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A curve C defined over Q is modular of level N if there exists a
non-constant morphism from X1(N) onto C defined over Q for
some positive integer N . We provide a sufficient and necessary
condition for the existence of a modular non-hyperelliptic curve C
of genus 3 and level N such that Jac C is Q-isogenous to a given
three dimensional Q-quotient of J1(N). Using this criterion, we
present an algorithm to compute explicitly equations for modular
non-hyperelliptic curves of genus 3. Let C be a modular curve of
level N , we say that C is new if the corresponding morphism
between J1(N) and Jac C factors through the new part of J1(N).
We compute equations of 44 non-hyperelliptic new modular curves
of genus 3, that we conjecture to be the complete list of this
kind of curves. Furthermore, we describe some aspects of non-
new modular curves and we present some examples that show the
ambiguity of the non-new modular case.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let N be a positive integer and X1(N) (resp. X0(N)) be the classical modular curve corresponding
to the modular group Γ1(N) (resp. Γ0(N)). Many papers have already been devoted to the problem
of finding Q-rational models for these modular curves and their quotients [22,12,17,14,15,10]. In this
work we are interested in modular curves defined over Q which are dominated over Q by X1(N).

In [13,2] the concept of new modular curve is introduced. These are curves dominated by X1(N)

such that the corresponding morphism on their jacobians factors through the new part of the jacobian
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of X1(N). For the genus 1 case, the concept of new modular curve and modular curve are equivalent.
Shimura [19] proved that any elliptic curve with complex multiplication is modular, and provided in
this way the first infinite set of new modular curves of genus 1. Furthermore, in a series of papers,
Wiles et al. [24,23,4] proved that every elliptic curve defined over Q is modular and thus new mod-
ular. Conversely, all new modular curves of genus 1 are elliptic curves defined over Q. In contrast to
the new modular elliptic curve case, for a fixed genus g � 2 the set of new modular curves of genus g
(up to Q-isomorphism) is finite and computable [2]. In the genus 2 case, [2,13] provide a complete list
of new modular curves. More precisely, in their proof [2] of computability of new modular curves of
fixed genus g > 1, the authors develop a deterministic method that provides a finite (but enormous)
list containing, amongst others, all the new modular curves of genus g . The large amount of curves
appearing in this list makes the computation of all new modular curves of genus g > 2 impossible
nowadays. For example, for g = 3,4,5,6 there are respectively 10105, 10239, 10455, 10844 possibilities.
Moreover, [2] provides a sufficient and necessary condition to verify if a new modular abelian variety
is Q-isogenous to the jacobian of a modular hyperelliptic curve. That is, for each level N , they provide
a method to compute all the new modular hyperelliptic curves defined over Q of level N . For the
non-hyperelliptic new modular case, they provide a necessary, but not sufficient condition based on
the canonical embedding (cf. Remark 1).

The aim of this paper is to study the simplest case of non-hyperelliptic new modular curves, i.e.
the case of genus 3 (smooth plane quartics). We first provide a necessary and sufficient condition for a
non-hyperelliptic curve to be modular of level N with the additional requirement that its holomorphic
differentials correspond to the holomorphic differentials of a given modular abelian 3-fold defined
over Q. We then restrict our attention to the computation of all non-hyperelliptic new modular curves
of genus 3 up to a fixed level (see Appendix A).

This paper is organized as follows: In Sections 2 and 3 we review the necessary technical back-
ground about modular curves and non-hyperelliptic genus 3 curves respectively. In Section 4 we
present a method that allows us to recognize if a modular abelian 3-fold corresponds to the jaco-
bian of a non-hyperelliptic modular curve of genus 3. We apply this method to compute all the new
modular non-hyperelliptic curves of genus 3 up to certain levels. In Section 5 we present some exam-
ples that show the ambiguity of the non-new modular case. We conclude this paper with an appendix
that gives equations of 44 non-hyperelliptic new modular curves of genus 3, and we expect these to
be the complete list of this kind of curves.

Remark. A different approach to the one studied in this paper is the one researched at [18]. There
the author developes an algorithm to recognize if a modular abelian 3-fold is the jacobian of a non-
hyperelliptic curve of genus 3. Note that in our problem, if a curve is modular then its jacobian is
modular. Nevertheless, the converse is not true in general.

Notation. All curves and varieties in this paper are smooth and projective, and all the fields will be
of characteristic zero. If X is a variety over a field K , Ω1 = Ω1

X/K denotes the sheaf of holomorphic

1-forms. If A and B are two abelian varieties defined over a field K , the notation A
K∼ B means that

A and B are K -isogenous. Let k, N ∈ N, we denote by Sk(N) the vector space of cuspidal forms of
weight k for the modular subgroup Γ1(N). Throughout the paper all the modular curves and abelian
varieties are defined over Q and we will use the labelling of modular forms and abelian varieties
as it was introduced in [2, Appendix]. For the sake of completeness, we remind this labelling at
Appendix A. Along the paper we will use the canonical identification between the spaces H0(C,Ω1)

and H0(Jac(C),Ω1) (cf. [21, §2.9, Prop. 8]).

2. Modular curves

This section is dedicated to the basic notions about modularity that will be used in the rest of the
paper. [2, §3.1] is a good reference where all the necessary background is included.
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Definition 1. An abelian variety A over Q is said to be modular of level N if there exists a surjective
Q-morphism ν : J1(N) � A. In that case, we say that A is new (of level N) if ν factorizes through
J new

1 (N) over Q.

Thanks to the knowledge of the decomposition of J1(N) over Q, we have that if A is a modular
abelian variety then there exist k normalized eigenforms f1, . . . , fk in S2(N, εk) (where S2(N, ε) de-
notes the vector space of cuspidal forms of weight 2, level N and Nebentypus the Dirichlet character
ε) such that

A
Q∼ An1

f1
× · · · × Ank

fk
, (1)

where A fi is the abelian variety defined over Q attached to f i by Shimura. These modular abelian
varieties are very special. For instance, if f is a newform with q-expansion f (q) = q + ∑

n�2 anqn

(here q = e2π iz), then A f is Q-simple and K f = Q({an}) is a number field of degree equal to the
dimension of A f .

For a modular abelian variety ν : J1(N) � A we define S2(ν, A) to be the subspace of
H0( J1(N),Ω1) determined by the equality

ν∗H0(A,Ω1) = S2(ν, A)
dq

q
.

If A is new, it admits a unique quotient map from J1(N), and hence, the space S2(ν, A) is canonically
attached to A and it is denoted simply by S2(A). Note that if A = A f then S2(A f ) = 〈σ f (q) : σ ∈
Gal(Q/Q)〉. On the other hand, if A is non-new of level N , it may be presented in many ways as a
quotient of J1(N), and thus this space depends on the quotient map ν . Along the rest of the paper,
whenever we refer to a modular abelian variety, we will assume implicitly that we are given a fixed
map ν : J1(N) � A, and thus we will write shortly S2(A) instead of S2(ν, A).

Definition 2. A non-singular curve C defined over Q is said to be modular of level N if there exists a
non-constant Q-morphism π : X1(N) � C . The modular curve C is then said to be new of level N if its
jacobian Jac(C) is new of level N.

Let π : X1(N) � C be a modular curve, then we will use S2(C) to denote S2(π∗, Jac(C)). Here the
dominant Q-morphism is uniquely determined by π , that is, the dominant morphism is π∗ : J1(N) �
Jac(C).

As a first step to understand the structure of new modular curves, the authors of [13] showed that
the set of new modular curves of genus 2 over Q is finite, and that there are exactly 149 such curves
whose jacobian is Q-simple. In [2] the case of genus 2 is completed, showing in particular that there
are exactly 213 new modular curves of genus 2. Furthermore, [2] generalized the above approach for
new modular curves with fixed genus g � 2:

Theorem 1. (See [2].) For each integer g � 2, the set of new modular curves over Q of genus g is finite and
computable.

3. Non-hyperelliptic curves of genus 3

Since parts of the theory concerning non-hyperelliptic genus 3 curves are not easily available
in modern publications, we include here the theory we use throughout the article. Specifically, we
present some facts about holomorphic differentials, canonical embedding and automorphism sub-
groups. Some useful references can be found in [1,5,9,16].
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Let C be a non-hyperelliptic curve of genus 3 defined over a field K and let {ω1,ω2,ω3} be a basis
of the space H0(C,Ω1) of holomorphic differential forms on C . The canonical embedding of C with
respect to this basis is given by

φ : C → P2,

P �→ φ(P ) := [
ω1(P ) : ω2(P ) : ω3(P )

]
,

where ω(P ) = g(P ) for any expression ω = gdtP , with g, tP ∈ K (C) and tP a local parameter at P .
The image φ(C) of C by such a canonical embedding φ is a smooth plane quartic defined over K
and, conversely, any smooth plane quartic is the image by a canonical embedding of a genus 3 non-
hyperelliptic curve.

From now on, let C be a smooth plane quartic defined over K by an affine model f (x, y) = 0. In
these coordinates there is a canonical basis of H0(C,Ω1) given by

x
∂ f
∂ y (x, y)

dx,
y

∂ f
∂ y (x, y)

dx,
1

∂ f
∂ y (x, y)

dx. (2)

The next result will be useful in Section 4.3.

Proposition 1. Let C be a non-hyperelliptic curve of genus 3 and G an abelian subgroup of Aut(C) such that
the genus of C/G is 1. Then G is cyclic of order 2, 3 or 4.

We need a technical lemma to prove this proposition.

Lemma 1. Let C be a non-hyperelliptic curve of genus 3 and G a cyclic subgroup of Aut(C). Then the genus of
C/G is 0 or 1. Furthermore, if |G| > 4 then the genus of C/G is 0.

Proof Lemma 1. We are going to apply Hurwitz’s formula to the covering C � C/G to obtain the
desired result. First we obtain that the genus of C/G is 0, 1 or 2. Let us suppose that the genus is 2,
then by Hurwitz’s formula we have that |G| = 2. Therefore, there exists an involution of C that is not
bielliptic, and thus by [16, Corollary, p. 283] C is hyperelliptic, in contradiction with the hypothesis.

Again, using Hurwitz’s formula we obtain that the genus of C/G is 0 if |G| > 4. �
Proof Proposition 1. According to the possible full automorphism group for C [16], we have

∣∣Aut(C)
∣∣ ∈ {

1,2,3,22,2 · 3,7,23,32,24,23 · 3,24 · 3,25 · 3,23 · 3 · 7
}
.

We can then assume that there exist non-negative integers a � 5,b � 2 and c � 1 such that |G| =
2a · 3b · 7c . Then we have

• c = 0. Since for c 	= 0 there would exist a cyclic subgroup H < G of order 7 and therefore by
Lemma 1 the genus of C/H should be 0. Hence the genus of C/G should also be 0.

• b � 1. The only possibility for 32 to divide |G| is that G ∼= Z/9Z (see the complete classification
of the full automorphism group [16]). Then by Lemma 1 we have that the genus of C/G is 0, in
contradiction with the hypothesis.

• G � (Z/2Z)2. This is a direct conclusion using Accola’s Theorem ([1], [9, V.1.10]) and the fact that
any involution of a non-hyperelliptic curve of genus 3 is bielliptic ([16, Corollary, p. 283]).

• |G| 	= 23,24,25, since any such abelian group has (Z/2Z)2 or a cyclic subgroup of order > 4 as a
subgroup.
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• |G| 	= 2 · 3,22 · 3,23 · 3,24 · 3,25 · 3, since the corresponding groups have at least a cyclic subgroup
of order > 4.

Combining the above statements yields the conclusion that G is cyclic of order 2,3 or 4. �
4. Non-hyperelliptic modular curves of genus 3

4.1. Modular criteria

For non-hyperelliptic curves of genus 3, Proposition 2 will provide us with an effective criteria to
determine when a Q-factor of J1(N) is Q-isogenous to the jacobian of a non-hyperelliptic modular
curve of genus 3. There is a similar version of Proposition 2 for hyperelliptic curves [2], where the
main difference appears in condition (iii)(b) below which is not necessary for hyperelliptic curves.
Lemma 3 will give extra information in the new case.

Proposition 2. Let J1(N) � A be a modular abelian 3-fold defined over Q. The following statements are
equivalent:

(i) There exist a non-hyperelliptic genus 3 curve C and a non-constant Q-morphism π : X1(N) → C such

that S2(C) = S2(A). In particular, Jac(C)
Q∼ A.

(ii) There exist a non-hyperelliptic genus 3 curve C ′
/C

and a non-constant C-morphism π ′ : X1(N) → C ′ such

that S2(C ′) = S2(A).
(iii) For every basis { f1, f2, f3} for S2(A), there exists an irreducible and non-singular homogeneous polyno-

mial F (X, Y , Z) ∈ C[X, Y , Z ] of degree 4 such that:
(a) F ( f1, f2, f3) = 0,
(b) denote by f ′

i the derivative of f i with respect to the complex variable z ∈ H, for i = 1,3, and define
the function

ψF ( f1, f2, f3) := f3 f ′
1 − f1 f ′

3
∂ F
∂Y ( f1, f2, f3)

∈ C
(

X1(N)
)
.

Then ψF ( f1, f2, f3) is a constant function.

The following technical lemma will be used in the proof of the previous proposition.

Lemma 2. Let π : C1 → C2 be a non-constant morphism between curves defined over a field K of characteristic
zero. Let {ω1, . . . ,ωg} be a basis of H0(C2,Ω

1) and f ∈ K (C1) such that f π∗ωi belongs to π∗H0(C2,Ω
1),

for all i. Then f ∈ K .

Proof. One has f π∗ωi = π∗μi for all i, where μi ∈ H0(C2,Ω
1). Applying the pushdown of π we

obtain π∗( f π∗ωi) = π∗(π∗μi). Therefore

π∗
(
div( f )

) + degπ div(ωi) = degπ div(μi).

Let div( f ) = ∑
P∈C1

nP P , then π∗(div( f )) = ∑
P∈C1

nP π(P ). Assume that f is not a constant,
then there exists P0 ∈ C1 such that nP0 < 0. Let Q 0 = π(P0). Thus nP0 + degπ ordQ 0(ωi) =
degπ ordQ 0(μi) � 0. Therefore ordQ 0(ωi) > 0 for all i. This is not possible because the linear sys-
tem of regular differentials is base-point free. �
Proof Proposition 2. The assertion that (i) implies (ii) is trivial. Assuming (ii) we are going to
prove (iii). Let

H
ρ−→ X1(N)

π ′−→ C ′ φ−→ P2 = P
(

H0(C ′
/C,Ω1)).
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Then let x1, x2, x3 the coordinates on P2 and

ωi = φ∗(xi) ∈ H0(C ′
/C,Ω1), i = 1,2,3,

μi = π ′ ∗(ωi) ∈ H0(X1(N)/C,Ω1), i = 1,2,3.

Since C ′ is non-hyperelliptic there exists an irreducible and non-singular homogeneous polynomial
F ∈ C[X, Y , Z ] of degree 4 such that φ(C ′) : F (x1, x2, x3) = 0. Hence F ((φ ◦ π ′)∗(x1), (φ ◦ π ′)∗(x2),

(φ ◦ π ′)∗(x3)) = 0, i.e. F (μ1,μ2,μ3) = 0. Let us call x = μ1/μ3, y = μ2/μ3 ∈ C(X1(N)) and f ∈
C[X1, X2] the dehomogenization of F , then f (x, y) = 0. Now we identify C ′ with φ(C ′) ⊂ P2, and let
f (u, v) the affine equation. Then by (2) we have

H0(C ′,Ω1) =
〈

u
∂ f
∂ X2

(u, v)
du,

v
∂ f
∂ X2

(u, v)
du,

1
∂ f
∂ X2

(u, v)
du

〉
C

.

Therefore

π ′ ∗(u) = π ′ ∗
(

ω1

ω3

)
= π ′ ∗(ω1)

π ′ ∗(ω3)
= μ1

μ3
= x,

π ′ ∗(v) = π ′ ∗
(

ω2

ω3

)
= π ′ ∗(ω2)

π ′ ∗(ω3)
= μ2

μ3
= y.

Thus

π ′ ∗H0(C ′,Ω1) =
〈

x
∂ f
∂ X2

(x, y)
dx,

y
∂ f
∂ X2

(x, y)
dx,

1
∂ f
∂ X2

(x, y)
dx

〉
C

.

Classically, one can identify functions (resp. regular differentials) on X1(N) with modular functions
(resp. modular forms of weight 2) with respect to Γ1(N). So we let μi = f i(z)dz with f i ∈ S2(N),
for i = 1,2,3. So x = f1/ f3 and y = f2/ f3. In particular, { f1, f2, f3} form a basis for S2(A),
F ( f1, f2, f3) = 0 and

x
∂ f
∂ X2

(x, y)
dx = ψF ( f1, f2, f3) f1(z)dz,

y
∂ f
∂ X2

(x, y)
dx = ψF ( f1, f2, f3) f2(z)dz,

1
∂ f
∂ X2

(x, y)
dx = ψF ( f1, f2, f3) f3(z)dz.

Now let us proof that ψF ( f1, f2, f3) is a modular function. A straightforward computation shows that,
if f1, f3 ∈ S2(N), then f ′

1 f3 − f1 f ′
3 ∈ S6(N). The modular form ∂ F

∂Y ( f1, f2, f3) belongs to S6(N) since
∂ F
∂Y (X, Y , Z) is a homogeneous polynomial of degree 3. Therefore

f ′
1 f3 − f1 f ′

3
∂ F
∂ X2

( f1, f2, f3)
∈ C

(
X1(N)

)
.

Let us call it Ψ (z). Then for all i we have

ψF ( f1, f2, f3) f i(z)dz = Ψ · μi = Ψ · π ′(ωi) ∈ π ′ ∗H0(C ′,Ω1).
Then applying Lemma 2 we conclude that the function Ψ (z) is constant.
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Let now {g1, g2, g3} be another basis for S2(A) and M ∈ GL3(C) from the matrix of the change of
basis {g1, g2, g3} to { f1, f2, f3}, that is (g1, g2, g3)

t = M−1( f1, f2, f3)
t . Let us define

G(X, Y , Z) = F
(
(X, Y , Z) · Mt) ∈ C[X, Y , Z ].

Then G is an irreducible and non-singular homogeneous polynomial of degree 4 such that
G(g1, g2, g3) = 0. That ψG(g1, g2, g3) is a constant function follows from the equality

ψG(g1, g2, g3) = det
(
M−1)ψF ( f1, f2, f3).

We now assume (iii) and prove (i). Let g be the genus of X1(N). Since X1(N) and A are both defined
over Q, there exists a Q-basis { f1, . . . , f g} of S2(X1(N)) = S2(N) such that { f1, f2, f3} is a Q-basis
of S2(A). Therefore the corresponding polynomial F (X1, X2, X3) has rational coefficients. Let C be the
smooth plane quartic C : F (X1, X2, X3) = 0. The following map

π : X1(N) → Pg−1 → P2,

P → [
f1(P ) : . . . : f g(P )

] → [
f1(P ) : f2(P ) : f3(P )

]

defines a non-constant Q-morphism from X1(N) to C , i.e. C is a non-hyperelliptic modular curve
(defined over Q) of genus 3. Now, using the same argument as above, since ψF ( f1, f2, f3) is constant,

it follows that S2(C) = S2(A). In particular, this implies Jac(C)
Q∼ A. �

Remark 1. Let J1(N) � A be a modular abelian 3-fold such that S2(A) = 〈 f1, f2, f3〉 and
C : F (X, Y , Z) = 0 be a smooth plane quartic such that F ( f1, f2, f3) = 0 and ψF ( f1, f2, f3) is not
a constant function. Then the jacobian of the curve C is not necessarily isogenous to the abelian va-
riety A. For example: let { f1, f2, f3} be a Q-basis of S2(A), where A is the new modular abelian
3-fold A120A{0,0,0,2} × E120A . There is a Q-rational smooth plane quartic C : F (X, Y , Z) = 0 with
F ( f1, f2, f3) = 0 and for which ψF ( f1, f2, f3) is not a constant function. In fact, C is modular and

Jac(C) � A, but Jac(C)
Q∼ A30A{0,2} × X0(15), i.e. C is non-new of level 30 (see Example 5).

Remark 2. It can happen that for S2(A) = 〈 f1, f2, f3〉Q ⊆ S2(N) there exists a (plane) non-
hyperelliptic curve of genus 3 with equation Cd : Fd(X, Y , Z) = 0 of degree d � 5 such that
Fd( f1, f2, f3) = 0. In that case, the image C : G(X, Y , Z) = 0 of the canonical embedding of Cd
determined by { f1, f2, f3} is a modular curve (since the inclusion between the function fields
Q(C) ⊆ Q(X1(N)) implies the existence of a Q-morphism from X1(N) onto C ), however Jac(C) is
not necessarily Q-isogenous to A (see Examples 3 and 4).

Lemma 3. Let C be a non-hyperelliptic new modular curve of genus 3 and π : X1(N) � C the corresponding
modular parametrization. Then:

(i) There exist h1,h2,h3 ∈ S2(N) with rational q-expansions

⎧⎪⎨
⎪⎩

h1(q) = q + O
(
q2),

h2(q) = q2 + O
(
q3),

h3(q) = O
(
q3),

such that S2(C) = 〈h1,h2,h3〉 with ordq h3 � 5. Furthermore, if Jac(C) is Q-simple, then ordq h3 < 5.



E. González-Jiménez, R. Oyono / Journal of Number Theory 130 (2010) 862–878 869
(ii) Let φ : C → P2 be the canonical embedding given by the basis of regular differentials in (i). Then φ(C) :
F (X, Y , Z) = 0 is a smooth plane quartic defined over Q with the Q-rational point P∞ = (1 : 0 : 0).
Moreover, P∞ is a flex (resp. a hyperflex) if ordq h3 � 4 (resp. ordq h3 = 5).

Remark 3. In the previous lemma, the point P∞ is never a hyperflex of C if Jac(C) is Q-simple. When
Jac(C) does split over Q, it may happen that P∞ is a hyperflex of C (cf. C A

39A{0,6} , C A,B,D
99 from Table 1

in Appendix A).

Proof. (i) Our strategy is to split the proof into three cases according to the decomposition of Jac(C)

over Q:

Case A: Jac(C) is Q-simple. Then Jac(C)
Q∼ A f with f ∈ S2(N,1).

Case AE: Jac(C)
Q∼ A × E , where E is an elliptic curve over Q and A is a Q-simple 2-fold. Then there

exist g ∈ S2(N,1) such that Ag
Q∼ E and f ∈ S2(N, ε) such that A f

Q∼ A and ord(ε) ∈ {1,2,3,4,6}
(since Q(ε) ⊂ K f ).

Case EEE: Jac(C)
Q∼ E1 × E2 × E3, where E1, E2, E3 are elliptic curves defined over Q. Then there

exist f i ∈ S2(N,1) such that A fi

Q∼ Ei , i = 1,2,3.
Following [2, Corollary 7.3(i)], there exists a basis {g1, g2, g3} of S2(C) such that gi(q) = q +∑

n�2 a(i)
n qn , and since C is non-hyperelliptic,

it is not possible that a(1)
2 = a(2)

2 = a(3)
2 . (3)

We are going to apply (3) to our three cases:
Case A. Let f (q) = ∑

n�1 anqn . Then by (3) we have a2 /∈ Q, that is, K f = Q(a2). In this case

S2(A f ) = 〈 f , σ f , β f 〉, where {id, σ ,β} are the Q-embeddings of K f into Q. Now we construct an
explicit Q-basis {h1,h2,h3} for S2(A f ). Let p(x) = x3 + ax2 + bx + c be the minimal polynomial of a2
and

gi(q) = 1

3

∑
n�1

TrK f /Q

(
ai−1

2 an
)
qn, i = 1,2,3.

Then g1, g2, g3 have rational q-expansion and S2(C) = 〈g1, g2, g3〉. Now, let be

h1(q) = g1(q),

h2(q) = 18

disc(p′(x))

(
g2(q) + a

3
g1(q)

)
,

h3(q) = g3(q) − 1

3

(
a2 − 2b

)
g1(q) + 1

9

(
2a3 − 7ab + 9c

)
g2(q) = Aγ3q3 + Aq4 + O

(
q5),

where a3 = α3 + β3a2 + γ3a2
2, since a3 ∈ K f = Q(a2), and

A = 2

3

disc(p(x))

disc(p′(x))
.

Since p(x) has three different real roots, both disc(p(x)) 	= 0 and disc(p′(x)) 	= 0, and therefore A ∈ Q∗ .
After normalizing, we have h3(q) = q3 + O (q4) when γ3 	= 0 and h3(q) = q4 + O (q5) when γ3 = 0.
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Case AE. Let be K f = Q(
√

d ), Aut(K f ) = {id, σ } and

f (q) = q + (A2 + B2

√
d )q2 + O

(
q3),

σ f (q) = q + (A2 − B2

√
d )q2 + O

(
q3),

g(q) = q + c2q2 + O
(
q3),

with A2, B2, c2 ∈ Q.
Then by (3) there are two possibilities depending on whether B2 = 0 or B2 	= 0.

• If B2 	= 0, then we choose

h1(q) = f (q) + σ f (q)

2
= q + O

(
q2),

h2(q) = f (q) − σ f (q)

2B2
√

d
= q2 + O

(
q3),

h3(q) = g(q) − h1(q) − (c2 − A2)h2(q) = O
(
q3).

• If B2 = 0, from (3) we have A2 	= c2, hence

h1(q) = f (q) + σ f (q)

2
= q + O

(
q2),

h2(q) = g(q) − h1(q)

c2 − A2
= q2 + O

(
q3),

h3(q) = f (q) − σ f (q)

2
√

d
= O

(
q3).

Case EEE. Let

f1(q) = q + a2q2 + O
(
q3),

f2(q) = q + b2q2 + O
(
q3),

f3(q) = q + c2q2 + O
(
q3),

with a2,b2, c2 ∈ Q.
Then by (3) we can assume that a2 	= b2, and thus

h1(q) = f1(q) = q + O
(
q2),

h2(q) = f1(q) − f2(q)

a2 − b2
= q2 + O

(
q3),

h3(q) = f3(q) − f1(q) − (c2 − a2)h2(q) = O
(
q3).

Let n = ordq h3. For all the cases above, the degree four monomial hi
1h j

2h4−i− j
3 has order 1 + 2 j +

n(4 − i − j). It is easy to check that for n � 6 all these orders are different, and hence there is no
F ∈ Q[X, Y , Z ] of degree 4 such that F (h1,h2,h3) = 0.



E. González-Jiménez, R. Oyono / Journal of Number Theory 130 (2010) 862–878 871
(ii) Let S2(C) be choosen as above, then the image of C by the canonical embedding φ is a smooth
plane quartic of the form

i+ j+k=4∑
i, j,k∈Z�0

aijk Xi Y j Zk = 0, where aijk ∈ Q.

For X := h1(q), Y := h2(q) and Z := h3(q), the degree four monomials Xi Y j Zk have q-expansions
X4 = q4 + O (q5), X3Y = q5 + O (q6), and Xi Y j Zk = O (q6) otherwise. It follows that a400,a310 = 0,
and therefore P∞ := (1 : 0 : 0) ∈ φ(C)(Q). The tangent line l∞ at P∞ is the line with equation Z = 0.
Furthermore, for h3(q) = q4 + O (q5) we have X2Y 2 = q6 + O (q7) and Xi Y j Zk = O (q7) for all the
degree four monomials different from X2Y 2, X4, X3Y . Hence a220 = 0. In this case, P∞ is at least
an ordinary flex. Similarly, for h3(q) = q5 + O (q6) the degree four monomials have q-expansions
X2Y 2 = q6 + O (q7), XY 3 = q7 + O (q8) and Xi Y j Zk = O (q8) for degree four monomials different from
X2Y 2, X4, X3Y , XY 3. In this case, a220 = a130 = 0, and therefore P∞ is a hyperflex, which proves the
assertion. �
4.2. Computational algorithm

Proposition 2 provides us with a theoretical algorithm to recognize whether or not a modular
abelian 3-fold corresponds to a non-hyperelliptic modular curve of genus 3. The following result gives
us a computational algorithm:

Proposition 3. Let J1(N) � A be a modular abelian 3-fold defined over Q and let S2(A) = 〈h1(q),h2(q),

h3(q)〉Q . If there exist a non-singular homogeneous polynomial F ∈ Q[X, Y , Z ] of degree 4 and a constant
cF ∈ Q∗ such that

(i) F
(
h1(q),h2(q),h3(q)

) = O
(
qcN

)
, where cN = 2

3

[
SL2(Z) : Γ1(N)

]
,

(ii) ψF
(
h1(q),h2(q),h3(q)

) = cF + O
(
qc′

N
)
, where c′

N = 1

2

[
SL2(Z) : Γ1(N)

]
,

then the curve C : F (X, Y , Z) = 0 is a non-hyperelliptic modular curve of level N such that Jac(C)
Q∼ A.

Remark 4. Let A be a new modular abelian variety of level N . If A is a quotient of J0(N) then Γ1(N)

could be replaced by Γ0(N) in the formulas for cN and c′
N . The only case when it could not be

replaced is when A
Q∼ A f × Ag and f ∈ S2(N, ε) with ε non-trivial. In that case,2 A is a quotient of

Jac(X(N, ε)) and Γ1(N) could be replaced by Γ (N, ε) in the formulas for cN and c′
N .

Proof. For a positive integer k, it is well known that if f ∈ Sk(N) and f (q) = O (qc) with c �
k

12 [SL2(Z) : Γ1(N)] then f = 0. Using condition (i), we apply this result to the modular form
F (h1,h2,h3) ∈ S8(N) to prove that F (h1(q),h2(q),h3(q)) = 0. Now, using (ii) we are going to prove
that ψF (h1,h2,h3) = cF . In order to prove it, we first observe that h′

1h3 − h1h′
3 ∈ S6(N), since h1,h3 ∈

S2(N). On the other hand, the modular form ∂ F
∂Y (h1,h2,h3) belongs to S6(N) since ∂ F

∂Y (X, Y , Z) is a
homogeneous polynomial of degree 3. Then G = h′

1h3 − h1h′
3 − cF

∂ F
∂Y (h1,h2,h3) ∈ S6(N). Therefore,

ψF (h1,h2,h3) = cF if and only if G(q) = O (qc′
N ), that is, if and only if (ii) holds. Then the proof of the

proposition follows directly from Proposition 2. �
2 See [13, §6] for the definition of the congruence subgroup Γ (N, ε) and the corresponding modular curve X(N, ε).
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To compute a model for the modular curve C defined over the integers, let {h1,h2,h3} be a basis
of S2(C) consisting of cusp forms with integral q-expansions. Let us consider an enumeration

{ f1, . . . , f15} = {
hi

1h j
2hk

3 ∈ S8(N)
∣∣ i, j,k ∈ Z�0, i + j + k = 4

}

of the set of degree four monomials in h1, h2, h3, and let f i(q) = ∑
j�1 bijq j be the q-expansions

of the f i . The smooth plane quartic F defining the modular curve C , i.e. with F (h1,h2,h3) = 0, is
given by the cusp form F = ∑15

i=1 ai f i = ∑
j�1(

∑15
i=1 bijai)q j ∈ S8(N), whose defining coefficients ai

are computed by solving the linear equation B T · a = 0, where a = (ai) is a non-trivial vector with 15
entries, B = (bij) a matrix with 15 rows and at least cN columns.

In the following example we are going to explain how this method works in practice.

Example 1. Let A be the new modular abelian 3-fold A243E . The vector space S2(A) is generated by
the q-integral basis {h1,h2,h3}, where

h1(q) = q − 3q5 − 2q7 − 3q8 − 2q10 + q13 + q16 − 3q17 + 2q19 + O
(
q20),

h2(q) = q2 − q5 − 3q7 − 4q8 − 3q10 + 4q11 + 3q13 + 2q14 + 3q16 + 6q19 + O
(
q20),

h3(q) = q4 − 2q7 − 3q8 − q10 + 3q11 + q13 + 3q14 + 3q16 + 3q19 + O
(
q20).

By Proposition 3 we compute the q-expansions of h1,h2,h3 with c203 = 180 coefficients and then an
equation of the modular curve C E

243 is

C E
243 : X3 Z − 3X2 Z 2 − XY 3 + 9XY Z 2 − 6X Z 3 + 2Y 3 Z − 9Y 2 Z 2 + 9Y Z 3 − 2Z 4 = 0.

Even if we don’t need all the 180 coefficients to solve the linear system, we will need them for
verifying F (h1,h2,h3) = 0. Since ψF (h1,h2,h3) = 1, the jacobian Jac(C E

243) is Q-isogenous to A.

4.3. Automorphisms of new modular curves

Let C be a new modular non-hyperelliptic curve of genus 3 and level N . The proof of Lemma 3
provides a full description of the splitting behaviour (over Q) of Jac(C). In the case that C could not

be parametrized by X0(N), we have that Jac(C)
Q∼ Ag × A f where f and g are newforms of level N

for which the Nebentypus of f is trivial and the Nebentypus of g is of order 1, 2, 3, 4 or 6. In this
section we prove that the Nebentypus of g can never be 6. This result is important since it reduces
the complexity for the computation of all new modular non-hyperelliptic curves of genus 3 and for a
fixed level N .

Let C be a new modular curve of level N and genus g � 2. The diamond operators 〈d〉 on X1(N)

induce automorphisms of C over Q. Let D be the abelian subgroup of AutQ(C) consisting of diamond

automorphisms, then D is Gal(Q/Q)-stable. Moreover, there exists a surjective morphism X0(N) � C
if and only if D is the trivial group.

Let D′ be a subgroup of D. If the curve C ′ = C/D′ has genus g′ , then g − g′ is even (see
[2, Lemma 6.17]). In particular, if C is a new modular curve of genus 3 and D′ 	= {1}, then g′ = 1.
Therefore, if C is non-hyperelliptic, Proposition 1 gives us the following result:

Lemma 4. Let C be a new modular non-hyperelliptic curve of genus 3. Then D is either trivial or cyclic of order
2,3 or 4.

Corollary 1. Let C be a new modular non-hyperelliptic genus 3 curve of level N such that Jac(C) is not a

quotient of J0(N). Then Jac(C)
Q∼ A f × Ag , where f is a newform of level N with trivial Nebentypus and g is

a newform of level N with Nebentypus of order 2, 3 or 4.
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5. Non-new non-hyperelliptic modular curves of genus 3

If C is a non-new non-hyperelliptic modular curve of genus 3, Proposition 2 could still be used to
compute a rational equation of C . The following examples present some behaviour that could appear
when dealing with non-new non-hyperelliptic modular curves of genus 3.

Example 2. Let f and g be the newforms attached to the modular abelian varieties A178C and E89A

respectively. Their q-expansions begin as follow:

f (q) = q − q2 + aq3 + q4 + (−2a − 3)q5 − aq6 − 2q7 − q8 + O
(
q9),

g(q) = q − q2 − q3 − q4 − q5 + q6 − 4q7 + 3q8 − 2q9 + q10 + O
(
q11),

where K f = Q(a), a2 + 2a − 1 = 0, Aut(K f ) = {id, σ } and K g = Q. Let { f1, f2} be the Q-basis of
S2(A178C ) with the following q-expansion:

f1(q) = q − q2 + q4 − 3q5 − 2q7 − q8 − 2q9 + 3q10 − 2q13 + 2q14 + O
(
q15),

f2(q) = q3 − 2q5 − q6 − 2q9 + 2q10 + 2q11 + q12 + q15 + 2q17 + 2q18 + O
(
q19).

Let be f3(q) = g(q) + 2g(q2). Then the non-singular irreducible homogeneous polynomial

F (X, Y , Z) = X3 Z − X2Y 2 + 2XY 2 Z − Y 3 Z − 4X2 Z 2 + 3XY Z 2 − 2Y 2 Z 2 + 3X Z 3 − Y Z 3

satisfies F ( f1, f2, f3) = 0 and ψF ( f1, f2, f3) = 1. Therefore the smooth plane quartic C89A
178C :

F (X, Y , Z) = 0 is a non-hyperelliptic and non-new modular curve of genus 3 such that S2(C89A
178C ) =

〈 f1, f2, f3〉. In particular, Jac(C89A
178C ) is Q-isogenous to A178C × E89A .

The following couple of examples show (plane) non-hyperelliptic curves of genus 3 with equations
Cd : Fd(X, Y , Z) = 0 of degree d � 5.

Example 3. Let A be the new modular abelian 3-fold A178D . With respect to the integral basis
{ f1, f2, f3} of S2(A),

f1(q) = q + q2 + q4 + q8 + 3q9 + 2q11 − 6q15 + q16 − 2q17 + 3q18 − 4q19 + O
(
q20),

f2(q) = q3 − q5 + q6 − q9 − q10 + q12 − 2q13 + q15 + q17 − q18 + q19 + O
(
q20),

f3(q) = q7 − 2q9 − q13 + q14 + 2q15 + 2q17 − 2q18 + O
(
q20),

we compute the equation of a genus 3 non-hyperelliptic curve C : F7(X, Y , Z) = 0, where

F7(X, Y , Z) = X5 Z 2 − 3X4Y Z 2 + 8X4 Z 3 − 2X3Y 3 Z + 7X3Y 2 Z 2 − 23X3Y Z 3 − Y 7

+ 26X3 Z 4 − 3X2Y 3 Z 2 + 18X2Y 2 Z 3 − 53X2Y Z 4 + 42X2 Z 5 + XY 6

− 3XY 5 Z + XY 4 Z 2 + 14XY 3 Z 3 − 10XY 2 Z 4 − 36XY Z 5 + 32X Z 6

+ 4Y 6 Z + 10Y 5 Z 2 − 66Y 4 Z 3 + 124Y 3 Z 4 − 100Y 2 Z 5 + 20Y Z 6 + 8Z 7,

for which F7( f1, f2, f3) = 0. A canonical embedding φ of C is computed using Magma, and C ′ = φ(C)

has a quartic model with equation
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C ′ : X4 − 4X3Y + 6X3 Z + 2X2Y 2 − 5X2 Z 2 + 4XY 3 − 30XY 2 Z + 64XY Z 2 − 42X Z 3

− 3Y 4 + 8Y 3 Z + 9Y 2 Z 2 − 40Y Z 3 + 28Z 4 = 0.

We have been able to check Jac(C ′)
Fp∼ Jac(C89A

178C ) from Example 2 for p � 178 such that p < 500. Fur-
thermore, by computing the absolute Dixmier–Ohno invariants (cf. [8,11]), we have C ′ is Q-isomorphic
to C89A

178C .
The abelian variety A178D is Q-simple (since f178D has no extra-twists and has no complex mul-

tiplication), therefore it is not Q-isogenous to Jac(C ′).

If A is a new modular abelian variety A f and we build a smooth plane quartic C ′ as above,
then Jac(C ′) and A f will in general not be Q-isogenous. However, if Jac(C ′) is Q-simple and new of

level N , then there exists a newform g of level N with Jac(C ′) Q∼ Ag . Moreover, if g = f ⊗ χ for some

Dirichlet-character χ then A f
K∼ Jac(C ′), where K = Qkerχ (cf. [20]).

Example 4. Let A be the new modular abelian 3-fold A243F . Then there exists an integral basis
{ f1, f2, f3} of S2(A) satisfying F6( f1, f2, f3) = 0, where

F6(X, Y , Z) = X5 Z − 7X4 Z 2 − X3Y 3 − 9X3Y Z 2 + X3 Z 3 + 6X2Y 3 Z + 19X2 Z 4

− 3XY 3 Z 2 + 18XY 2 Z 3 + 27XY Z 4 + 2X Z 5 + 27X2Y Z 3 + 9X2Y 2 Z 2

+ 8Y 3 Z 3 + 9Y 2 Z 4 − 9Y Z 5 − 8Z 6,

defines a non-hyperelliptic plane curve C : F6(X, Y , Z) = 0 of genus 3 and degree d = 6. A canonical
embedding of C is a smooth plane quartic C ′ given by

C ′ : X3Y − 12X2Y 2 + 9X2Y Z − 24X2 Z 2 + 48XY 3 + 24XY 2 Z − 57XY Z 2

− 2X3 Z + 66X Z 3 − 64Y 4 + 104Y 3 Z − 36Y 2 Z 2 − 65Y Z 3 + 88Z 4 = 0.

We have f243E = f243F ⊗ χ where χ is the non-trivial Dirichlet-character of level 3, and thus

A243E
Q(

√−3 )∼ A243F . In fact, the quartic C ′ is modular and its jacobian Jac(C ′) is conjecturely Q-

isogenous to A243E
Q∼ Jac(C E

243) (we have checked Jac(C ′)
Fp∼ A243E for primes p with 3 < p < 500).

The next example illustrates in particular why condition (iii)(b) in Proposition 2 is necessary.

Example 5. Let A1 be the new modular abelian variety of level 120 that is the product of A120A{0,0,0,2}
and E120A and let C1 be the smooth plane quartic defined by F (X, Y , Z) = 0, where

F (X, Y , Z) = 3X4 − 10X2Y 2 − 10X2 Z 2 + 7Y 4 + 8Y 3 Z + 2Y 2 Z 2 − 8Y Z 3 + 7Z 4.

There exists a basis { f1, f2, f3} of S2(A1) such that F ( f1, f2, f3) = 0 and ψF ( f1, f2, f3) is non-
constant.

Similarly, consider the new modular abelian three fold A2 = A240B{0,0,0,2} × E240A and the smooth
plane quartic C2 : G(X, Y , Z) = 0, where

G(X, Y , Z) = 3X4 − 10X2Y 2 − 10X2 Z 2 + 7Y 4 − 8Y 3 Z + 2Y 2 Z 2 + 8Y Z 3 + 7Z 4.
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There exists a basis {g1, g2, g3} of S2(A2) such that G(g1, g2, g3) = 0 and ψG(g1, g2, g3) is non-
constant.

Furthermore, F (X,−Y , Z) = G(X, Y , Z), and hence C1
Q� C2. However A1 is not Q-isogenous to A2.

In fact, if we denote by χ1 (resp. χ2) the Dirichlet character attached to the quadratic field Q(
√−5 )

(resp. Q(
√−1 )), the following equalities hold

f120A{0,0,0,2} = f240B{0,0,0,2} ⊗ χ1 and f120A = f240A ⊗ χ2.

Therefore

A120A{0,0,0,2}
Q(

√−5 )∼ A240B{0,0,0,2} and E120A
Q(

√−1 )∼ E240A .

Furthermore, Jac(Ci) is not Q-isogenous to the modular 3-fold Ai for i = 1,2. Nevertheless, C1
(and C2) must be modular for some level M dividing 120. Indeed, C1 is Q-isomorphic to a non-

new modular curve C of level 30 with Jac(C)
Q∼ A30A{0,2} × E15A . More precisely, there exists a Q-basis

{h1,h2} for S2(A30A{0,2}) as well as a Q-basis {h3} for S2(E15A) and a homogeneous polynomial

H(X, Y , Z) = 7X4 + 8X3Y + 2X2Y 2 − 10X2 Z 2 − 8XY 3 + 7Y 4 − 10Y 2 Z 2 + 3Z 4

such that if we denote by r3(q) = h3(q) + 2h3(q2) we have H(h1,h2, r3) = 0 and ψH (h1,h2, r3) = 1, in
particular S2(C) = 〈h1,h2, r3〉. In fact, F (Z , Y ,−X) = H(X, Y , Z).

6. Conclusion

In this work, we present a method to compute equations for modular non-hyperelliptic curves
of genus 3. In particular, given a modular abelian 3-fold A of level N , we provide a criterion that
enables us to check (from a basis of S2(A)) whether there is a modular non-hyperelliptic curve C of

the same level for which Jac(C)
Q∼ A. We apply this method to compute a list of 44 new modular

non-hyperelliptic curves of genus 3 and level N smaller than a certain large bound (see Appendix A).
In view of the computed examples and the result (and guess) in the hyperelliptic case [13,2], we think
it is likely that the computed list is complete. However, we are currently unable to prove this guess.
It seems also impossible to prove it nowadays using the techniques proposed in [13] for the genus
two case.

We also stress the following open question:
For every fixed genus g � 2, is the number of modular curves (without the restriction new) of genus g

infinite?
The authors of [2] conjectured that the answer is yes.
As first step to answer the question above, Section 5 explained by means of some specific example

the difference that may appear between new and non-new modular curves of genus 3.
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Appendix A

Labelling

We remind the notation introduced in [2, Appendix] to label newforms of weight 2, and in partic-
ular to fix an ordering of (Galois conjugacy classes of) newforms having a given level and Nebentypus.

Let f be a newform of level N and Nebentypus ε, we associate to f a label of the form N Xε ,
where X is a letter or string in {A, B, . . . , Z , A A, B B, . . .}. If ε = 1, we omit the subscript ε and use
a label of the form N X , and if the Fourier coefficients of f are integers we will use the labeling
in [6]. First we remember how is X constructed from f ; Fix N and ε. Let f = ∑

anqn ∈ S2(N, ε)

be a newform. To f associate the infinite sequence of integers t f = (TrK f /Q a1,TrK f /Q a2, . . .). Choose
X ∈ {A, B, . . . , Z , A A, B B, . . .} according to the position of t f in the set {tg : g ∈ S2(N, ε) newform}
sorted in increasing dictionary order. Notice that t f determines the Galois conjugacy class of f .

Now, we describe how the Dirichlet character ε : (Z/NZ)∗ → C∗ is encoded. Let N = ∏
pαn

n be
the prime-ordered factorization. Then there exist unique εpn : (Z/pαn

n Z)∗ → C∗ such that ε = ∏
εpn .

If p is an odd prime, let gp be the smallest positive integer that generates (Z/pαZ)∗ , and if p = 2
and α � 2, let gp = −1; in these cases εp is determined by the integer ep ∈ [0,ϕ(pα)) such that
εp(gp) = e2π iep/ϕ(pα) . If p = 2 and α > 2, then ε2 is determined by the integers e′

2, e′′
2 ∈ [0,ϕ(2α))

such that ε2(−1) = e2π ie′
2/ϕ(2α) and ε2(5) = e2π ie′′

2/ϕ(2α) , and we write e2 = {e′
2, e′′

2}. Assuming that N
is implicit, we denote ε by {ep: p|N}.

If f ∈ S2(N, ε) is a newform with label N Xε , then AN Xε will denote the corresponding modular
abelian variety A f , except that when dim A f = 1, we instead follow the labeling in [7] and use the
letter E instead of A to denote the modular elliptic curve A f .

Tables

Performing the computations of all the non-hyperelliptic new modular curves of genus 3 would
be extremely time-consuming. Therefore we have conducted a search of all non-hyperelliptic new
modular curves of genus 3 and some fixed level. For the Case A up to level N � 10000, for the
Case AE up to level N � 4000 and for the Case EEE up to level N � 130000, the highest level in
Cremona’s tables [7] (see proof of Lemma 3 for the notation of Cases A, AE and EEE). For this aim,
we have implemented the method developed at Section 4 in Magma [3] using W.A. Stein’s Modular
packages. We have obtained a total of 44 such curves that appear at Table 1.

Table 1 has two columns. The first one shows the label of the non-hyperelliptic new modular curve
of genus 3 and the second column shows the correponding smooth plane quartic model over Z. The
notation for the curves is as follows:

Notation. Let C be a new modular non-hyperelliptic genus 3 curve of level N . In the case that Jac(C) is
a factor of J0(N) we will add N as a subscript and the corresponding letters of the labels correspond-

ing to the Q-factors of Jac(C) as superscripts to C . Otherwise, Jac(C)
Q∼ A f × E , where f ∈ S2(N, ε)

such that ε is not trivial and E is an elliptic curve over Q. We will denote this modular curve by
C XE

N X Aε
where X Aε and XE are the corresponding labels for A f and E respectively.

Finally, we have added the superscript � (resp. �) on the left of the labelling of the curve if P∞
is an ordinary flex (resp. hyperflex).

Note that we have not attempted to reduce the size of the coefficients appearing in the computed
models. However the models obtained have already very small coefficients: the worst-case is the
modular curve C A,B

65 , which has largest coefficient 98.
Contrary to what is observed in [2] for hyperelliptic new modular curves of genus 3, there exists

a non-hyperelliptic new modular curve of genus 3 and level N for which N has more than two
different odd prime divisors, namely the modular curve C H

855. In fact, this is the only curve for which
three different primes appear in the factorization of the level of modularity. In all other cases, there
are just one or two primes.
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As a final remark, note that the curve C A
49,A{14} is the Klein quartic, it is thus Q-isomorphic to the

classical modular curve X(7).

Table 1
New modular non-hyperelliptic genus 3 curves.

C : F (x, y, z) = 0

C A
20,A{1,1} : x3 z − x2 y2 − 3x2 z2 + xy3 + 4xz3 − 2z4 = 0

C A
24,A{0,1,0} : x3 z − x2 y2 − x2 z2 + xy3 − xy2 z − 3xyz2 + y3 z + 2y2 z2 + yz3 = 0

�C A
24,A{1,1,1} : x3 z − 2x2 yz − x2 z2 − xy3 + 2xy2 z + 6xyz2 + 2y3 z − 2y2 z2 − 4yz3 = 0

�C A
36,A{1,3} : x3 z − 3x2 z2 − xy3 + 4xz3 + 2y3 z − 2z4 = 0

�C A
39,A{0,6} : x3 z − 2x2 z2 + 4xy2 z − 7xyz2 − 6xz3 − y4 + 5y3 z + 2y2 z2 − 6yz3 − 3z4 = 0

�C A
39,A{0,4} : x3 z − 2x2 yz − xy3 − 2xy2 z + 2xyz2 + yz3 = 0

C A,B
43 : 2x3 z − 2x2 y2 − 6x2 z2 + xy3 + 9xy2 z − 5xyz2 + 11xz3 − 9y4 + 12y3 z − 22y2 z2 + 12yz3 − 9z4 = 0

�C A
45,A{2,0} : x3 z + 2x2 yz − xy3 + 2xy2 z − 2xyz2 + yz3 = 0

�C A
49,A{14} : x3 z − xy3 + yz3 = 0

�C A
56,A{0,1,0} : x3 z + 2x2 yz − x2 z2 − xy3 − 2xy2 z − 6xyz2 + 2y3 z + 2y2 z2 + 4yz3 = 0

C A,B,C
57 : 2x3 z − 2x2 y2 + 5x2 z2 − 16xy2 z − 8xyz2 + 2xz3 + 3y4 + 8y3 z − 6y2 z2 − 4yz3 = 0

C A,B
65 : 2x3 z − 2x2 y2 − 7x2 z2 − 2xy3 − 4xy2 z + 26xyz2 + 30xz3 − 3y4 − 26y3 z − 81y2 z2 − 98yz3 − 40z4 = 0

C A,C
65 : 6x3 z − 6x2 y2 − 8x2 z2 − 3xy3 + 25xy2 z − 13xyz2 + 25xz3 − 11y4 + 19y3 z − 33y2 z2 + 13yz3 − 14z4 = 0

C A,B
82 : x3 z − x2 y2 − 2x2 z2 + 4xy2 z + 3xyz2 + y3 z − 2yz3 = 0

C A,C
91 : x3 z − x2 y2 − x2 z2 + xy3 − xy2 z + 3xyz2 − xz3 − 2y4 + 4y3 z − 6y2 z2 + 4yz3 − z4 = 0

C A
97 : x3 z − x2 y2 − 5x2 z2 + xy3 + xy2 z + 3xyz2 + 6xz3 − 3y2 z2 − yz3 − 2z4 = 0

�C A,B,D
99 : x3 z − 3x2 z2 + 3xy2 z − 3xyz2 + 9xz3 − y4 − 6y2 z2 + yz3 − 8z4 = 0

�C B
109 : x3 z − 2x2 yz − x2 z2 − xy3 + 6xy2 z − 6xyz2 + 3xz3 + y4 − 6y3 z + 10y2 z2 − 5yz3 = 0

C C
113 : x3 z − x2 y2 − 4x2 z2 + xy3 + 2xy2 z + 6xz3 − y3 z − 3y2 z2 + yz3 − 3z4 = 0

C A,B,C
118 : x3 z − x2 y2 − x2 z2 + 2xy2 z + xyz2 + xz3 + y3 z + y2 z2 + yz3 + z4 = 0

C B,C
123 : x3 z − x2 y2 + x2 z2 − xy3 − 2xy2 z + xz3 − y4 − y3 z − y2 z2 = 0

C A
127 : x3 z − x2 y2 − 3x2 z2 + xy3 − xyz2 + 4xz3 + 2y3 z − 3y2 z2 + 3yz3 − 2z4 = 0

C B
139 : x3 z − x2 y2 − 2x2 z2 + xy3 − 2xy2 z + 2xyz2 + xz3 + y4 − 2y3 z + 4y2 z2 − 3yz3 = 0

C C,D,E
141 : x3 z − x2 y2 + x2 z2 − xy3 + xy2 z + xz3 − y4 − y3 z − y2 z2 = 0

C A
149 : x3 z − x2 y2 − 3x2 z2 + xy3 + 3xy2 z − 2xyz2 + 2xz3 − y4 − y2 z2 + yz3 = 0

�C A
151 : x3 z − 2x2 yz − 2x2 z2 − xy3 + 2xy2 z + 4xyz2 + xz3 + y2 z2 − 3yz3 − 2z4 = 0

C B
169 : x3 z − x2 y2 − 3x2 z2 + xy3 + 2xyz2 + xz3 + y2 z2 − 3yz3 + z4 = 0

�C B
179 : x3 z − 2x2 yz − 2x2 z2 − xy3 + 2xy2 z + xyz2 + 2xz3 + y2 z2 − yz3 − z4 = 0

C E
187 : x3 z − x2 y2 − x2 z2 + xy3 − xy2 z − xyz2 + 2xz3 + y3 z − y2 z2 + 3yz3 = 0

C F
203 : x3 z − x2 y2 − 3x2 z2 + xy3 + 3xy2 z − 4xyz2 + 4xz3 − y4 + 3y3 z − 6y2 z2 + 3yz3 − 2z4 = 0

C A
217 : 3x3 z − 3x2 y2 − 11x2 z2 − 3xy3 + 13xy2 z − 2xyz2 + 11xz3 − 2y4 − y3 z − 4y2 z2 + yz3 − 2z4 = 0

C A
239 : x3 z − x2 y2 − x2 z2 + xy3 − xy2 z + xz3 + y4 − y3 z + yz3 − z4 = 0

�C E
243 : x3 z − 3x2 z2 − xy3 + 9xyz2 − 6xz3 + 2y3 z − 9y2 z2 + 9yz3 − 2z4 = 0

�C A,D
243 : x3 z − xy3 + 6xz3 − 4y3 z + 7z4 = 0

C A
295 : x3 z − x2 y2 − x2 z2 + xy3 − xy2 z + 2xyz2 − xz3 − y3 z + 3y2 z2 − yz3 = 0

C C
329 : x3 z − x2 y2 + xy3 + xyz2 + xz3 − y3 z + 2yz3 + z4 = 0

�C D
369 : x3 z − 2x2 z2 − xy3 + 6xyz2 − 6xz3 − 3y2 z2 + 6yz3 − z4 = 0

�C B,I
459 : x3 z − x2 z2 − xy3 + 5xyz2 − xz3 + y4 + 2y3 z − y2 z2 − 2yz3 = 0

C E
475 : x3 z − x2 y2 − 5x2 z2 − xy3 + xy2 z + 17xyz2 + 14xz3 − 2y4 − 14y3 z − 35y2 z2 − 35yz3 − 12z4 = 0

�C H
855 : x3 z − x2 z2 − xy3 + 3xyz2 − 3xz3 + 2y3 z − 3y2 z2 + 3yz3 = 0

C D
1175 : x3 z − x2 y2 + x2 z2 + xy3 − 2xy2 z + 2xyz2 − xz3 + y4 − 2y3 z + yz3 = 0

�C P
1215 : x3 z − xy3 + 3xyz2 + 5xz3 − 6y2 z2 − 3yz3 + z4 = 0

�C A,K
1215 : x3 z − xy3 + 3xyz2 + 5xz3 + 3y2 z2 + 6yz3 − 8z4 = 0

�C C,D,E
1539 : x3 z − 3x2 z2 + 3xy2 z − 3xyz2 + 3xz3 − y4 − 2y2 z2 + yz3 + 2z4 = 0
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