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SUMMARY

We have ablated the cellular RNA degradation ma-
chinery in differentiated B cells and pluripotent
embryonic stem cells (ESCs) by conditional muta-
genesis of core (Exosc3) and nuclear RNase
(Exosc10) components of RNA exosome and iden-
tified a vast number of long non-coding RNAs
(lncRNAs) and enhancer RNAs (eRNAs) with emer-
gent functionality. Unexpectedly, eRNA-expressing
regions accumulate R-loop structures upon RNA
exosome ablation, thus demonstrating the role of
RNA exosome in resolving deleterious DNA/RNA hy-
brids arising from active enhancers. We have uncov-
ered a distal divergent eRNA-expressing element
(lncRNA-CSR) engaged in long-range DNA interac-
tions and regulating IgH 30 regulatory region super-
enhancer function. CRISPR-Cas9-mediated ablation
of lncRNA-CSR transcription decreases its chromo-
somal looping-mediated association with the IgH
30 regulatory region super-enhancer and leads to
decreased class switch recombination efficiency.
We propose that the RNA exosome protects diver-
gently transcribed lncRNA expressing enhancers by
resolving deleterious transcription-coupled second-
ary DNA structures, while also regulating long-range
super-enhancer chromosomal interactions impor-
tant for cellular function.
INTRODUCTION

Recent advances in RNA biology have revealed a plethora of

non-coding RNA transcripts whose identity and functions were

previously unknown. It has been postulated that transcription

control of coding genes is modulated by non-coding RNAs

such as enhancer RNAs (eRNAs) (Kim et al., 2010) and long inter-

genic non-coding RNAs (lincRNAs) (Rinn and Chang, 2012). Of
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note, a significant number of non-coding RNAs are characterized

as being expressed from regions proximal to the transcription

start sites (TSSs) of coding genes. These transcripts include pro-

moter-associated long RNAs (PALRs, >200 bp and bidirectional)

(Kapranov et al., 2007), promoter-associated short RNAs

(PASRs, 20–100 nt) (Kapranov et al., 2007), TSS-associated

RNA (TSS-aRNA, small and divergently transcribed RNA) (Core

et al., 2008; Seila et al., 2008), and transcription initiation RNAs

(tiRNAs, 18 nt long and located 20 nt downstream of the coding

TSS) (Taft et al., 2009). In addition, a large fraction of TSS-prox-

imal transcriptional expenditure is dedicated to the production of

unstable non-coding RNAs that are subject to RNA exosome-

mediated degradation (PROMPTs, uaRNAs, xTSS-RNAs) (Flynn

et al., 2011; Pefanis et al., 2014; Preker et al., 2008). Although the

characteristics of these new RNA species may overlap, it is

abundantly clear that these non-coding RNAs function in the

regulation of transcription initiation and transcription elongation

by various mechanisms, including control of RNA polII pausing

and recruitment of chromatin modification factors (Flynn and

Chang, 2012; Reyes-Turcu and Grewal, 2012; Shin et al., 2013).

Recently, some of these ncRNAs have been shown to be sub-

strates of the RNA surveillance complex, RNA exosome (Ander-

sson et al., 2014a, 2014b; Pefanis et al., 2014; Wan et al., 2012).

The eukaryotic RNA exosome complex functions in both the

nucleus and the cytoplasm. Nuclear exosome is involved

in 30-50 processing of rRNAs, sn/snoRNAs, degradation of

hypomodified tRNAs, and cryptic unstable transcripts (CUTs),

whereas cytoplasmic exosome is responsible for the degrada-

tion of aberrant mRNA species subject to nonsense mediated

decay, non-stop decay, or no-go decay (Schmid and Jensen,

2008; Chlebowski et al., 2013). The eukaryotic exosome com-

plex is composed of a nine subunit core, consisting of six distinct

proteins forming a ‘‘ring’’ and three distinct RNA-binding-

domain-containing proteins forming a ‘‘cap’’ structure required

for the stabilization of the core structure. Enzymatic activity of

the exosome complex is provided through two additional sub-

units: Rrp44 (Dis3) and Rrp6 (Exosc10) (Houseley et al., 2006; Ja-

nuszyk and Lima, 2011; Liu et al., 2006; Lorentzen et al., 2008).

Rrp6 is a nuclear-specific 30-50 distributive exoribonuclease

(Lykke-Andersen et al., 2009). Although in vitro Rrp6 and Dis3
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Figure 1. Generation of RNA Exosome Mutant ESCs and Transcriptome Analysis

(A) Exosc10COIN allele and conversion to Exosc10COINinv. Cre-mediated inversion of loxP pair (blue triangles) and subsequent deletion via lox2372 pair (red tri-

angles). FP635-expressing terminal exon represented by red arrow. SA, splice acceptor.

(B) Induction of fluorescent reporter FP635 in Exosc10COIN/LacZ ROSA26CreERt2/+ B cells following 4-OHT treatment.

(C) qRT-PCR analysis of Exosc10 mRNA expression in 4-OHT-treated, LPS+IL-4-stimulated B cells. Indicated Exosc10 genotypes on ROSA26CreERt2/+ back-

ground. Expression levels normalized to cyclophilin A (Ppia) and plotted relative to Exosc10WT/WT. Splenic B cells were isolated and treated with 4-OHT for 24 hr,

and the cells were then washed. Total cellular RNA was isolated after 72 hr of B cell culture. Three technical replicates; error bars represent SD.

(legend continued on next page)
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bind the RNA exosome core (Exo9) independent of each other,

Exo9 may interconnect the properties of the two RNase subunits

in vivo (Schaeffer et al., 2009; Schaeffer and van Hoof, 2011;

Wasmuth and Lima, 2012) so that different types of RNA sub-

strates can be processed/degraded. Crystal structure analysis

of an Rrp6-containing yeast RNA exosome complex suggests

that Rrp6 may function in regulating the size of the central chan-

nel through which RNA traverses prior to degradation (Wasmuth

et al., 2014). The true nature of Rrp6 function within the RNA exo-

some complex, via its distributive RNase activity and/or its

contribution to central channel regulation, is incompletely under-

stood. Moreover, mammalian RNA substrates of the RNA exo-

some complex with or without the Rrp6 component have not

been systematically identified. The activity of the RNA exosome

in co-transcriptionally degrading RNA plays a critical function in

the nucleus, with recent observations in yeast and mammalian

cells indicating a role for RNA degradation in early transcription

termination (Colin et al., 2014; Hazelbaker et al., 2013; Lemay

et al., 2014; Pefanis et al., 2014; Richard and Manley, 2009;

Shah et al., 2014; Storb, 2014; Sun et al., 2013b). As such, the

role of RNA exosome in chromatin-associated events is a major

focus of ongoing research.

In this study, we reveal and analyze the transcriptomes of

Exosc3- and Exosc10-ablated embryonic stem cells (ESCs)

and B cells and identify a vast number of non-coding RNAs

with emergent biological functionality. Strikingly, we find that

the RNA exosome regulates the levels of divergently transcribed

enhancer RNAs by promoting co-transcriptional silencing,

thereby preventing the persistence of detrimental chromatin

structures that can lead to genomic instability. Moreover, we

provide evidence that RNA exosome substrate divergently tran-

scribed loci may regulate interactions with super-enhancer loci.

Thus, our study provides a mode of long-range chromatin regu-

lation not previously described. As an example, we have identi-

fied the long non-coding RNA (lncRNA)-CSR-expressing locus

and report its regulation of immunoglobulin heavy-chain DNA re-

arrangements by functionally interacting with the 30 regulatory
region super-enhancer sequence (30RR).

RESULTS

RNA Exosome Mutant ESCs and Mouse Models
To ascertain the role of the RNA exosome complex in the degra-

dation of non-coding RNAs, we have generated mouse condi-

tional alleles of Exosc10 (expressing the distributive nuclease

subunit Rrp6) (Figures S1A and S1B) and Exosc3 (expressing

the RNA exosome core subunit Rrp40) (Pefanis et al., 2014). Us-

ing these two approaches, inducible RNA exosome deficiency
(D)Western blot detection of Rrp6 (Exosc10) from Exosc10WT/WT (WT) and Exosc10

Indicated Exosc10 genotypes on ROSA26CreERt2/+ background.

(E) Genome-wide differential expression level analysis of RNA subsets in Exosc3 (

ESCs. The error bars represent confidence interval of mean value estimated by a

Procedures).

(F and G) Genome-wide TSS proximal expression profile in Exosc3 (F) and Exosc1

the TSS of annotated coding transcripts are indicated. ESCs were treated with 4-

isolation.

See also Figure S1 and Tables S1, S2, S3, and S4.
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was evaluated in either primary pluripotent embryonic stem cells

or differentiated mature B cells. Exosc10 and Exosc3 allele

schemes utilize Cre/lox conditional inversion (COIN) methodol-

ogy to ablate normal gene expression upon exposure of the

alleles to Cre recombinase activity (Economides et al., 2013; Pe-

fanis et al., 2014). The salient feature of this approach, as utilized

here, is the inversion of one or more endogenous coding exons

resulting in the simultaneous ‘‘activation’’ of a fluorescent

reporter terminal exon within the same locus (Figure 1A).

Exosc10COIN/WT mice were crossed with mice heterozygous for

a null allele of Exosc10 (Exosc10LacZ/WT) to derive ESCs and B

cells of the genotype Exosc10COIN/LacZ. Similarly, we have gener-

ated Exosc3COIN/COIN ESCs and B cells (Pefanis et al., 2014).

Both Exosc10COIN/LacZ and Exosc3COIN/COIN cells also contain

the inducible ROSA26CreERt2 allele allowing for rapid ablation of

RNA exosome activity upon tamoxifen treatment. When B cells

from Exosc10COIN/LacZ mice were treated with 4-hydroxytamox-

ifen (4-OHT) ex vivo, inversion of the Exosc10COIN allele was

observed inmore than 90%of the cells (Figure 1B). qRT-PCR as-

says performed on total cellular RNA demonstrated nearly com-

plete loss of Exosc10 mRNA in 4-OHT-treated Exosc10COIN/LacZ

B cells (Figure 1C). Western blotting of protein extracts from

Exosc10COIN/LacZ B cells and ESCs demonstrated severe loss

of Rrp6 protein following 4-OHT, indicating robust ablation of

Exosc10 expression (Figure 1D). The RNA exosome previously

has been implicated in catalyzing class switch recombination

(CSR) in B cells by supporting the activity of activation-induced

cytidine deaminase (AID) (Basu et al., 2011). Consistent with

these observations, Exosc10-deficient B cells display reduced

CSR efficiency as compared to wild-type (WT) littermate control

B cells (Figure S1C) despite comparable expression of AID

(Figure S1D). Finally, RNA-seq analysis of Exosc10COIN/LACZ

B cells and ESCs confirmed loss of Exosc10 transcripts in

both cell types (Figure S1E). Similarly, and consistent with

previously published characterization of Exosc3 ablation in

Exosc3COIN/COIN B cells, RNA-seq analysis demonstrated a clear

loss of Exosc3 transcripts in both Exosc3COIN/COIN B cells and

ESCs (Figure S1F).

Transcriptome of RNA Exosome Mutant ESCs and B
Cells
We assembled the transcriptomes of littermate pairs of WT con-

trol and Exosc10COIN/LacZ or Exosc3COIN/COIN B cells and ESCs

using next-generation RNA sequencing technology. The bioin-

formatics pipeline used for transcriptome reconstitution is out-

lined in Figure S2A and is described in further detail in the

Extended Experimental Procedures. We find that, in the exo-

tomes (exosome-deficient transcriptome) of Exosc3COIN/COIN
COIN/LacZ (C/Z) protein extracts obtained from 4-OHT-treated ESCs and B cells.

left) and Exosc10 (right) ablated mouse ESCs relative to WT littermate-matched

n improved version of the Tukey-Kramer method (see Extended Experimental

0 (G) ablated mouse ESCs. Sense and antisense transcript levels 2 kb flanking

OHT for 24 hr and then further cultured for an additional 48 hr before total RNA
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Figure 2. Identification and Characterization of RNA Exosome Targeted lncRNAs in ESCs

(A) Heatmap of lncRNAs expressed in Exosc3WT/WT/Exosc3COIN/COIN and Exosc10WT/WT/Exosc10COIN/LacZ genotype pairs. Horizontal lines represent different

lncRNAs, which were ranked by their expression level in matched WT controls.

(B) Distribution of lncRNAs stabilized in the Exosc3-exotome (blue), Exosc10-exotome (red), and both Exosc3 and Exosc10 exotomes (black).

(C) Venn diagram demonstrating the distribution of overlapping lncRNAs in Exosc3 (blue) and Exosc10 (orange) exotomes.

(D) Distribution of x-lncRNA TSS distances from closest neighboring coding gene TSS genome wide.

(legend continued on next page)
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(Figure 1E, left) and Exosc10COIN/LacZ ESCs (Figure 1E, right),

relative levels of lncRNAs, antisense RNAs, and eRNAs are

significantly increased genome wide compared to WT control

ESC transcriptomes. Comparing relative transcript accumula-

tions of lncRNAs, antisense RNAs, and eRNAs indicates that

these non-coding RNA subsets experience greater stabilization

within the Exosc3COIN/COIN exotome in comparison to the

Exosc10COIN/LacZ exotome genome wide. TSS antisense diver-

gent RNAs are well-known substrates of the RNA exosome

complex (Pefanis et al., 2014; Preker et al., 2008; Seila et al.,

2008; Seila et al., 2009). Consistent with expectations, TSS-

associated antisense RNAs are markedly stabilized within the

Exosc3COIN/COIN ESC transcriptome (Figure 1F). A list of anti-

sense RNA in the body of the genes and around the genic TSS

from B cell exotome and ESC exotome are provided in Tables

S1 and S2, respectively. Relative to Exosc3-deficient cells,

TSS-associated antisense transcripts are moderately stabilized

within the Exosc10COIN/LacZ ESC transcriptome (Figure 1G).

Collectively, these results point toward a role for Exosc10 in

the degradation of a subset of RNA exosome-targeted lncRNAs

(presumably fully represented via Exosc3 ablation).

RNA Exosome Substrate Long Non-Coding RNA
Previously, it has been shown that enhancers express bidirec-

tional, divergently transcribed, RNA exosome-sensitive, capped

non-coding RNAs in human cell lines and primary mouse B cells

(Andersson et al., 2014a, 2014b; Pefanis et al., 2014; Wan et al.,

2012). Taking clues from these studies, we evaluated whether

our RNA exosome mutant mouse models could be utilized for

identifying eRNAs in pluripotent ESCs or lineage-committed

matured B cells. Following the analysis pipeline described in

the Extended Experimental Procedures, we observed that a

subset of lncRNAs were strong substrates of RNA exosome.

We describe such transcripts here as exosome substrate

lncRNA (x-lncRNA). As shown via heatmap representation,

both in Exosc3WT/WT/Exosc3COIN/COIN and in Exosc10WT/WT/

Exosc10COIN/LacZ RNA-seq analysis pairs, multiple x-lncRNA

loci are revealed in RNA exosome-deficient ESCs while weakly

expressed in counterpart WT control cells (Figure 2A) (details

of expression and genome coordinates of these transcripts

supplied in Table S3). Next, we performed comparative expres-

sion analysis between Exosc3 and Exosc10 substrate x-lncRNAs

and found that a significant number of, although not all,

Exosc3 x-lncRNAs also classify as Exosc10 x-lncRNAs (Fig-

ure 2B). Specifically, of a total of 2,729 Exosc3 x-lncRNAs in

ESCs, 1,506 also fell within the cutoff for Exosc10 x-lncRNAs

(Figures 2C, S2B, and S2C; details in Table S3). Surprisingly,

only 59% of Exosc3 x-lncRNAs described here have been re-

ported previously (Figures 2E and S2D). In fact, 236 of these

identified x-lncRNAs are positioned close to enhancer se-

quences and thus may serve as RNA exosome target ‘‘x-eR-
(E) The pie chart represents distribution of previously reported and newly identifi

represents RNAs unique to that category and non-overlapping with previous cate

proceeding clockwise.

(F) Expression of sense and antisense lncRNA expression profile at the Hoxa1 locu

distribution, multiple lncRNAs are expressed in the sense and antisense directio

See also Figure S2 and Table S3.
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NAs.’’ Moreover, the accumulation of x-lncRNAs mostly maps

within 5–50 kb from the TSS of known coding genes, making it

possible that these lncRNAs regulate gene expression of distal

genes via long-range chromatin interactions (Figure 2D). As

indicated earlier, there are substantial numbers of lncRNAs

that are quite unstably expressed in WT steady-state ESCs,

but their identity cannot be confidently evaluated due to weak

detection. However, RNA-seq analysis of Exosc3COIN/COIN and/

or Exosc10COIN/LacZ cells provides a methodology for the detec-

tion and characterization of highly unstable lncRNA species. One

such example is provided as the sense/antisense x-lncRNAs in

the Hoxa1 locus (Figure 2F). There are multiple species of anti-

sense x-lncRNAs that are expressed in the Hoxa1 locus (Fig-

ure 2F), whose detection is amplified in the Exosc3COIN/COIN or

Exosc10COIN/LacZ exotomes.

RNA Exosome Substrate Enhancer RNA
Some enhancer RNAs (x-eRNAs) are predicted to form a subset

of x-lncRNAs. Thus, we analyzed eRNA stability and identity in

both Exosc3 and Exosc10 exotomes and found overlapping, as

well as distinct, requirements for these two RNA exosome sub-

units (Figure 3A). All eRNAs that could be identified from ESCs

are listed in Table S4. Of a total of 891 Exosc3 x-eRNAs in

ESCs, a subset of 423 displayed a significant enrichment with

Exosc10 loss (Figure 3B). In addition, 86% of the Exosc3 x-eR-

NAs reported here are previously unrecognized. Of the 37

Exosc3 x-eRNAs previously reported in VISTA, a subset of 18

was upregulated following Exosc10 depletion (data not shown).

In B cell exotomes, the degree of overlap between Exosc3 and

Exosc10 x-eRNAs is reduced in comparison to ESC exotomes

(Figure 3C). Of the 870 identified B cell Exosc3 x-eRNAs,

only 62 were Exosc10 targets (Figure 3D). Representative

Exosc3 x-eRNAs within the Cd83 locus were significantly upre-

gulated in Exosc3COIN/COIN B cells and modestly increased in

Exosc10COIN/LacZ B cells (Figure 3E).

x-lncRNA (or x-eRNA) expression is detectable in WT cells

although significantly stabilized in Exosc3COIN/COIN cells (Fig-

ure 3F). Moreover, in both B cells (Figure 3G) and ESCs (Fig-

ure 3H), the degree of conservation for x-lncRNAs genome

wide is greater than a random control set of sequences, albeit

lower in amount than protein-coding DNA sequences in the

mouse genome. To determine the conservation of lncRNAs

that we have identified in this study, we compared x-lncRNAs

with human genes (genome version hg19) using the LiftOver

tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). The percent-

age of genes that are conserved between human and mouse is

shown distributed with different cutoffs. In Figures 3G and 3H,

equivalent numbers of coding genes/random genomic regions

with similar length were generated as controls. For each group

of genes, the percentage that is conserved between human

and mouse (y axis) is calculated based on UCSC LiftOver tool
ed lncRNAs from this study (Guttman et al., 2009, 2010, 2011). Each category

gories, with the initial category designated as ‘‘enhancer region lncRNAs’’ and

s identified from Exosc3 and Exosc10-ablated ESCs. Based on RNA-seq read

ns.

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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(A) Distribution of upregulated ESC x-eRNAs from Exosc3 and Exosc10 exotomes. Pearson correlation is indicated.

(B) Overlap of identified x-eRNAs stabilized from degradation in ESC Exosc3 (blue circle) and Exosc10 (orange circle) exotomes.

(C) Distribution of upregulated B cell x-eRNAs from Exosc3 and Exosc10 exotomes. Pearson correlation is indicated.

(D) Overlap of identified x-eRNAs stabilized from degradation in B cell Exosc3 (blue circle) and Exosc10 (orange circle) exotomes.

(legend continued on next page)
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with given cutoff (x axis) (details in Extended Experimental Pro-

cedures). Taking these observations into account, it is likely

that many x-lncRNAs (and their subset x-eRNAs) are biologically

functional. The dependency of the RNA exosome complex on

Rrp6 (Exosc10) to degrade various subsets of ncRNAs may

vary based on the type of ncRNA and/or the cell type. For

example, xTSS-RNAs (one type of antisense RNA) in B cells (Fig-

ure S3A) or in ESCs (Figure S3B) have markedly increased

representation in Exosc3 exotomes in comparison to Exosc10

exotomes. In contrast, antisense RNA levels arising from gene

bodies were similar between Exosc3 and Exosc10 B cell (Fig-

ure S3C) and ESC exotomes (Figure S3D). Finally, to ascertain

whether any major pathway was affected in the cells following

RNA exosome activity depletion at the time points of RNA

extraction, we performed gene set enrichment analysis (GSEA)

in Exosc3WT/WT and Exosc3COIN/COIN ESCs. As would be ex-

pected, there were some perturbations in gene expression

profiles in Exosc3COIN/COIN ESCs, specifically gene sets

related to organic acid transport and carboxylic acid transport

(for details for GSEA of upregulated and downregulated

pathways in Exosc3COIN/COIN cells, see Tables S5 and S6,

respectively.)

RNA Exosome-Mediated Degradation of eRNAs
Protects Cells from Genomic Instability by Preventing
Formation of DNA/RNA Hybrids and by Promoting
Heterochromatin Marks at Divergent Enhancers
Regions of the B cell genome beyond the Ig loci are susceptible

to hypermutation due to AID activity and may then undergo

chromosomal translocations involving Ig genes. Genomic loci

susceptible to AID-induced chromosomal translocation break

points may also accumulate x-eRNA reads in Exosc3COIN/COIN

B cells in comparison to Exosc3WT/WT B cells. We observed

that some IgH translocation partners identified through translo-

cation capture techniques show x-eRNA expressing divergently

transcribed enhancers as recurrent translocation hotspots.

These include the Birc3 enhancer (Figure S4C), as well as the

Ncoa3 enhancer (Figure S4D). These enhancer regions display

overlapping sense and antisense RNA exosome substrate tran-

scripts. Genomic overlaps between translocation breakpoints

and x-eRNA-expressing regions provide evidence that RNA

exosome-regulated enhancers in the B cell genome could be

sensitive to DNA double-strand breaks resulting from AID, a

physiologically expressed DNA mutator. Indeed, recently it

has been ascertained that Rrp6 (Exosc10) plays a role in DNA

double-strand break repair by affecting recruitment of ssDNA

binding protein RPA (Manfrini et al., 2015; Marin-Vicente et al.,

2015). In fact, multiple studies indicate that AID-induced chro-
(E) x-eRNA stabilization at annotated enhancers within theCd83 locus in Exosc3W

indicated in blue and red, respectively.

(F) Expression levels of x-lncRNAs in ES cells identified from Exosc3WT/WT and E

(G and H) Sequence conservation plot of coding genes (red), identified x-lncRNA

how conserved the lncRNAs we have identified are, we compared the lncRNAs w

edu/cgi-bin/hgLiftOver). The percentage of genes that are conserved between hu

coding genes/random genomic regions with similar length are generated as con

human and mouse (y axis) is calculated based on UCSC Liftover tool with given

See also Figure S3 and Table S4.
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mosomal translocation sites in the B cell genome harbor RPA

for DNA double-strand break repair (Qian et al., 2014; Yamane

et al., 2013).

Antisense RNAs that form co-transcriptional RNA/DNA hybrid

structures called R-loops can initiate premature transcription

termination and be a source of genomic instability (Bhatia

et al., 2014; Pefanis et al., 2014; Skourti-Stathaki et al., 2014).

In addition, such antisense RNAs can be substrates of the

Dicer/Argonaute complex (Skourti-Stathaki et al., 2014) and

RNA exosome (Pefanis et al., 2014). To investigate AID-indepen-

dent DNA break formation in ESCs, we looked at whether x-

eRNA-expressing regions are susceptible to genomic instability

in RNA exosome-deficient cells due to formation of persistent R-

loop structures. ESCs were irradiated with ionizing radiation (20

Gy) and allowed to recover over a period of 30min.We evaluated

three x-eRNA expressing loci neighboring Klf6, Bcl6, and Cd38.

x-eRNA arising from these enhancer loci display divergent

transcription and are sensitive to Exosc3 function (Figures

S4E–S4G). We evaluated the accumulation of DNA double-

strand-break-associated g-H2AX foci at divergent x-eRNA-ex-

pressing regions in Exosc3COIN/COIN and Exosc10COIN/LacZ cells.

g-H2AX accumulation at x-eRNA-expressing sequences was

significantly enhanced in both Exosc3 and Exosc10 ablated

ESC lines, implying a greater propensity for these sequences

to undergo DNA double-strand breaks in the absence of func-

tional RNA exosome complex (Figure 4A). Using immunoprecip-

itation assays with anti-DNA/RNA hybrid S9.6 antibody, we

found that, in Exosc3COIN/COIN and Exosc10COIN/LacZ cells,

x-eRNA-expressing regions are significantly enriched for

RNase-H-sensitive DNA/RNA hybrid structures (Figure 4B). In

contrast, an enhancer region in the ESC genome that does not

demonstrate divergent transcription was not enriched for g-

H2AX foci or R-loops (Figures S4I and S4J, respectively). These

observations point toward the possibility that RNA exosome

mutant ESCs are more prone to genomic instability insults at

divergently transcribed enhancer sequences. Telomeric fluores-

cence in situ hybridization (FISH) assays performed on IR-

treated Exosc3COIN/COIN cells revealed a significantly greater

frequency of chromosomal alteration in comparison to control

Exosc3WT/WT cells (Figures S4A and S4B). Taken together,

RNA exosome-mediated degradation of RNA in DNA/RNA hy-

brids at divergently transcribed enhancer sequences might

serve as a mechanism for the maintenance of genomic integrity

in mammalian cells.

The established roles of H3K9me2 and HP1g chromatin marks

in the cellular processes of chromatin condensation and tran-

scriptional repression have recently been identified to appear

at sites of transcription termination of antisense non-coding
T/WT, Exosc10COIN/LacZ, and Exosc3COIN/COINB cells. Sense and antisense RNA

xosc3COIN/COIN transcriptomes.

s (blue), and random control (green) from B cells (G) and ESCs (H). To measure

ith human genes (genome version hg19) by LiftOver tool (https://genome.ucsc.

man and mouse is shown according to different cutoffs. The same number of

trols. For each group of genes, the percentage of genes conserved between

cutoff (x axis).

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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Figure 4. Genomic Instability in RNA Exosome-Deficient ESCs, along with Accumulation of DNA/RNA Hybrids and Loss of Chromatin-

Silencing Markers H3K9me2 and HP1g at x-eRNA-Expressing Sequences

(A) gH2AX immunoprecipitation for DNA double-strand breaks at enhancer sequences resident in the Bcl6 (left), Cd38 (middle), and Klf6 (right) loci in WT,

Exosc10COIN/LacZ, and Exosc3COIN/COIN ES cells following ionizing radiation treatment.

(B) DNA/RNA hybrid immunoprecipitation at Ncoa3 (left), Cd38 (middle), and Klf6 (right) enhancers in WT, Exosc10COIN/LacZ, and Exosc3COIN/COIN ES cells.

(legend continued on next page)
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RNAs (Skourti-Stathaki et al., 2014). Analysis of H3K9me2 (Fig-

ure 4C) and HP1g (Figure 4D) occupancy revealed decreased

levels of these repressive chromatin marks at x-eRNA-express-

ing loci in Exosc3COIN/COIN and Exosc10COIN/LacZ cells. Thus,

RNA exosome-mediated regulation of x-eRNA levels in cells

could occur via two distinct mechanisms, namely via post-tran-

scriptional RNA degradation or possibly through repression of

RNA synthesis by promoting early transcription termination. In

summary, we provide evidence that x-eRNA-expressing DNA

sequences generate potentially deleterious DNA/RNA hybrids

that might contribute to genomic instability.

x-eRNAs Have Biological Function at Super-Enhancer
Sequences
Because enhancers are well-known modulators of gene expres-

sion, we evaluated x-eRNAs that arose from our analyses for

functionality in controlling gene expression. We observed two

peaks of sense and antisense transcription at regions upstream

of the Tgfbr2 gene (Figure S5A). Using CRISPR-Cas9-mediated

deletion of these lncRNA-expressing potential enhancer se-

quences in B cell line CH12F3, we observed a substantial

decrease in the expression of Tgfbr2 mRNA by individually

knocking out either of the two Tgfbr2 x-eRNA elements

(Figure S5B).

We considered whether super-enhancer sequences, which

are characterized by high density of individual enhancers and

high regional enrichment for active chromatin marks, can

generate RNA exosome substrate super-enhancer RNAs (x-

seRNAs). As super-enhancer coordinates and functions can be

identified in B cells using previously published bioinformatic

pipelines (Lovén et al., 2013; Meng et al., 2014), we evaluated

the expression of x-seRNAs in these cells. Our analysis revealed

a significant enrichment of x-seRNAs in both Exosc3 and

Exosc10 exotomes (Figure 5A). Relative to Exosc3COIN/COIN cells,

Exosc10-deficient cells retained significantly greater x-seRNA

degradation activity, potentially due to RNA exosome com-

plexes in these cells possessing the ability to utilize either the

Exosc10-encoded Rrp6 or Dis3-encoded Rrp44 nuclease sub-

unit in the degradation of x-seRNAs. We hypothesized that syn-

thesis of antisense RNAs (either xTSS-RNA or those in the body

of a gene) may functionally engage with super-enhancer ele-

ments to form higher-order chromosomal structures that may

enable their local expression control. We sought such examples,

i.e., super-enhancer sequences neighboring RNA exosome-

sensitive antisense RNA (x-asRNA)-expressing genes and

illustrate two examples here. First, a super-enhancer (Chr

10SE)-enhancer (overlapping the Btg1 gene) pair separated by

a distance of 232 kb from each other was found to express

both x-seRNAs and xTSS-RNAs, respectively (Figure 5B).

Accordingly, both the Chr 10SE x-seRNA and Btg1 xTSS-RNA

are contained within the Exosc3 and Exosc10 exotomes. As a

second example, we identified a Chr1 SE that closely paired
(C) Immunoprecipitation for heterochromatin marker H3K9me2 at enhancer seq

Exosc10COIN/LacZ, and Exosc3COIN/COIN ES cells.

(D) Immunoprecipitation for heterochromatin marker HP1g at enhancer seque

Exosc10COIN/LacZ, and Exosc3COIN/COIN ES cells. Each plot is a representation of

See also Figure S4.
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with an x-asRNA arising within the Btg2 locus. In this case, the

separation of the SE and Btg2 was a mere 4 kb, with both the

x-seRNA and the x-asRNA being part of the Exosc3 and Exosc10

exotomes (Figure 5C). A statistical analysis of the proximity be-

tween xTSS-RNA-expressing genes and x-seRNA-expressing

super-enhancer sequences illustrates a remarkable correlation

that genes less than 310 kb from a SE are statistically far more

likely to express antisense xTSS-RNAs (p < 0.0001; Figure 5D).

The 310 kb distance between xTSS-RNA and x-seRNA-express-

ing sequences was set based on a genome-wide statistical

analysis of distance between these elements in B cells. Beyond

a distance of 310 kb from a super-enhancer, there is a consistent

decrease in correlation of x-TSS-RNA expression (Figure S5C;

details in Extended Experimental Procedures). These observa-

tions at individual loci such as Btg1 and Btg2, along with

genome-wide analyses, support a model whereby super-

enhancer and counterpart gene interactions are controlled by

expression and/or processing of RNA exosome substrate non-

coding RNAs.

Molecular Evidence that Antisense RNA/Super-
Enhancer RNA Expression Regulates Long-Range IgH

Locus Recombination
A pair of divergently transcribed x-lncRNAs was found to be ex-

pressed at a 2.6 Mb distal region downstream of the 30RR of the

IgH locus. Both members of this x-lncRNA pair—named here

as B930059L03Rik and lncRNA-CSR—were significantly more

stable in Exosc3COIN/COIN and Exosc10COIN/LacZ B cells but also

detectably expressed in WT control B cells (Figure 6C). A

detailed map of this lncRNA-locus is shown in Figure S6A; no

transcription factor binding sites were computationally predicted

to overlap this region (Figure S6A). We proceeded to delete the

lncRNA-CSR locus in CH12F3 cells using CRISPR-Cas9 and

demonstrated complete loss of expression of lncRNA-CSR (Fig-

ure 6A). We found that lncRNA-CSR homozygous deleted

CH12F3 cells expressed similar levels of the IgH locus recombi-

nation catalyst enzyme AID (Figure S5D). When lncRNA-CSR-

deficient CH12F3 cells were assayed for CSR efficiency, they

showed substantial defect for isotype switching to IgA (Figures

6B and S5E). Chromosome conformation capture (3C) (using

lncRNA-CSR 3C primer Figure S6A and HS4 region primer Fig-

ure S6B) was performed to assess the interaction frequency of

the lncRNA-CSR locus with regions of the IgH locus 30RR su-

per-enhancer (for details see Extended Experimental Proce-

dures). Remarkably, we observed that the HS4 region of the

IgH locus 30RR interacts with the lncRNA-CSR locus. Deletion

of the lncRNA-CSR sequence substantially decreased the inter-

action frequency between the deleted locus and the 30RR HS4

region, whereas the canonical 30RR and Em interaction remained

similar (Figure 6D). As can be seen from RNA-seq data, the anti-

sense super-enhancer RNA peak corresponding to 30RR HS4

(strongly visible in the Exosc3COIN/COIN track) also corresponds
uences resident in the Bcl6 (left), Cd38 (middle), and Klf6 (right) loci in WT,

nces resident in the Bcl6 (left), Cd38 (middle), and Klf6 (right) loci in WT,

three independent experiments performed (*p < 0.05; **p < 0.01 by t test).
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Figure 5. Super-Enhancer Sequences and Neighboring Conventional Enhancers or Coding Genes Express RNA Exosome Substrate Anti-

sense RNAs
(A) Left: expression of super-enhancer RNAs at 529 annotated super-enhancers within Exosc3 (Exosc3COIN/COIN) and Exosc10 (Exosc10COIN/LacZ) exotomes. x

axis indicates the cutoff of fold change, and y axis indicates the fraction of super-enhancers with higher expression (given x axis) compared with WT. Right:

expression of Exosc3 (blue), Exosc10 (red), and overlapping (black) x-seRNAs in B cells.

(B) A super-enhancer resident in chromosome 10 (SEChr10) and neighboring conventional enhancer element resident at the Btg1 locus express sense (blue) and

antisense (red) x-eRNAs.

(legend continued on next page)
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to the region of interaction with lncRNA-CSR based on DNA

sequencing results from 3C assays (Figure 6C, bottom). The

30RR HS4 region expresses multiple distinct x-seRNAs, as can

be seen from the non-overlapping RNA-seq reads from the

Exosc3COIN/COIN transcriptome (Figure S6C). It is likely that the

lncRNA-CSR element functions as a distal enhancer-like

sequence and promotes the CSR-stimulating activity of the

30RR super-enhancer via the interaction of the antisense

lncRNA-CSR and the HS4 x-seRNA-expressing DNA regions.

Thus, we provide functional evidence that RNA exosome sub-

strate antisense RNA-expressing elements can interact with

super-enhancer RNA-expressing regions to catalyze genomic

rearrangement and organization.

Wewanted to investigate themolecularmechanismof lncRNA-

CSR transcription on the activity of 30RR function in promoting

CSR. The 30RR is known to regulate transcription of switch region

germline transcripts (GLTs) (Birshtein, 2014; Pinaud et al., 2011).

IgSm transcript levels were comparable between parental (WT)

and DlncRNA-CSR CH12F3 clones (Figure 7A). On the other

hand, we observed a significant suppression of IgA germline tran-

scripts (IgSa) in the DlncRNA-CSR CH12F3 clones (Figure 7B).

These observations point toward a role for lncRNA-CSR/HS4

interaction in regulating the transcription of downstream switch

sequence transcripts at the Sa locus. Whether this transcription

regulation is similarly enforced at other switch regions can only

be determined by generating mouse models deleted of the

lncRNA-CSR locus. There is accumulation of long-range DNA re-

arrangements between the IgH (Klein et al., 2011) and lncRNA-

CSR loci in B cells that overexpress AID (Figure S7A). Deletion

of the lncRNA-CSR locus (Figure S6A) is presumed to disrupt

its divergent transcription. We find, at least in these cells in which

the transcription divergence is lost, H3K9me2 levels are

decreased, raising the possibility that some level of heterochro-

matinization of these divergent sequences is important for their

molecular activity to promote 30RR interaction (Figure 7D). These

observations are consistent with enhancer heterochromatiniza-

tion regulation in ESCs by RNA exosome, as shown in Figures

4C and 4D. Finally, we evaluated the effect on 30RR HS4-

lncRNA-CSR interaction in B cells deficient in RNA exosome ac-

tivity (Exosc3COIN/COIN). We find that, in the absence of Exosc3, B

cells have increased HS4-lncRNA-CSR interaction frequency

relative to WT B cells (Figure 7C). However, increased interaction

is not sufficient to promote CSR because the RNA exosome also

regulates AID’s DNA deamination activity in B cells (Basu et al.,

2011; Pefanis et al., 2014; Sun et al., 2013a).

DISCUSSION

We envision that the identification of vast numbers of RNA exo-

some-targeted ncRNAs will enable the elucidation of their physi-

ological roles in various developmental and gene expression

regulatory pathways. Althoughmany lncRNAs and their functions

have been described (Bonasio and Shiekhattar, 2014; Rinn and
(C) A super-enhancer resident in chromosome 1 (SEChr1) and neighboring a conv

antisense (red) x-eRNAs.

(D) Genome-wide correlation between proximity of super-enhancer location and

See also Figure S5.
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Chang, 2012; Sauvageau et al., 2013), our study identifies a sub-

class targeted by RNA exosome (x-lncRNA), many of which have

not been reported previously. To explore, visualize, and analyze

the landscape of these x-lncRNAs, we have generated a public

browser showing strand-specific transcripts in the absence and

presence of the RNA exosome complex subunits (see Extended

Experimental Procedures). Such a tool may shed greater light on

co-transcriptional processing dynamics at individual loci of inter-

est and allow for generation of new hypotheses.

Recent findings have revealed the existence of vast numbers

of intergenic and intragenic enhancer elements throughout

the mammalian genome (Bonasio and Shiekhattar, 2014; Lam

et al., 2014). How their activity is regulated is an exciting and

open question. Enhancers generate eRNA transcripts whose

biological role and regulation beyond chromatin remodeling

are not well appreciated. In this study, we unravel the role of

RNA exosome-mediated degradation of eRNAs expressed

from divergently transcribed loci. We demonstrate that enhancer

RNAs generate complexes with single-strand DNA that are

protected from being converted to sites of genomic instability

by the rapid action of the RNA exosome complex. The formation

of R-looped DNA secondary structures can arise from failure to

undergo proper transcriptional termination (Skourti-Stathaki

et al., 2014). Early transcription termination serves as a mecha-

nism for co-transcriptional RNA exosome recruitment (Lemay

et al., 2014; Pefanis et al., 2014). Thus, in the absence of RNA

exosome, x-eRNAs may accumulate not solely due to lack of

RNA degradation but also due to failure of transiently forming

R-loop structure-induced termination at enhancer loci (Skourti-

Stathaki et al., 2014). Divergent transcription can create

enhanced negative DNA supercoiling that, in turn, promotes

the generation of ssDNA structures surrounding enhancer

TSSs (Rhee and Pugh, 2012), thereby promoting DNA double-

strand breaks and genomic instability (Pefanis et al., 2014).

Such breaks could be caused by the activity of an endogenous

DNA mutator such as cytidine deaminase AID or due to

collisions of replication forks with stalled RNA polymerase com-

plexes at these enhancer sequences (Kim and Jinks-Robertson,

2012). Sense/antisense x-eRNA pairs that formwithin the R-loop

bubble may result in dsRNA that can be processed by RNAi fac-

tors, eventually leading to local accumulation of chromatin

condensation marks such as H3K9me2 and HP1g (Skourti-Sta-

thaki et al., 2014). Lack of RNA exosome activity may skew the

ratio or abundance of sense and antisense eRNA transcripts,

leading to impairment of RNAi pathway recruitment and hetero-

chromatinization. Thus, RNA exosome may play an important

role in promoting transcription termination-coupled silencing of

divergent enhancer sequences genome wide.

Super-enhancersare large,denselypackedenhancerelements

that are occupied by master regulators of transcription and

mediator proteins (Hnisz et al., 2013; Whyte et al., 2013).

These elements are responsible for controlling transcription of

diverse sets of tissue-specific gene expression programs. B cell
entional enhancer element resident at the Btg2 locus express sense (blue) and

antisense x-TSS-RNA expression at neighboring genes in B cells.
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Figure 6. Identification of Divergently Expressed lncRNA-CSR at an Enhancer Region Controlling IgH Recombination in B Cells

(A) lncRNA-CSR expression in parental and lncRNA-CSR�/� CH12F3 cells following CRISPR/Cas9 mediated deletion.

(B) IgA class switch recombination efficiency of lncRNA-CSR-deleted CH12F3 cells obtained from 18 independent lines of lncRNA-CSR�/� CH12F3 cells.

(C) Top: expression profile of the lncRNA-CSR divergently transcribed enhancer locus that is stabilized in Exosc3COIN/COIN and Exosc10COIN/LacZ B cells. Middle:

sense (blue) and antisense (red) tracks for 30 regulatory region super-enhancer transcription in Exosc3COIN/COIN and Exosc10COIN/LacZ B cells. Bottom: DNA

sequencing of the 3C-derived joint PCR product of the super-enhancer IgH 30RR HS4 sequence with the lncRNA-CSR enhancer sequence. The SacI site is

contributed from the lncRNA-CSR locus and the HS4 locus and demonstrates the joining of the two pieces of DNA in the 3C assay.

(D) 3C assay determination of relative interaction frequency of Em with 30RR HS1.2 and lncRNA-CSR locus with 30RR HS4. **p < 0.01 and ***p < 0.001 by t test.

See also Figures S5 and S6.
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Figure 7. Mechanism of lncRNA-CSR-Medi-

ated Suppression of 30RR Super-Enhancer

Function

(A) Germline transcripts at Im in parental cells and

two separate clones of lncRNA-CSR knockouts.

Three independent sets of RNA were isolated for

each cell line and assayed by qRT-PCR.

(B) Germline transcripts at Ia in parental cells and

two separate clones of lncRNA-cSR knockouts.

Three independent sets of RNA were isolated for

each cell line and assayed by qRT-PCR. **p < 0.01

by t test.

(C) Chromosomal conformation capture performed

on Exosc3WT/WT and Exosc3COIN/COIN B cells that

were stimulated for CSR with LPS+IL4 for 24 hr.

The frequency of 30RRHS4 interaction with the

lncRNA-CSR locus was measured by normalizing

to an interaction downstream of the Calr gene lo-

cus. The experiment is a representation of three

independently performed assays. **p < 0.01 by t

test.

(D) The accumulation of H3K9me2 marks (nor-

malized to the presence of H3) in parental (CH12F3

cells), a random CRISPR/Cas9 mutated DPim1

(xTSS-RNA mutated) cell, and DlncRNA-CSR.

Experiment is a representation of three indepen-

dently performed assays. The ChIP assay primer

pairs for various regions surrounding the lncRNA-

CSR locus are shown in the top panel; *p < 0.05 and

**p < 0.01 by t test.

(E) A model of RNA exosome substrate x-seRNA-

expressing super-enhancer interaction with the

divergently transcribing promoter of another

enhancer or protein coding gene.We postulate that

the activity of RNA exosome to process the x-

seRNA and x-eRNAs has a role in titrating the

proper level of interaction between regulatory ele-

ments that ultimately control gene expression.

See also Figure S7.
super-enhancers have been found to overlap large regions of the

human genome susceptible to mutations in diffuse large B cell

lymphomas (Chapuy et al., 2013) (Meng et al., 2014; Qian et al.,

2014). We evaluated super-enhancers for the presence of RNA

exosome-regulated transcripts and correspondingly identified

x-seRNAs. Genes or canonical enhancers in proximity to super-

enhancers express high levels of RNA exosome-regulated anti-

sense RNAs around their TSSs (xTSS-RNAs) or within gene

bodies (x-asRNAs). We hypothesize that super-enhancers may

interact with genes under their regulation via mechanisms that

depend upon transcription of RNA exosome-regulated tran-

scripts. A test of this hypothesis was undertaken, and we

observed that the divergently transcribed lncRNA-CSR enhancer

element interacts with the HS4 region of the 30 regulatory region

super-enhancer of the IgH locus to control class switch recombi-

nation. The dependence of a super-enhancer function on an inter-

acting lncRNA-expressing divergent enhancer provides a newly

identifiedmechanismofgeneexpression regulation (seeFigure7E

for a proposedmodel).Whether the interaction is dependent upon

directRNA-protein complexes that areco-transcriptionally gener-
786 Cell 161, 774–789, May 7, 2015 ª2015 Elsevier Inc.
ated at the cognate pairs of enhancer/promoter and super-

enhancer loci is a question of immediate interest. Furthermore,

the observation that 30RR x-seRNAs and lncRNA-CSR are sub-

strates of RNA exosome provides the possibility that RNA exo-

some regulates long-distance genomic interactions either

through its RNA degradation activities and/or through its ability

to terminate transcription of ncRNAs at enhancers and super-

enhancers.
EXPERIMENTAL PROCEDURES

Details of ChIP experiments, DNA/RNA hybrid immunoprecipitation, and 3C

can be found in the Extended Experimental Procedures.

Exosc10COIN Allele Design and Construction

A mouse Exosc10 locus containing bacterial artificial chromosome (clone

bMQ169f23) was modified using bacterial homologous recombination.

Briefly, a lox2372-loxP array was inserted in the first intron of Exosc10. In a sub-

sequent recombination event, an inverted lox2372-loxP array, inverted FP635

expressing terminal exon (COIN module) in antisense orientation to Exosc10

transcription, and an FRT-flanked neor selection cassette were inserted within



a non-conserved region of Exosc10 exon 2. The Exosc10 COIN module con-

tains a 30 splice acceptor sequence immediately followed by an in-frame

T2A-FP635-pA cassette. Exosc10COINneo BAC recombinants were screened

byPCRacross all fourmodified junctions and confirmed using restrictiondiges-

tion and pulse field electrophoresis. A 20 kb fragment containing the entire

Exosc10COINneo modification was then subcloned into a plasmid containing a

diphtheria toxin A (DTA) cassette. Exosc10COINneo homology arms in the DTA

vector were 6.7 and 8.2 kb. Linearized Exosc10COINneo targeting vector was

electroporated into ROSA26CreERt2/+, 129S6/SvEv x C57BL/6 hybrid ESCs.

Correctly targeted ESC clones were identified using external Southern blotting

probes for both the upstream and downstream homology arms on HindIII or

NsiI-digested genomic DNA, respectively. Exosc10COIN/+ chimeric mice were

created via blastocyst injection of targeted ESCs. Mice with the greatest

ESC-derived coat color contribution were crossed with Tg(ACTB:FLPe) mice

to delete the neor selection cassette and germline transmit the Exosc10COIN

allele. The FLPe transgene was eliminated during backcrossing. All mouse ex-

periments were conducted in accordance with approved Columbia University

Institutional Animal Care and Use Committee protocols.

RNA-Seq Analysis

rRNA-depleted total RNA was prepared using the Ribo-Zero rRNA removal kit

(Epicentre). Libraries were prepared with Illumina TruSeq and TruSeq Stranded

total RNAsample prep kits and then sequencedwith 50–60million of 23 100bp

paired raw passing filters reads on an Illumina HiSeq 2000 V3 instrument at the

Columbia GenomeCenter. The details of generation of exotomes from Exosc3-

deficient or Exosc10-deficient B cells and ESCs and their subsequent analysis

are described in the Extended Experimental Procedures.

Transcriptome Reconstitution

Details of transcriptome reconstitution of the Exosc3 and Exosc10 exotomes

from B cells and ESCs are described in detail in the Extended Experimental

Procedures, and the data are provided in Tables S1, S2, S3, and S4 and in

the ‘‘Exotome browser,’’ which can be accessed from (http://rabadan.c2b2.

columbia.edu/cgi-bin/hgGateway).
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