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Let E be a locally convex space. Then E is nuclear metrizable if and only if there 
exists a u-additive measure p on E’ such that L: E -+ L’(E’, p), L(.u) = (.x, ). is an 
isomorphism. Let E be quasi-complete or barrelled. Suppose that there exists a 
o-additive measure Y on E satisfying (E’, r,,)’ 3 E. Then E* is an isomorphic sub- 
space of L”(E, v) and nuclear, where b is the strong dual topology and t,, is the 
La(E. v) topology. In the case where E is an LF space, for a random linear 
functional L: E-t L’(Q, 9l. P), the next conditions are equivalent: (a) The cylinder 
set measure p on E’ determined by L is u-additive and (b) I, + 0 in E implies that 
15(x,) + 0, P-as. ‘(” 1987 Academic Press. Inc 

1. INTRODUCTION 

Let E be a locally convex space (throughout this paper, we assume E is 
Hausdorff) and v be a cylindrical measure on C(E, E’), the a-algebra 
generated by (., x’), X’E I?. Consider the pseudo-metric space (E’, r,). 
The dual K, = (I?, 7,)’ c (I?‘)” is called the Kernel of v. 

The purpose of this paper is to find a condition for E;, to be a nuclear 
subspace of Lo, particularly, we investigate the condition on the kernel K,, 
for a suitable measure v. We also investigate the a-additivity of a cylinder 
set measure on E’ in terms of the almost sure convergence of the 
corresponding random linear functional. As an application, we give a 
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nuclearit-v condition for a subspace of L” by using the almost sure con- 
vergence. S. Kwapien and W. Smolenski [4] studied the nuclearity of 
(E’, z,) in terms of the kernel K,, in the case where E is a separable Frechet 
space. D. Kh. Mouchtari [S, 61 studied the nuclearity of a subspace of L” 
relating to the almost sure convergence. We shall extend the results of 
Kwapien and Smolenski and of Mouchtari. 

2. NUCLEARITY AND G-ADDITIVITY OF A CYLINDER SET MEASURE 

We denote by E’ (resp. E”) the topological (resp. algebraic) dua1 of E. It 
is well known that if E is a nuclear space, then for every continuous ran- 
dom linear functional L: E -+ L”(O, ‘LL, P), there exists a weak * Radon 
measure on E’ supported by a countable union of polar sets of 
neighborhoods of 0 (Minlos’ theorem). We consider the converse problem. 

The next assertion is an extension of Mouchtari [6, Theorem 21. 

LEMMA 1. Let E be a locall}? convex space. Suppose that there exists a 
a-additive measure ,u on C(E’, E) such that the natural embedding L: 
E + L’(E’, p), L(x) = (x, ’ ), is an isomorphism, where C(E’, E) denotes the 
cylindrical o-algebra. Then E is nuclear. 

Proof. Since E is metrizable, E’ is a-compact in the weak * topology. 
So we may assume that p is a Radon measure for the weak * topology. Let 
U be a convex closed neighborhood of 0 in E and E,, = E/Ker 1 1 (i be the 
normed space associated with U. There exists an E, 0 <E < 1, such that 
(X E E; p(-Y’; 1 (.u, .x’) 1 5 E) 2 1 - E j c U, since L has a continuous inverse. 
Let 6 > 0 be 6 CF. Then, there exists a neighborhood V in E such that 
VC U and p( Vo) > 1 - 6, where V” = (x’ E E’; ( (x, x’) I s 1 for every 
x E V}. We show that the natural mapping z: E,. + E,, is p-summing for 
every p > 0. Then the nuclearity of E follows by A. Pietsch [7, 4.1.2, p. 701. 
For every x 4 U, we have p( Vo n (x'; ( (x, x') I > E) > E - 6 > 0. Hence it 
follows that for every .x4 U, [jIAl, (.r9;!<.r,.r.>, zcI ) (x, x’) Jp dp(x’)]“’ 2 
[&“‘(&-6)]“~=&(&-~)““, which imphes that [jr,~ 1(x, ?~‘)~“dp(x’)]“~ 2 
&(& - 6) lip for every x $ U. This shows that (x1 U 2 E r(c - 6) lip. 
[jr0 I (x, x’) Ip dp(x’)]““. Thus r-r: E,. --f E,, is p-summing for every p > 0 
by the Pietsch’s theorem, see A. Pietsch [7, Theorem 2.3.3, p. 40 see also 
Proposition 4.1.5, p. 71. This completes the proof. 

Remurk 1. If E is a nuclear metrizable space, then there exists a 
o-additive measure p on E’ such that L(x) = (x, . ) is an isomorphism of E 
into LO(E’, p). 
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THEOREM 1. Let E be a subspace of L’(Q, 2l, P), where (Q, ‘S, P) is a 
probability space. Suppose that E is locally convex in the Lo-topology and 
that the identity random linear functional id: E --, L’(Q, 8, P) induces a 
o-additive measure on C(E’, E). Then E is nuclear. 

Proof: Consider the natural mapping L(x) = (x, . ) of E into L’(E’, p). 
Then L is an isomorphism. Hence, the assertion follows by Lemma 1. 

3. KERNEL AND NUCLEARITY OF E 

Let v be a cylinder set measure on a locally convex space E and v- be the 
a-additive extension of v on (E’)“. Let R: E’+ L’((E’)“, vl) be the natural 
mapping given by R(x’) = (., x’) and t, be the Lo(v)-topology, i.e., 
the topology of convergence in measure. Put K, = R’(R(E’), T”)‘, where 
R’: (R(E’), r,)’ + (E’)” is the transpose of R. We say K, the kernel of v. 

THEOREM 2. Suppose that v-*(K,,) = 1, where v”* is the outer measure of 
vs. Then (R(E’), 7,) is nuclear. 

Proof: Note that K,, = U,:=, R’(c), where V, = {R(x’); v(x; 
1 (x, x’) 1 > l/n) < l/n>. W e s h ow the topology t,, on R(E’) is equivalent to 
the uniform convergence topology r, on each K,, = R’( e). Since 
v-*(K,) = 1, r, is stronger than rV. Conversely, let x; E E’ be R(xk) + 0 
in rV. For every A4 > 0, M. R(x’) -+ 0 in r”, so for every m there 
exists N = N(M, m) such that A4. R(xi) E V, for each n 2 N. Thus for 
every x E K,,, , it follows that 1 (x, xi) ( 5 l/M for n2 N, that is, 
SUP,,~, 1 (x, xl) ( 5 l/M for n 2 N. This proves that R(xk) -+ 0 uniformly 
on each K,,,. We have proved, in particular, that (R(E’), t,,) is a locally 
convex space. Since K, is compact in a( (E’)“, E’), we may consider v” as a 
cr((E’)“, E’)-Radon measure supported by K,. Remark that R’: 
(R(E’), r,,)’ -+ K, is weakly continuous, one-to-one and surjective. Thus we 
can form the image measure .D = R’ - ‘(v-), which is a Radon measure on 
(R(E’), rV)’ with the weak * topology. Consider the embedding L: (R(E’), 
T,) -+ L’((R(E’), t,)‘, p), L(R(x’)) = (R(x), . ). Then L is an isomorphism. 
In fact, R(xk) -+ 0 in T, if and only if (x, XL) + 0 in L’(v”), and hence if 
and only if L(R(xL)) -+ 0 in L’((R(E’), rV)‘, p). Thus we can prove the 
assertion by Lemma 1. 

Let E be a quasi-complete locally convex space and v be a Radon 
probability measure on E. Then R: E --+ (R(E’), r,,) is Mackey continuous. 
Hence K, c E follows. 

The next result is an extension of S. Kwapien and W. Smolenski [4, 
Theorem 11. 
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COROLLARY 1. Let E be a quasi-complete locally convex space and v be 
a Radon probability measure on E. Suppose that v(K,) = 1. Then (R(E’), z,,) 
is nuclear. 

The characteristic functional vA of a cylinder set measure v is defined by 
v-(x’) = J exp(i (x, x’)) dv(x). 

THEOREM 3. Let E be a locally convex space and z be a locally convex 
topology on E’ which is finer than the weak * topology a(E’, E) and is coar- 
ser than the Mackey topology TV. Suppose that there exists a o-additive 
cylindrical measure v on C(E, E’) such that 11~ is r-continuous and K, 3 E. 
Then E: is nuclear and metrizable, and it holds that 7: = zk, K,, = E and R: 
ET + L”(E, v) is an isomorphism. 

Proof By the continuity of VI, R is r-continuous. Taking the transpose, 
we have K, c (ET)’ = E, hence K,, = E. We show the continuity of R i into 
E:,. Put K, = R’( I/II) as in the proof of Theorem 2. Then 5,. is the uniform 
convergence topology on each K,,. Note that E = U;;=, K,]. We see R ‘: 
(R(E), r,) + E:, is continuous, so R-l: (R(E’), t,,) -+ EL, is also continuous. 
By Lemma 1, we have the assertions. 

COROLLARY 2. Suppose that there exists a a-additive measure v on 
C(E, E’) such that K,, = E. Then E:, is nuclear and metrirable. 

Proof Since K,, = E, it follows that E = lJ;= , K,, where K,z is the same 
set as in the proof of Theorem 2. The set K, is a(E, E’)-compact, convex 
and rV is the uniform convergence topology on each K,,. Thus the natural 
mapping R: Ei, --f L”(E, v) is continuous. Moreover, R- ‘: (R(E), T,,) --) 
(E’, o(E’, E)) is continuous, so that R-‘: (R(E’), T,,) + E:, is continuous. By 
Lemma 1, we have the assertion. 

THEOREM 4. Let E be a quasi-complete or barralled locally convex space 
and b be the strong dual topology on E’. Suppose that there exists a 
a-additive measure v on C(E, E’) satisfying K,, 3 E. Then, EL is nuclear, 
metrizable and R: EL + L”(E, v) is an isomorphism. 

Proof Consider the transpose R’: (R(E’), z,,)’ -+ (E’)“. Then 
K, = R’( e) is a r~( (E’)“, E’)-compact subset, where V, = {R(x); v(x; 
) (x, x’)) > l/n) < l/n}. (See the proof of Theorem 2.) Set L, = En K,,. 
Then we have E = u,“= i L, and L, is bounded in E, since K,, = 
U,“= i K, n E. In particular, it holds that v*(L,) r 1. First, we show that R: 
E6 -+ L”(E, v) is continuous. Suppose that xi + 0 uniformly on each L,,. 
For every E > 0, take N so that v*(LN) 2 1 -E and take A4 so that 
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1 x:(x) 15 E for every x E LN and for every n 2 M. Then for every n 2 M, we 
have, putting A = {x; [xi(x) 15 E for every n 2 M} 3 L,, 

s Ixl(x)ll(l + IXX~)l)dV(X) 
< = [ cdv(x)+( 1 dV(X)5&EV(A’)52&, 

A A’ 

which shows that R is continuous in the uniform convergence topology on 
each L,, hence also in the strong dual topology 6. Next, we show that R-‘: 
(R(F), T,) + EL is continuous following S. Chevet [2, Theorem 11. Since T,, 
is metrizable, it is sufficient to show that, for every bounded subset B in 
(R(E’), ~“1, R-‘(B) is bounded in E6. Since E is quasi-complete or 
barrelled, each bounded subset in Eb,E.,E, is also bounded in EL. Since 
KY 3 E, it follows that R -I: (R(E’), T,,) -+ J!$(~.~.) is continuous. Since we 
have proved the mapping R: E6 ---t L”(E, v) is an isomorphism, by 
Theorem 1, .I& is nuclear. 

COROLLARY 3. Let E be a quasi-complete or barrelled locally convex 
space. Suppose that there is a a-additive measure v on C(E, E’) such that 
K,, = E, Then, E6 is nuclear, metrizable and b = TV. 

By Theorem 4, we can conclude that for some types of locally convex 
spaces of infinite dimension, there is no a-additive measure v on C(E, E’) 
satisfying K,. 3 E. 

THEOREM 5. Let E be a locally convex space of second category. Suppose 
that there exists a o-additive measure on C(E, E’) satisfying that K,, 2 E. 
Then, E is of finite dimension. 

Proof: By Theorem 4, E6 is nuclear. In the proof of Theorem 4, we have 
proved that E is a countable union of bounded subsets. Since E is of 
second category, it follows that E is normable. Thus E6 is a nuclear Banach 
space, so dim E’ < + CO. 

THEOREM 6. Let E be a barrelled locally convex space. Suppose that 
there exists a a-additive measure v on C(E, E’) such that K, 1 E and v is of 
weakly p th order, p > 0, that is, 1 ( (x, x‘ ) 1 p dv(x) < + co for every x’ E E’. 
Then E is finite dimensional. 

Proof By Theorem 4, Eb is nuclear and metrizable. Since E is barrelled, 
Eb is quasi-complete (see H. H. Schaefer [S, Theorem 6.11. Hence, Eh is a 
nuclear Frkchet space. Consider the natural mapping R: E;, + Lp(E, v), 
Since R: Eb -+ L”(E, v) is an isomorphism by Theorem 4, R- ’ is continuous 
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with respect to the LP-metric. Noting that Lp(E, v) c L’(E, v), we can see 
that R is also continuous by the closed graph theorem. Thus R: 
E;, -+ L”(E, v) is an isomorphism. In particular, EL is normable and 
nuclear; hence dim E’ < + a. 

THEOREM 7. Let E he a locally convex space and v he a a-additive 
measure on C( E, E’) such that K,, 3 E and v is of type p (p > 0) with respect 

to Tk, that is, x + 1 1 (x, x’) lp dv(x) ( < + ~30) is Tk-continuous. Then, E is 
,finite dimensional. 

Proof. We set 1) xi lip = (j ) (x, x’) Ip dv(x))““, X’ E E’. Then 11 II,, is 
r,-continuous. On the other hand, by K, 3 E, it follows that i: (E’, tV) -+ 
(E’, zk) is continuous. Hence we have rk = rV = the topology determined by 
II UP? which shows that (E’, ?k) is normable. By Theorem 3, (E’, rk) is 
nuclear, so dim E < + m. 

Remark 2. Let E = R (X) be the countable direct sum of real number 
fields. Then, there is a Radon measure v on E with K,, = E, E being a 
barrelled space of dim E= + co. Consider the 12-norm (I II7 on E and set 
k4A)=CSAe ““‘2 dv(x), where C is a normalizing constant. Then, we have 
K,, = K, = E, and .Y + (j I (x, x’) Ip du(x)) ‘lp is /,-continuous. This shows 
that, in Theorem 7, we cannot replace ~~ by the strong dual topology b. 

4. NUCLEARITY AND AS. CONVERGENCE 

Let E be a subspace of L”(Q, 3, P). D. Kh. Mouchtari [5] proved that if 
the convergence in measure and a.s. convergence are equivalent, then E is 
nuclear by the Lo-topology. We shall examine the as. convergence and the 
nuclearity. 

Let E be a locally convex space and L: E -+ L’(Q,, PL), M: 
E -+ Lo@,, PM) be two random linear functionals. We say, after R. M. 
Dudley [3], L and A4 are equivalent if for every n and every x,, 
.y2 ,..., X, E E, and for a Bore1 set B c R”, it holds that PL( (L(x,) ,..., 
L(x,))E B)= P,,,,((M(x,),..., M(x,))E B). Note that if L and M are 
equivalent, then for every sequence (x0} c E and every Bore1 set B c RN, 
P,((L(x,)),z, I E B) = P,((M(xi)),“= I E B) holds. 

The next two theorems extend the Theorem 7 of Mouchtari [S]. 

THEOREM 8. Let E be an LF space and L: E --+ L”(Q, ‘LI, P) be a random 
linear functional, Then the following conditions are equivalent; 

(a) The cylinder set measure u on E’ induced by L is o-additive, and 

(b) x, + 0 in E implies L(x,) -+ 0, P-as. 
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Proof: (a)*(b). Let M: E + L’(E’, p) be given by M(x) = (x, . ). 
Then, L and M are equivalent. Suppose that x, + 0 in E. Then, 
p(X’EEl; (x,, xl) -+ 0) = p(E’) = 1. Put 52, = {w; L(x,)(w) -+O} = 

hu,n m,n,m>nzl iu;~nsi(m ILb$Wl <l/k). Since L and ~4 are 
equivalent, we %Qo)=Nh UIL.,,,..,, ix’ ImaxnI,., - - 
1 (x,, x’ ) 1 < l/k) = 1. Hence, (a) =z= (b) holds for arbitrary locally convex 
spaces, not necessarily LF-spaces. 

(b) =z. (a) First, suppose that E is a Frtchet space. Then in this case, by 
Mouchtari [S, Theorem 71, (b)*(a) holds. Next suppose that E= 
U,“= , E,,, E, being Frtchet spaces. Consider the restriction L, = L I E,,. 
Then L, gives a cr-additive measure p,, on Ek, since L, satisfies (b). Remark 
that E:, is o-compact for the weak * topology, so we may assume that each 
p,, is Radon for the weak * topology. Note that {/A~) forms a projective 
system on {En} by rc,: Efl+, -+En, where 71, =iL (i,: E, +E,+, is the 
injection). By Bourbaki [I, Theorem 2, 4, No. 31, the projective limit p of 
\‘pn} exists on l$r E:, = E’. Thus, p is a a-additive measure corresponding 
to L. 

THEOREM 9. Let E be an LF space of separable FrPchet spaces {E,} and 
L: E + L”(Q, ‘8, P) be a random linear functional. Then the following 
conditions are equivalent: 

(a) The cylinder set measure p on E’ induced by L is o-additive and 

(c) there exists Q, c Q with P(B,) = 1 such that for every x, E E, 
x, + 0 in E implies L(x,)(o) -+ 0 for every w E 0,. 

Proof (c) 3 (a) is derived by the above theorem since (c)*(b) in 
Theorem 8 holds obviously. 

(a) * (c) By Dudley [3, Theorem (4.1)], there exists a mapping M: 
E + F(Q, 2I, P) such that for each x E E, M(x) E L(x) and that for suitable 
Sz, c Q, P(Q,) = 1, x -+ M(x)(o) is a continuous linear functional for every 
UEQO, where F(Q, 2I, P) is the space of all measurable functions on 
(Q, ‘u, P) (not the equivalence class modulo null sets). If x, --+ 0 in E, then 
M(x,)(o) +O for every WEQ,. This means that L(x,)(w) +O for every 
COESZ,. 

COROLLARY 4. Let E be a barrelled locally convex space and L: 
E + L”(Q, 2I, P) be a random linear functional. Then, the following 
conditions are equivalent: 

(a) The cylinder set measure p on E’ induced by L is a (E’, E)-Radon, 

(b’) there exists a sequence of continuous seminorms { p,} in E such 
that x, + 0 in {p,,} implies L(x,) + 0, P-a.s., and 
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(c’) there exist continuous seminorms {p,,} in E and $2, c 52 with 
P(sZ,) = 1 such that x,, -+ 0 in { pn} implies L(x,)(w) --) 0 for every w E 52,. 

Proof: (a) * (c’) Suppose that p is a(E’, E)-Radon. Since E is barralled, 
there exists {p,} such that ,u(U,, {x I p,(x) 5 1)“) = 1. So, by Theorem 5, 
we have (c’). 

(c’) = (b’) is obvious. 

(b’) 3 (a) We may regard L as a continuous mapping from (E, (p,}) 
into L”(Q, ‘3, P). Hence, by Theorem 4, p is a a(E’, E)-Radon measure 
concentrated to (E, { p,, } )’ c E’. 

COROLLARY 5 (Kwapien and Smolenski [4, Theorem 21). Let E be a 
linear subspace of L’(sZ, ‘UL, P) with the induced metrizable topology. Then, 
the following conditions are equivalent: 

(a) E is locally convex and the cylinder set measure u on E’ induced by 
id: E -+ L’(sZ, 2I, P) is a-additive, 

(b) x, + 0 in E implies L(x,) + 0, P-as., 

(c) there exists Q, cSZ with P(Q,)= 1 such that x, -+O in E implies 
L(x,)(o) --) 0 for every’ o E Qo, and 

(d) E is nuclear. 

Proof: (a) o (d) follows by Lemma 1 and Minlos’ theorem. 

(d ) = (c) follows by Theorem 9. 

(c)*(b) is obvious. Suppose (b) holds. By Mouchtari [4, Theorem 51, 
E is locally convex. Hence by Theorem 8, (a) holds. 

Let E be a locally convex space. We say that the topology of E is given 
by a family of Lo-semi-metrics if for every neighborhood U of 0, there exists 
a continuous random linear functional L: E + L’(Q,, ‘3l,, Pt.) and E > 0 
such tat P( 1 L(x) 1 5 E) 2 1 - F implies x E U for x E E. 

THEOREM 10. Let E be a locally convex space. Then the following con- 
ditions are equivalent; 

(1) The topology of E is given by a family of Lo-semimetrics, and for 
every continuous random linear functional L: E + Lo(P), there exists a weak 
* Radom measure u on E’ supported by a contable union of polar sets of 

neighborhoods of 0 with l exp(i(x, x’)) du(x’) = j exp(iL(x)(o)) dP(o) for 
every x E E, and 

(2) E is nuclear. 

Proof: (2) * (1) is the Minlos’ theorem. 
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(1) + (2) Let U be a convex balanced closed neighborhood of 0. There 
exists a random linear funtional L: E-+ Lo(P) such that 
P(IL(X)(~)I SE)2 l- E implies that x E U. Let p be the weak * Radon 
measure corresponding to L. Let S > 0 be arbitrary so that 6 -CC. There 
exists a convex balanced closed neighborhood V of 0 such that VC U and 
p( F’) > 1 - 6 by the assumption of (1). Then, 71: E, + E, is p-summing for 
every p > 0 by the way same to Lemma 1. This proves the theorem. 
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