, A. (1972). Nuclear locally convex spaces. In *Ergebnisse der Math.* No. 66. Springer-Verlga, Berlin/Heidelberg/New York.
- [8] SCHAEFER, H. H. (1971). Topological vector spaces. In Graduate Texts in Math., No. 3. Springer-Verlag, Berlin/Heidelberg/New York.