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Let E be a locally convex space. Then E is nuclear metrizable if and only if there
exists a g-additive measure p on E' such that L: E— LYE', u), L{x)={x, "), is an
isomorphism. Let E be quasi-complete or barrelled. Suppose that there exists a
c-additive measure v on E satisfying (E’, t,)’ > E. Then E} is an isomorphic sub-
space of L%(E, v) and nuclear, where b is the strong dual topology and t, is the
LY%E, v) topology. In the case where E is an LF space, for a random linear
functional L: E— L%, U, P), the next conditions are equivalent: (a) The cylinder
set measure yx on E' determined by L is g-additive and (b) x, — 0 in £ implies that
L(x,) >0, P-as. %1987 Academic Press. Inc.

1. INTRODUCTION

Let E be a locally convex space (throughout this paper, we assume E is
Hausdorff) and v be a cylindrical measure on C(E, E’), the g-algebra
generated by <{-,x'), x'e E'. Consider the pseudo-metric space (£', 1,).
The dual K, =(E’, 7, c (E")? is called the Kernel of v.

The purpose of this paper is to find a condition for Ej to be a nuclear
subspace of L°, particularly, we investigate the condition on the kernel X,
for a suitable measure v. We also investigate the o-additivity of a cylinder
set measure on E’ in terms of the almost sure convergence of the
corresponding random linear functional. As an application, we give a
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nuclearity condition for a subspace of L® by using the almost sure con-
vergence. S. Kwapien and W. Smolenski [4] studied the nuclearity of
(E', 7,) in terms of the kernel K, in the case where F is a separable Fréchet
space. D. Kh. Mouchtari [5, 6] studied the nuclearity of a subspace of L°
relating to the almost sure convergence. We shall extend the results of
Kwapien and Smolenski and of Mouchtari.

2. NUCLEARITY AND ¢-ADDITIVITY OF A CYLINDER SET MEASURE

We denote by E' (resp. E¢) the topological (resp. algebraic) dual of E. It
is well known that if E is a nuclear space, then for every continuous ran-
dom linear functional L: E — L%Q, U, P), there exists a weak * Radon
measure on E' supported by a countable union of polar sets of
neighborhoods of 0 (Minlos’ theorem). We consider the converse problem.

The next assertion is an extension of Mouchtari [6, Theorem 2].

LemMA 1. Let E be a locally convex space. Suppose that there exists a
o-additive measure p on C(E', E) such that the natural embedding L:
E— LY%E, n), L(x)={x, ", is an isomorphism, where C(E', E) denotes the
cylindrical o-algebra. Then E is nuclear.

Proof. Since E is metrizable, £’ is o-compact in the weak * topology.
So we may assume that u is a Radon measure for the weak * topology. Let
U be a convex closed neighborhood of 0 in E and E,, = E/Ker | |, be the
normed space associated with U. There exists an & 0<e<1, such that
{xeE, u(x’; | {x,x'>|Se)2 1 —¢} < U, since L has a continuous inverse.
Let 6>0 be 6 <e Then, there exists a neighborhood ¥ in E such that
VcU and u(V°)>1-4, where Vo= {xeE’; |{(x,x')|£1 for every
xe V}. We show that the natural mapping 1: E, - E,, is p-summing for
every p > 0. Then the nuclearity of E follows by A. Pietsch [7,4.1.2, p. 70].
For every x¢ U, we have u(V°n {x’; | (x,x")[>¢)>¢—6>0. Hence it
follows that for every x¢ U, [0 (oiconsi=e | <X X' D7 du(x)]"" 2
(&7 (e—0)]"? = e(e —8)"7, which implies that [ [, |{x, x'>|7du(x")]"" 2
e(6—9)"7 for every x¢U. This shows that |x|,<e '(6—9) V7
[fol <x, x> 17 du(x')}"7. Thus @: E, ~ Ey is p-summing for every p>0
by the Pietsch’s theorem, see A. Pietsch [7, Theorem 2.3.3, p. 40 see also
Proposition 4.1.5, p. 7]. This completes the proof.

Remark 1. If E is a nuclear metrizable space, then there exists a
s-additive measure x on E’ such that L(x)= {x, ) is an isomorphism of E
into LY%E’, p).
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THEOREM 1. Let E be a subspace of L°(R2, U, P), where (2, U, P) is a
probability space. Suppose that E is locally convex in the L°-topology and
that the identity random linear functional id: E— L%(Q, U, P) induces a
o-additive measure on C(E', E). Then E is nuclear.

Proof. Consider the natural mapping L(x) = {x, - of E into LYE’, p).
Then L is an isomorphism. Hence, the assertion follows by Lemma 1.

3. KERNEL AND NUCLEARITY OF E’

Let v be a cylinder set measure on a locally convex space E and v~ be the
o-additive extension of v on (E')%. Let R: E' — L°((E')% v") be the natural
mapping given by R(x')={-,x’> and 1, be the L°(v)-topology, ie.,
the topology of convergence in measure. Put K,=R'(R(E’), 7,)’, where
R (R(E"),1,) — (E")* is the transpose of R. We say K, the kernel of v.

THEOREM 2. Suppose that v *(K,) = 1, where v"* is the outer measure of
v . Then (R(E’), t,) is nuclear.

Proof. Note that K, =7, R'(V?), where V,={R(x'); v(x;
|<{x,x"»|>1/n)<1/n}. We show the topology 7, on R(E’) is equivalent to
the uniform convergence topology 1, on each K,=R'(V°). Since
v *(K,)=1, 1, is stronger than t,. Conversely, let x,e E' be R(x,)—0
in 7,. For every M>0, M-R(x')—>0 in 1,, so for every m there
exists N=N(M,m) such that M- R(x,)eV, for each n=N. Thus for
every xeK,, it follows that |<{x,x,>|<1/M for n=N, that is,
SUP,ex, | <X, x, )| £1/M for n= N. This proves that R(x,)— 0 uniformly
on each K,. We have proved, in particular, that (R(E’'), ,) is a locally
convex space. Since K,, is compact in a((E’), E'), we may consider v_ as a
o((£')4 E')-Radon measure supported by K,. Remark that R’:
(R(E"), t,) = K, is weakly continuous, one-to-one and surjective. Thus we
can form the image measure u= R’ ~'(v"), which is a Radon measure on
(R(E’), 7,)" with the weak * topology. Consider the embedding L: (R(E’),
1,) = L°((R(E"), t,)’, 1), L(R(x')) = (R(x"), - >. Then L is an isomorphism.
In fact, R(x,)— 0 in 7, if and only if {x, x,> -0 in L°%+"), and hence if
and only if L(R(x,))—0 in L°%(R(E'), t,), ). Thus we can prove the
assertion by Lemma 1.

Let E be a quasi-complete locally convex space and v be a Radon
probability measure on E. Then R: E' — (R(E’), t,) is Mackey continuous.
Hence K, < E follows.

The next result is an extension of S. Kwapien and W. Smolenski [4,
Theorem 11].
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COROLLARY 1. Let E be a quasi-complete locally convex space and v be
a Radon probability measure on E. Suppose that v(K,)= 1. Then (R(E'), t,)
is nuclear.

_The characteristic functional v_ of a cylinder set measure v is defined by
v (x')=[exp(i {x,x")) dv(x).

THEOREM 3. Let E be a locally convex space and t be a locally convex
topology on E" which is finer than the weak * topology o(E', E) and is coar-
ser than the Mackey topology t.. Suppose that there exists a o-additive
cylindrical measure v on C(E, E') such that v~ is t-continuous and K, > E.
Then E’, is nuclear and metrizable, and it holds that t=1,, K, =F and R:
E.— L°(E, v) is an isomorphism.

Proof. By the continuity of v, R is t-continuous. Taking the transpose,
we have K, = (E,) = E, hence K, = E. We show the continuity of R~ into
E, . Put K, = R'(V?) as in the proof of Theorem 2. Then 1, is the uniform
convergence topology on each K,. Note that E={J*_, K,. We see R "
(R(E"), 1,) = E. is continuous, so R~ ': (R(E"), t,) -~ E;, is also continuous.
By Lemma 1, we have the assertions.

COROLLARY 2. Suppose that there exists a o-additive measure v on
C(E, E') such that K, = E. Then E', is nuclear and metrizable.

Proof. Since K, = E, it follows that E= )", K,, where K, is the same
set as in the proof of Theorem 2. The set K, is o(E, E')-compact, convex
and 1, is the uniform convergence topology on each K,. Thus the natural
mapping R: E,, — L°(E,v) is continuous. Moreover, R (R(E), 1)~
(E', 6(E, E)) is continuous, so that R~ ": (R(E"), t,) = E, is continuous. By
Lemma 1, we have the assertion.

THEOREM 4. Let E be a quasi-complete or barralled locally convex space
and b be the strong dual topology on E'. Suppose that there exists a
o-additive measure v on C(E, E') satisfying K, > E. Then, E, is nuclear,
metrizable and R: E, — L°(E, v) is an isomorphism.

Proof. Consider the transpose R: (R(E'),1,) = (E')* Then
K,=R'(V°) is a o((E')" E')-compact subset, where V, = {R(x'); v(x;
| <x,x'>|>1/n)<1/n}. (See the proof of Theorem2.) Set L,=EnK,.
Then we have E=\*_, L, and L, is bounded in E, since K, =

«_, K, n E. In particular, it holds that v*(L,) T 1. First, we show that R:
E, — L°(E, v) is continuous. Suppose that x, -0 uniformly on each L,.
For every £>0, take N so that v*(Ly)=1—¢ and take M so that
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| x;,(x)| <¢ for every xe Ly and for every n= M. Then for every n = M, we
have, putting 4 = {x; | x,(x)| <S¢ for every n2 M} > Ly,

[ 1600171+ 1 x,001) dv(x)
_S_f sdv(x)+j »1 dv(x) e+ v(A9) £ 2,

which shows that R is continuous in the uniform convergence topology on
each L,, hence also in the strong dual topology b. Next, we show that R~
(R(E"), t,) > E, is continuous following S. Chevet [2, Theorem 1]. Since 7,
is metrizable, it is sufficient to show that, for every bounded subset B in
(R(E"), 7,), R™'(B) is bounded in E} Since E is quasi-complete or
barrelled, each bounded subset in E, . ., is also bounded in Ej. Since
K, E, it follows that R~ ': (R(E'), 1,) = E, ., Is continuous. Since we
have proved the mapping R: E, - L%E,v) is an isomorphism, by
Theorem 1, E}, is nuclear.

CorOLLARY 3. Let E be a quasi-complete or barrelled locally convex
space. Suppose that there is a o-additive measure v on C(E, E') such that
K, =E. Then, E, is nuclear, metrizable and b=r1,.

By Theorem 4, we can conclude that for some types of locally convex
spaces of infinite dimension, there is no ¢-additive measure v on C(E, E')
satisfying K, o E.

THEOREM 5. Let E be a locally convex space of second category. Suppose
that there exists a g-additive measure on C(E, E') satisfying that K, > E.
Then, E is of finite dimension.

Proof. By Theorem 4, E}, is nuclear. In the proof of Theorem 4, we have
proved that E is a countable union of bounded subsets. Since £ is of
second category, it follows that E is normable. Thus E}, is a nuclear Banach
space, so dim £’ < + co.

THEOREM 6. Let E be a barrelled locally convex space. Suppose that
there exists a o-additive measure v on C(E, E') such that K, > E and v is of
weakly pth order, p>0, that is, || {x, x')|? dv(x) < + o0 for every x' € E'.
Then E is finite dimensional.

Proof. By Theorem 4, E}, is nuclear and metrizable. Since £ is barrelled,
E, is quasi-complete (see H. H. Schaefer [8, Theorem 6.1]. Hence, E, is a
nuclear Fréchet space. Consider the natural mapping R: E, - L?(E, v).
Since R: E, — L(E, v) is an isomorphism by Theorem 4, R~ ' is continuous
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with respect to the L”-metric. Noting that L?(E, v) = L°(E, v), we can see
that R is also continuous by the closed graph theorem. Thus R:
E,— L”(E,v) is an isomorphism. In particular, E) is normable and
nuclear; hence dim £’ < + 0.

THEOREM 7. Let E be a locally convex space and v be a c-additive
measure on C(E, E') such that K,> E and v is of type p (p > 0) with respect
10 1y, that is, x — [ | {x, x> |7 dv(x) (< + ©) is 1,-continuous. Then, E is
finite dimensional.

Proof. We set [|x'|[, = (] I<{x,x'>|”dv(x))"?, x’€E". Then | ||, is
7, -continuous. On the other hand, by K, > E, it follows that i: (', 7,) >
(E', 14} is continuous. Hence we have 1, =1, = the topology determined by
| I,, which shows that (E’, 7,) is normable. By Theorem 3, (E', 7,) 1s
nuclear, so dim E < + co.

Remark 2. Let E=R'" be the countable direct sum of real number
fields. Then, there is a Radon measure v on E with K, =E, E being a
barrelled space of dim E= + oc. Consider the -norm | |, on E and set
u(Ay=C{ e "™ dy(x), where C is a normalizing constant. Then, we have
K,=K,=E, and x— ([ | {x, x">|” du(x))"? is I,-continuous. This shows
that, in Theorem 7, we cannot replace t, by the strong dual topology &.

4. NUCLEARITY AND A.S. CONVERGENCE

Let E be a subspace of L(Q, U, P). D. Kh. Mouchtari [ 5] proved that if
the convergence in measure and a.s. convergence are equivalent, then E is
nuclear by the L°-topology. We shall examine the a.s. convergence and the
nuclearity.

Let E be a locally convex space and L: E—L%Q,,P,), M:
E— L%Q,,, P,) be two random linear functionals. We say, after R. M.
Dudley [3], L and M are equivalent if for every n and every x,
X5,.. X, €E, and for a Borel set B< R", it holds that P, ((L(x)..,
L(x,)) e B)= P, ({M{(x),..., M(x,))eB). Note that if L and M are
equivalent, then for every sequence {x,} < E and every Borel set Bc R",
PL((L(x)), € B) = P, ((M(x,)) , € B) holds.

The next two theorems extend the Theorem 7 of Mouchtari [5].
THEOREM 8. Let E be an LF space and L: E— L°(2, U, P) be a random
linear functional. Then the following conditions are equivalent;

(a) The cylinder set measure u on E' induced by L is o-additive, and
(b) x,—0in E implies L(x,) -0, P-as.
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Proof. (a)=(b). Let M: E— L°%E, u) be given by M(x)={x, ).
Then, L and M are equivalent. Suppose that x, -0 in E. Then,
U €E; {x,x'y—0) = uE) = L. Put Qy={w;L(x,)(w)-0} =
mk Ul mm,n.m>n>1 {(D Imaxnéjém |L(x/)((1))| < l/k} Since L and M are
equivalent, we have  P(Q)=u(Ni Ui Nmmmznzi X |MaAX, < o
| {x,,x'>| <1/k)=1. Hence, (a)=(b) holds for arbitrary locally convex
spaces, not necessarily LF-spaces.

(b) = (a) First, suppose that E is a Fréchet space. Then in this case, by
Mouchtari [5, Theorem 7], (b)=>(a) holds. Next suppose that E=
Ux | E,, E, being Fréchet spaces. Consider the restriction L, =L | E,.
Then L, gives a g-additive measure p,, on E), since L, satisfies (b). Remark
that E,, is s-compact for the weak * topology, so we may assume that each
u,, is Radon for the weak * topology. Note that {u,} forms a projective
system on {E,} by =n,: E,,, > E,, where n, =i, (i,: E, > E,, is the
injection). By Bourbaki [ 1, Theorem 2, 4, No. 3], the projective limit u of
{u,} exists on lim E, = E'. Thus, p is a o-additive measure corresponding
to L.

THEOREM 9. Let E be an LF space of separable Fréchet spaces {E,} and
L: E-LYQ,U, P) be a random linear functional. Then the following
conditions are equivalent:

(a) The cylinder set measure u on E' induced by L is o-additive and

(c) there exists 2, Q with P(Q,)=1 such that for every x,€E,
x, =0 in E implies L(x,)(@w)— 0 for every we Q,.

Proof. (c)=-(a) is derived by the above theorem since (c)=>(b) in
Theorem 8 holds obviously.

(a)=(c) By Dudley [3, Theorem (4.1)], there exists a mapping M:
E - F(Q, U, P) such that for each xe E, M(x)e L(x) and that for suitable
Q,cQ, P(Q,)=1, x> M(x)(w) is a continuous linear functional for every
weR,, where F(Q2, U, P) is the space of all measurable functions on
(2, A, P) (not the equivalence class modulo null sets). If x, — 0 in E, then
M(x,)(w)—0 for every we ;. This means that L(x,)(w)— 0 for every
W E Q.

COROLLARY 4. Let E be a barrelled locally convex space and L:
E—LYR,U, P) be a random linear functional. Then, the following
conditions are equivalent:

(a) The cylinder set measure p on E’ induced by L is o (E', F)-Radon,

(b') there exists a sequence of continuous seminorms {p,} in E such
that x, -0 in {p,} implies L(x,) -0, P-as., and
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(¢’) there exist continuous seminorms {p,} in E and Q,<Q with
P(2,) =1 such that x,, >0 in {p,} implies L(x,)(®)— 0 for every we Q,.

Proof. (a)=(c’) Suppose that u is ¢(E’, E)-Radon. Since E is barralled,
there exists {p,} such that u(lJ, {x1p,(x)<1}°)=1. So, by Theorem 5,
we have (¢').

(c'}=>(b’) is obvious.

(b")=>(a) We may regard L as a continuous mapping from (E, {p,})

into L%, A, P). Hence, by Theorem 4, u is a o(E’, E)-Radon measure
concentrated to (E, {p,}) < E"

COROLLARY 5 (Kwapien and Smolenski [4, Theorem 2]). Ler E be a
linear subspace of L%(Q, W, P) with the induced metrizable topology. Then,
the following conditions are equivalent:

(a) Eis locally convex and the cylinder set measure u on E' induced by
id: E— L%, U, P) is o-additive,

(b) x,—0in E implies L(x,)—0, P-as.,

(c) there exists 2, = Q with P(Qy)=1 such that x,, -0 in E implies
L(x,)(w)— 0 for every we,, and

(d) E is nuclear.

Proof. (a)< (d) follows by Lemma t and Minlos’ theorem.
(d)=(c) follows by Theorem 9.

(c)=>(b) is obvious. Suppose (b) holds. By Mouchtari [4, Theorem 5],
E is locally convex. Hence by Theorem 8, (a) holds.

Let E be a locally convex space. We say that the topology of E is given
by a family of L°-semi-metrics if for every neighborhood U of 0, there exists
a continuous random linear functional L: E— L%(Q,,A,, P,) and £¢>0
such tat P(|L(x)| <&)=1—¢ implies xe U for xe E.

THEOREM 10. Let E be a locally convex space. Then the following con-
ditions are equivalent,

(1) The topology of E is given by a family of L°-semimetrics, and for
every continuous random linear functional L: E — L°(P), there exists a weak
* Radom measure u on E' supported by a contable union of polar sets of
neighborhoods of 0 with { exp(i{x, x'>) du(x") = [ exp(iL(x}(w)) dP(w) for
every xe E, and

(2) E is nuclear.

Proof. (2)=> (1) is the Minlos’ theorem.
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(1)=(2) Let U be a convex balanced closed neighborhood of 0. There
exists a random linear funtional L: E—L%P) such that
P(| L(x)}(w)| Se)=1—¢ implies that xe U. Let u be the weak * Radon
measure corresponding to L. Let d >0 be arbitrary so that § <e There
exists a convex balanced closed neighborhood V of 0 such that V< U and
p(V°) > 1 — 4 by the assumption of (1). Then, n: E,, — E,, is p-summing for
every p>0 by the way same to Lemma 1. This proves the theorem.
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