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Abstract 

Primitive words and their properties have always been of fundamental importance in the 
study of formal language theory. Head and Lando in Periodic DOL Languages proposed the idea 
of deciding whether or not a given DOL language has the property that every word in it is 
a primitive word. After reducing the general problem to the case in which h is injective, it will be 
shown that primitivity is decidable when ((A)h)* is an almost cylindrical set. Moreover, in this 
case, it is shown that the set of words which generate primitive sequences (given a particular 
DOL scheme) is an algorithmically constructible context-sensitive language. An undecidability 
result for the PWDOL primitivity problem and decidability results for cases of the RWDOL 
primitivity problem are also given. 

1. Introduction 

The first few definitions are essential background. Many of these concepts can be 
found in [ll]. 

Definition 1.1. Let A be a finite alphabet and h : A + A* be an endomorphism of A*. 
The pair (A, h) is called a DOL scheme. If w E A*, then the triple (A, h, w) is called a DOL 
system. 

Definition 1.2. Given a DOL system S, = (A, h, w), the language generated by S, 
(which we will denote L(S,)) is ((w)h’ 1 i 2 0). 

Definition 1.3. Let h: A + A* be an endomorphism. Then h is simplijable if 
there exists an alphabet A with 1 AI < 1 A 1 and morphisms hl : A -+ A* and hz : A -+ A* 

such that 
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A*hA* 

h, h I/’ 2 

A* 

h = hIhz. If h is not simplifiable, then h is elementary. A DOL scheme in which h is 
elementary is called an elementary DOL scheme. 

In [ll], it is shown that it is decidable if a DOL scheme is elementary. Moreover, it is 
shown that there are < IAl - lAeleml (where (Aelem] is the cardinality of the “corres- 
ponding” alphabet of the elementary DOL scheme) algorithmically constructible 
simplifications to reach this elementary system from the original. Also, please note 
that elementary morphisms are injective (for details see Cl]). I will now state what it 

means for a DOL system to be primitive. 

Definition 1.4. Let S, = (A, h, w) denote a DOL system. Then, S, is primitive if every 
member of L(S,) is also in Prim, where Prim = (v E A+ ( v is primitive). Otherwise, S, 
is nonprimitiue. The smallest i 2 0 for which (w)h’ is nonprimitive is called the index of 
S W’ 

Example 1.5. Consider A = (a, b, c} and h : A + A* defined by 

(a)h = a’bca*, (b)h = bc and (c)h = c. 

Then, for wr = ab, S,, = (A, h, wl) is nonprimitive since (w,)h = a*bc a*bc is not 
a primitive word but for w2 = b, S,, is primitive since (w2)hi = bc’ for every i 2 0. 

Deciding primitivity for a DOL system S, = (A, h, w) can be reduced to deciding 
primitivity for some constructible elementary DOL system Sti = (A, h, W). 

The reduction criterion discussed in this section is completely analogous to the one 
used by Lando in “Periodicity and Ultimate Periodicity of DOL Systems” (see [lo]). 
Proposition 1.6 is routine and will be stated without proof. 

Proposition 1.6. Assume 

A*h A* 

4 
h, I ‘I 4 

h=h,h, 

/ 

where h, hI and h2 are morphisms, h = hI h2 and 6 = (v)h,. Then, 
(i) S, = (A, h, u) is nonprimitive if and only if SC = (A, h, 5) is nonprimitive. 

(ii) If S, is nonprimitive with index i 2 0, then SC is nonprimitive with index i or i - 1. 
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Using Proposition 1.6 and the fact that an elementary DOL scheme “corresponding” 
to our original scheme can be algorithmically constructed, the following corollary can 
be stated. 

Corollary 1.7. Assume S = (A, h) is a DOL scheme. Then, there exists an elementary DOL 

scheme (A,lem, he& and morphisms hl: A -+ A,*,,, and h2: Aelem -+ A* such that 

hlh2 = hk and hzhl = hk,,,, where k d (Al - (Aeleml. 

Moreover, (A, h, u) is nonprimitive with index i 3 0 if and only if (Aelem, he,_ Us,,,,,) 

is nonprimitive with index ielem E {i - k, . . . , i} (Note: uelem = (u)h,,,,) and i is the 
index of S, = (A, h, u). Also, Selem = (Aelem, h,,,,) can be algorithmically constructed. 

Proof. Remember from Section 1 that if S = (A, h) is not elementary, it follows that 
there exists a finite number k 6 I A I - 1 Aelem I of algorithmically constructible simplifi- 
cations to reach an elementary system (again, for details see [ 111). From the proof of 
Theorem 2.4 in Lando’s “Periodicity and Ultimate Periodicity of DOL Systems” (see 
[lo]), it follows that there exists hl : A + A,*,,, and h2 : Aelem + A* such that h,hz = hk 

and h2hl = hiI,,, where k is as defined above. Finally, from proposition 1.6, it follows 
that S, is nonprimitive with index i 3 0 if and only if Selem is nonprimitive with index 
Jo {i - k, . . . , i} as required. 0 

Hence, the problem of deciding primitivity in the general case is reducible to 
deciding primitivity in the elementary case and thus we can decide the general case by 
analyzing a DOL system in which h is injective. In Section 2 of this paper, we shall 
present the algorithm for deciding the DOL Primitivity Problem in the case when 
((A)h)* is an almost cylindrical language. 

2. Primitivity and almost cylindrical languages 

In the case of a DOL scheme S = (A, h) in which h is injective, we will focus on the set 
of primitive words in A+ which have the property that the corresponding DOL system 
is nonprimitive with index i 3 1. 

Definition 2.1. Let S = (A, h) be a DOL scheme and i 2 1 be an integer. Then, 

NonPrimcs,, = {v E A+ I S, is nonprimitive with index i} 

For i = 0, NonPrim(,, 0j = (Prim)‘. 

We shall need the concepts of cylindrical and almost cylindrical languages of A*. 
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Definition 2.2. A language L c A* is called cylindrical if for each v E Prim, either 
v+ E L or v+ n L = 8. A language L is called almost cylindrical if for all but a finite 
number of vE Prim, vf E L or vfnL = 8. 

The following theorem relates the equivalence of the finiteness of NonPrim(s, 1) and 
((A)h)* being almost cylindrical when h is an injective morphism. 

Theorem 2.3. Let S = (A, h) be a DOL scheme in which h is injective. Then, the following 

are equivalent: 

(i) NonPrim(s, 1) is a finite set. 

(ii) ((A)h)* is almost cylindrical. 

Proof. First, assume NonPrim(s, 1) is finite. Then, there exist only a finite number of 
distinct primitive words vl, . . . , uk (k 2 0) such that (vi)h = wfi, where Wi E Prim and 
&>2foriE{l, . . . , k}. Now, consider 

T = {w E Prim1 w+n(NonPrim(s,l,)h # 0} = {wl, . . . ,wk}. 

As the previous line indicates, note that 1 T ( = 1 NonPrimCs, I) ( = k. Thus, consider any 
w E Prim - T. I will show that either w+ E ((A)h)* or w+n((A)h)* = 8. Assume 
w’n((A)h)* # 0. Then there exists e 2 1 and v E A+ such that (v)h = we. Since h is an 
injective morphism, it follows that if e is the minimum exponent such that we E ((A)h)*, 

then v is primitive. Thus, we may assume, without loss of generality, that v E Prim. But 
w 4 T, hence v$ NonPrim(s, 1J. Thus, e = 1 and so wf E ((A)h)*. Hence ((A)h)* is 
almost cylindrical. 

Conversely, assume ((A) h)* is almost cylindrical. Consider 

Y = {w E Prim) (i) w’n((A)h)* # 0 and (ii) w+ $Z ((A)h)*}. 

Since h is an isomorphism onto ((A)h)*, it follows that 

ibI ((y,i)h-InPrim) = IYI = k, 

where Y = {yl, . . . ,yk}. Let 2 = U:=I((y’)h-‘nPrim). The final claim is that 

Z = NonPrim(s, I,. To prove this, first assume z E 2. Then z is primitive and 
(z)h E {yi}+ for some i E (1, . . . , k} and yi E Y. But since yi E Y and yin((A)h)* # &?I, 
yic c ((A)h)*. Hence, (z)h = yp, where e > 2 and thus z E NonPrimCs,I,. Finally, if 
z E NonPrim(s, 1), then there exists a primitive w E A+ such that (z)h = we, where e 3 2. 
I claim that w E T. Obviously, w+n((A)h)* # 0. Now, I will show wf $Z ((A)h)*. If 
w+ E ((A)h)*, this would imply w E ((A)h)*. But since h is an isomorphism onto 
((A)h)*, there must exist a primitive word i # z such that (?)h = w. But then, 
($)h = (z)h = we and z” # z which contradicts the fact that h is injective. Thus 
z = NonPrim(s, 1) and hence NonPrim(s, 1) is finite as required. 0 
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Note that the previous proof also yields that NonPrim(s, 1J = 8 if and only if ((A)h)* 
is cylindrical (given again that h is injective). In the case when h is injective, the 
following theorem proved by the author in [3] will be of great use. 

Theorem 2.4 (Harrison [3]). Assume h: A -+ A ’ is an injective endomorphism and v, 

w E Prim. Assume (u)h = we, where e 2 1. Then Iv1 d 1~1. 

Hence, when h is injective, the following corollary is obtained from Theorems 2.3 and 
2.4. 

Corollary 2.5. Let S = (A, h) be a DOL scheme in which h is injective. Assume ((A)h)* is 

almost cylindrical. Then, U ,P”= 1 NonPrim(s, 1, is a jinite set. 

Proof. By Theorem 2.3, NonPrim(s, I) is finite since ((A)h)* is almost cylindrical. Let 
k = max { I w I 1 w E NonPrim(s, 1,}. Now assume u E NonPrimcs, i) for some fixed i 3 2. 

Then, (v)h’- ’ = w E NonPrim(,, 1J. Thus, 1 VI < 1 w 1 since h is nonerasing and hence 
IIJ,‘Z=,NonPrim(s,i,I < klA’ and thus is finite as required. 0 

Hence, the following conclusions about primitive and nonprimitive DOL systems 
can be drawn in the case when h is injective. 

Corollary 2.6. Let S = (A, h) be a DOL scheme in which h is injectiue. Assume ((A)h)* is 

almost cylindrical. Then NonPrims = u E ,, NonPrim(s, i) and Prims are context-sensi- 

tive languages. 

Proof. Follows from Corollary 2.5, the fact that Prim is a context-sensitive language 
and that the class of context-sensitive languages are closed under complementation 
and union with finite sets (see [7] and [S]). q 

The issue of constructing NonPrim(s, II (and hence u CEO NonPrimCs,i, = NonPrims 
because of Corollary 2.5) in the case when h is an injective morphism must now be 
considered. The following definitions and terminology are essential to this study. 

Definition 2.7. Let L E A*. Then 
(i) The root of L is {v E Prim I II” E L for some n 3 l} (which will be denoted 

Root(L)). 

(ii) The girth of L is I Root(L 

(iii) The radical of L (which will de denoted Pad(L) is {w E A* I w” E L for some 
n> l}. 

The following important proposition about almost cylindrical languages will now be 
stated. 
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Proposition 2.8. Let L c A*. Then L is almost cylindrical if and only if 

Rad(L)n Rad(L’) has jnite girth. 

Proof. Consider V = (v E Prim ( u+n L # 8 and v+ $ L}. It will first be shown that 
V = Root(Rad(L)n Rad(L’)). If v E V, there exists e, # e2 E Zf such that ael E L and 
ve* E L’. Thus, u E Rad(L)n Rad(L’) and hence z) E Root(Rad(L)n Rad(L’)) since 
u E Prim. Now, conversely if u E Root(Rad(L)n Rad(L’)), there exists n 3 1 such that 
v” E Rad(L) n Rad(L’). Hence, be definition, there exists e, # e2 E Z+ such that tFln E L 

and P’ E L’. Thus, v E V since vf n L # 8 and v+ $Z L. Now, the statement 
of the proposition will follow easily. If L is almost cylindrical, then 
I/ = Root(Rad(L)nRad(L’)) is finite and hence Rad(L)n Rad(L’) has finite girth. 
Conversely, if Rad(L)n Rad(L’) has finite girth, V is finite and so L is almost 
cylindrical as required. 0 

The following lemma uses two essential results of Head and Ito in [6] and Ito et al. 
in [9], respectively. 

Lemma 2.9. Let L E A* be regular and AL = (Q, I, T, 6, F) denote a DFA recogniz- 
ing L. Then, 

(i) An automaton for Rad(L) can be algorithmically constructed. 
(ii) It is decidable whether or not L has finite girth. If L has finite girth, Root(L) can 

be algorithmically constructed and hence the girth of L can be effectively computed. 

Proof. The statement and proof of(i) are given in [6]. In [9], it is shown that given 
a regular language L, it is decidable whether or not Ln Prim is finite. Since 
Root(L) = Root(Rad(L)), the following algorithm can be used to construct Root(L): 

Algorithm. Given L, use (i) to construct a DFA for Rad(L). Let n denote the number of 
states in this DFA. Decide if Root(L) is finite or not be applying the algorithm of Ito 
et al. from [9] to Rad(L). If Rad(L) (and hence L) does not have finite support, halt. 
Otherwise, perform the following: 

Root(L) c 8 
While Rad(L) ( )8 

{It follows from the work in [9] that since Rad(L) ( )@ and Rad(L)n Prim # 8, 
there exists a primitive word w of length < 3n - 3 in Rad(L).} 

Root(L) + Root(L) u {w} 
Rad(L) +- Rad(L) - w* 
end while 

end algorithm 

Thus, using the aforementioned algorithm the proof is complete. 0 
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Thus, from Lemma 2.9 and Theorem 2.4 we attain the following result. 

Theorem 2.10. Let S = (A, h) be a DOL scheme in which h is injective. Then, 
(i) It is decidable whether or not NonPrim(s, 1, (and hence u ,“= 1 NonPrim& isfinite. 

(ii) If NonPrim(s, 1) isfinite, then NonPrim(s, 1, can be eflectively constructed. More- 

over, NonPrims and Prims can be efectively constructed. 

Proof. Given S = (A, h), construct the automaton for Z = Rad(((A)h)*)n 

Rad((((A)h)*)‘) using Lemma 2.9 and the constructions for the intersection of two 
regular languages (see [7]). By Proposition 2.8, Z has finite girth if and only if ((A)h)* 

is almost cylindrical. Hence, use the algorithm of Lemma 2.9 to decide if Z has finite 
girth. If it does, it follows from Theorem 2.3 that NonPrim(,, 1I is finite. If Z has infinite 

girth, NonPrim(s, 1) is infinite and the proof of (i) is complete. 
To prove (ii), again use Lemma 2.9 to construct Root(Z). I now claim that 

Root(Z) = {w E Prim I3v E NonPrim(s, 1) such that (v)hn wf # 01. To show this, first 

assume w E Root(Z). Then there exist e, # e2 E Z, such that we1 E ((A)h)* and 
we2 E (((A)h)*)‘. Since h is injective, there exists only one distinct primitive word v such 
that (v+)h c w+. Thus, since v is primitive and h is a morphism, there exists an c( > 1 
such that (v)h = wa. But since w”‘$((A)h)* and h is an injective morphism, it follows 

that CY > 1 and so v E NonPrim(s, 1I and (v)hn wf # 0. Conversely, if there exists 

VE NonPrim(s,l, such that (v)h = we, where e 2 2, then w E Rad((A)h)*n 

Rad((((A)h)*)‘) (since h is also injective which implies w E Rad((((A)h)*)‘)) and thus 
w E Root(Z) as required since w is primitive. 

Now, given that Root(Z) = {w E Prim I3v E NonPrim(s, 1) such that (v)hnw+ # 0} 

consider v E NonPrim(s, 1,. From Theorem 2.4 and the above set equality, it follows 
that Iv1 d max{ IwI 1 w E Supp(Z)}. Hence NonPrim(s,I, is finite and can be algorithmi- 
cally constructed. Finally, since for any v E NonPrim(s,i, (i > 2), Iv1 6 

max { I w 1 I w E NonPrim(s, 1) }, it follows that u ,P”= 1 NonPrim(s, i) = u 1” ‘: NonPrim(s, i) 
(where k = max { ) w I I w E NonPrim (s, 1,}), is an algorithmically constructible finite set 
(since h is lambda-free) and thus NonPrims, and Prims are constructible CS languages 
as required (see [S] for proof of CO-C‘S is CS). 0 

Corollary 2.11. Let S = (A, h) be a DOL scheme and Selem = (Ael,,, h,,,,J denote the 
“corresponding” elementary scheme (see Corollary 1.7). Then, if (A*)h,,,, = 

((A)h)h,,,,)* is almost cylindrical, it is decidable for a given v E A* whether or not S, is 
primitive. 

Moreover, please note again that a language L E A* is cylindrical if and only if 
Rad(L)nRad(L’) = 0. Hence, it is decidable if a regular language L is cylindrical. 
Since ((A)h)* is cylindrical if and only if NonPrim(s, 1I = 0, the following corollary is 
immediate. 
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Corollary 2.12. Let S = (A, h) be a DOL scheme and Selem = (Aelem, helem) denote the 

corresponding elementary scheme. If((A) helem)* is cylindrical, then S, is primitive if and 

only if u is primitive. 

In [S] and [2], it was shown that finite intersections of submonoids generated by 
a special class of finite codes called keycodes were in fact cylindrical languages. 
However, submonoids of A* generated by finite biprefix codes are not necessarily 

almost cylindrical as the following example will illustrate. 

Example 2.13. Consider A = {a, b, c} and consider h : A + A+ defined by (a)h = ab, 

(b)h = cbc, (c)h = bcb, (d) h = da and (e) h = cd. 

Note that (A)h is a biprefix code. Now, consider S = (ab(cb)‘dc(bc)‘e 1 i 2 0} c A*. 
For any i 2 0, 

(ab(cb)‘dc(bc)‘e)h = (ab)(cbc)[(bcb)(cbc)]’ (du)(bcb)[(cbc)(bcb)]‘(cd) = [abcbc(bc)3id-J2 
and so S E NonPrimCs,l, for S = (A, h). Hence, NonPrim(s, 1j is infinite and thus 
((A)h)* is not almost cylindrical. 

In Section 3 of this paper, the PWDOL and RWDOL primitivity problems will be 
discussed. 

3. The PWDOL and RWDOL primitivity problems 

The concept of a PWDOL system was first introduced by the author in [3]. The 

necessary background definitions will be given so the PWDOL and RWDOL primitiv- 
ity problems can be discussed. 

Definition 3.1. A PWDOL scheme S = (A, P, H) is an ordered triple where 

(1) A is a finite alphabet. 
(2) P= {PI, ..* , Pk} is a finite partition of A*. 
(3) H = (h,, . . . , hk) is called a piecewise endomorphism of A*, i.e. (w)H = (w)hi if 

WEPiforiE(1, . . . , k}, where each hi is an endomorphism of A*. 
A PWDOL scheme in which every member of the partition is a regular language is 

called an RWDOL scheme. 

Definition 3.2. A PWDOL (RWDOL) system a fourtuple S, = (A, P, H, w) in which 
S = (A, P, H) is a PWDOL scheme and w is called the initial word of S,. The language 
generated by S, (denoted L(S,)) is defined as { (w)H” 1 i 2 0} (Note: When P is the 
trivial partition, S, is a DOL system.) 

Definition 3.3. Let A be a finite alphabet. An omega word 52 is an infinite sequence of 
elements from A. Now, consider a PWDOL system S, = (A, P, H, w) in which IPI = k 
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(for some k 3 1). Then, the omega word generated by S, (denoted Q,,,,) is the following 
omega word over the alphabet { 1, . . . , k): 

(Qs_)i =je (1, ... ,k} such that (w)h’-’ E F’j for any i 2 1. 

The control word of length i generated by S, is the prefix of length i of sZs,. 

Now we are ready to define the concept of primitivity for PWDOL systems. 

Definition 3.4. A PWDOL system S, is primitive if L(S,) C_ Prim. Otherwise, L(S,) is 
nonprimitive. 

In [3], properties such as finiteness and periodicity of PWDOL systems were shown 
to be in general undecidable over an arbitrary two-element context-sensitive partition 
of A*. An analogous theorem can be stated here to establish the undecidability of the 
PWDOL primitivity problem in this case. 

Theorem 3.5. Let A be a jnite alphabet, H = (h, h) denote a piecewise endomorphism 

over P = {L’, L), where L is context-sensitive. Then, for a PWDOL system of the form 

S, = (A, P, H, w), the primitivity problem is in general undecidable. 

Proof (Sketch). First, the proof that L’ is CS given that L is CS is given in [8]. Now, 
given a CS language L c A*, consider the alphabet A which is the disjoint union of 
A and {V, $}, SL = $Shuf (A*, L)$ and initial word w = $I’$ which were considered 
in the proof of Corollary 3.4 of [3]. Then, define h : A -+ A+ by (1)h = 1 if 1 E A u ($1 

and (V)h = I,, . . . ,llaI I/, where li is the ith element of A (i E (I, . . . JAI}) and 
h:A-+A+ by (l)h=i if l~Au{$} and (V)h = VV. Then, using an analogous 
argument to the one used in corollary 3.4 of [3], it follows that L(&,) is primitive if and 
only if L = 8 where S,,, = (A, {Si, S,}, H, w). Hence, an algorithm of the type stated in 
the corollary would allow us to decide the emptiness problem for CS languages which 
is a contradiction. Hence, the theorem is established. 0 

In the case of an RWDOL scheme, however, we will see that we can reduce the 
RWDOL primitivity problem to solving the DOL primitivity problem for a finite 
number of DOL systems. We will need some more terminology and results from [3] to 
do this. 

Definition 3.6. Let P = {PI, . . . , Pk} be a finite partition of A* induced by an equiva- 
lence relation N . Let H = (h,, . . . , hk) denote a piecewise endomorphism of A* over 
P. Then H preserves P if for every i E { 1, . . . , k}, there exists j E { 1, . . , k} such that 
(Pi)H G Pj. 

The following proposition is stated and proven in [3]. 
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Proposition 3.7. Let P = {PI, . . . , Pk} be a finite partition of A* and H = (h,, . . . , hk) 

denote a piecewise endomorphism over P which preserves P. Let A = (A, P, H) denote the 

corresponding P WDOL scheme. Then,for each i E (1, . . . , k}, there exist ui E (1, . . . , k) * 

and vi E (1, ... ,k}+ such that for every x, y E Pi, the following properties hold: 

1. s2,X=sz,Y 
2. .Qs, = uivy, where ( Ui 1 < k - 1, 1 vi 1 E ( 1, . , k} and Ui and Vi contain no repeated 

or common letters. 

Using Proposition 3.7, the following three results can be stated. Analogous results 
to these for other PWDOL dynamical properties such as finiteness and periodicity are 
stated and proven in [3]. 

Proposition 3.8. Let S, = (A,&‘, H, w) be a PWDOL system in which H preserves P. 

Then, S, is nonprimitive if and only if T,,, is nonprimitive where T, = (A, h,, (w)h,) is 

a DOL system and Qs, = uvw. 

Proof. First, if we assume T, is nonprimitive, this implies (w)h,,i is nonprimitive for 
some i 3 0. Hence, (w)HI”I + il0l is nonprimitive and thus S, is nonprimitive. 

Conversely, assume S, is nonprimitive. Let i denote the index of S,, i.e., the smallest 
i so that (w) Hi is not a primitive word. Thus, since H is a piecewise endomorphism, it 
follows that (w)Hifk is not a primitive word for any k 3 0. Since !&,,, = uvw, it follows 
that there must exist j 2 0 such that (w)h,,, is nonprimitive and so T, is nonprimitive 
as required. 0 

Corollary 3.9. Let S = (A, P, H) be a PWDOL scheme in which H preserves P = 

(Pi, . . . , Pk}. Then, NonPrims = Uj”= 1 [(NonPrims,)hi’ n Pj)], where Sj = (A, h,j) is a 
DUL schemeforjE [l, . . . , k} and In, = UjVjw is the omega word generated by S, for any 
XE Pj. 

Proof. First, assume x E NonPrim, n Pj for some j E (1, . . . , k). Then, S, is nonprimi- 
tive. Let Szj = UjVp denote the omega word generated by S,. By Proposition 3.7, S, is 
nonprimitive if and only if SjX = (A, hvj, (x)huj) is nonprimitive. Hence, x E (Non- 

Primsj)h;,’ and thus (NonPrimsj)h;’ n Pj for some j E (1, . . . , k) as required. 
Conversely, assume x E (NonPrims,) h, 1 n Pj for some j E { 1, . . . , k} where 

Sj = (A, hVj) is a DOL scheme and as, = G?j = UjVj”. Then, S’jX = (A, hVj, (x)huj) is 
nonprimitive if and only if S, = (A$‘, H, x) is nonprimitive by Proposition 3.8 which 
completes the proof. 0 

Corollary 3.10. Let S = (A, P, H) denote a PWDOL scheme in which H preserves P 

(i) Primitivity is decidable for S, if and only if primitivity is decidable for the DOL 
system T,,, = (A, h,, (w)h,) where Qs, = uvw. 



J. Harrison J Theoretical Computer Science 164 (1996) 29-40 39 

(ii) Zf for each j E { 1, . . . , IPI}, NonPrims, is a constructable CS language, then 

NonPrims is a constructable CS (respectively, recursive) language given that each 

member ofP = {PI, . . . ,Pk} is a CS (respectively, recursive) language. 

Thus, a favorable setting for studying PWDOL system dynamical properties (in 
particular primitivity) is in the case when H preserves P. In the case of a finite partition 
P of A* in which each member of P is a regular language, we can algorithmically pass 
to a refinement M of P with this property. The basic definitions and theorems needed 
to do this will be stated now. For more details of these concepts and proofs of 
theorems, see [4]. 

Definition 3.11. Let - be an equivalence relation on A*. Then - is called a morphic 

equivalence on A* if for every endomorphism h : A + A*, x - y =B (x) h - (y) h. If M is 
a partition of A* induced by a morphic equivalence, then M is a morphic partition of 
A*. If - is a congruence relation on A*, then - is called a morphic congruence on 
A*. 

Definition 3.12. Let A be a finite alphabet. 
Then, 

MORPH = {L E A* 1 P = (L, L’} is refined by a finite recursive morphic partition 
M of A*) 

and 

MORPHCoNG = {L E A*IP = (L, L’} is refined by a finite morphic partition M of 
A* induced by a morphic congruence relation - }. 

Note that when a finite morphic refinement M of the original partition P can be 
algorithmically constructed, Corollary 3.10 can be applied to the PWDOL system 
induced by this refinement to decide primitivity for S, = (A, P, H, x). When S, is an 
R WDOL system, such a refinement can always be constructed. For more details on the 
following theorem and its corollaries, see [4]. 

Theorem 3.13 (Harrison [4]). Let - be a congruence ofjnite index on A* where A is 

afinite alphabet. Then there exists an algorithmically constructible morphic refinement 

M ofJinite index of the partition P induced by - . Hence, MORPHCoNG = REG (the 

class of regular languages). 

From the above results, the final result of the section is obtained. 

Corollary 3.14. Let S = (A, P, H) be an R WDOL scheme. Let M be an algorithmically 

constructible Jinite morphic refinement of P, S = (A, M, H) denote the corresponding 
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R WDOL scheme induced by Mand let 52, = s2s,+ denote the omega word generated by S,, 
where w E Mj EM. Then, 

(i) S, is primitive if and only if T,,, = (A, h,, (w)h,) is primitive where T,,, is a DOL 
system. 

(ii) If for each jE (1, . . . , [MI}, NonPrimTj is a constructible CS language, then 
NonPrims is a constructible CS language (where Tj = (A, h,,) is a DOL scheme for each 

jE (1, . . . ,M}). 

Proof. Follows directly from Corollary 3.10 and Theorem 3.13. 

4. Summary and related work 

In [2] and [5], keycodes were shown to generate submonoids of A* which are 
cylindrical languages. It is my hope that this work will help to spur study on 
determining which (if any) well-known classes of finite codes that aren’t keycodes 
generate submonoids which are almost cylindrical languages. For more information 
on PWDOL systems and their dynamical properties, see [3]. 
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