Existence of Hall Subgroups and Embedding of \(\pi \)-Subgroups into Hall Subgroups*

PHILIP COBB

Mathematics Department, Texas A & M University,
College Station, Texas 77843

Communicated by Walter Feit
Received April 21, 1988

1. INTRODUCTION

The investigation of the arithmetic structure of finite groups begins with Sylow's Theorem. A generalization of Sylow subgroups involving more than one prime was introduced in 1928 by Philip Hall. Let \(\pi \) be a set of primes; a Hall \(\pi \)-subgroup of a finite group \(G \) is a subgroup \(H \) whose order is divisible only by primes in \(\pi \) and whose index \([G : H] \) is not divisible by any primes in \(\pi \). More generally, a \(\pi \)-subgroup is any subgroup such that the primes dividing its order are all in \(\pi \). To study these subgroups, we will use Hall's original notation [5]: A group is said to satisfy \(E_\pi \) if there exists a Hall \(\pi \)-subgroup; it satisfies \(C_\pi \) if it satisfies \(E_\pi \) and any two Hall subgroups are conjugate; it satisfies \(D_\pi \) if it satisfies \(C_\pi \) and in addition any \(\pi \)-subgroup is contained in some Hall \(\pi \)-subgroup. Also, we use abbreviations such as \(E_\pi \) for \(E_\pi \) if \(\pi = \{ p \} \) and \(C_{\pi,r} \) for \(C_\pi \) if \(\pi = \{ p, r \} \).

In this notation, Sylow's Theorem asserts that any group satisfies \(D_p \) for any prime \(p \) and Hall's Theorem says that any solvable group satisfies \(D_\pi \) for any \(\pi \). But a non-solvable group can fail to satisfy \(E_\pi \), or may satisfy \(E_\pi \) but not \(C_\pi \), or even \(C_\pi \) but not \(D_\pi \). It had been conjectured by Hall [5] that if \(2 \notin \pi \), then \(E_\pi \) implies \(D_\pi \). However, only half of this statement is actually true; if \(\pi \) is a set of odd primes, then \(E_\pi \) implies \(C_\pi \) but not \(D_\pi \) [3]. Counterexamples to this conjecture will be given here; some of them were independently found by Fletcher Gross [4].

Now let \(p \) be a prime number. For a group \(G \), let \(|G| \) denote its order and \(|G|_p \) be the highest power of \(p \) dividing \(|G| \), i.e., the order of its Sylow

* This paper contains portions of my Ph.D. thesis at the University of Illinois. I thank my thesis advisor, Professor Michio Suzuki, for suggesting this topic and for his help and suggestions.
If n is an integer, similarly define $|n|_p$ to be the highest power of p dividing n. We will also write $p^c | n$ if $|n|_p = p^c$.

Define the general linear group to be the group of all $n \times n$ matrices over a field of q elements, denoted $GL(n, q)$, with q a power of the field characteristic p. If we wish to emphasize the vector space on which $GL(n, q)$ acts, we may also write $GL(U)$, where U is a vector space of dimension n. Also let F_q be the field of q elements and let F_q^\times be its multiplicative group of non-zero elements. The following (non-standard) notation will be used throughout this paper.

Notation 1.1. Let p be a prime and let q be a power of p. Let r and s be two odd primes, different from p, with $r < s$. Define a and b to be the least positive integers so that $r | q^a - 1$ and $s | q^b - 1$. Note that $a | r - 1$ and $b | s - 1$ by Fermat's Theorem. The order of the Sylow r-subgroup and its construction were determined by Weir \[8].

Lemma 1.2 (Weir). The order of the Sylow r- and s-subgroups of $GL(n, q)$ is given by

$$|GL(n, q)|_r = |(q - 1)(q^2 - 1) \cdots (q^n - 1)|_r = q^a - 1 |^{[n/a]} |[n/a]!|_r;$$

$$|GL(n, q)|_s = |q^b - 1 |^{[n/b]} |[n/b]!|_s.$$

Necessary and sufficient conditions for $E_{r,s}$ in $GL(n, q)$, given numerically in terms of a, b, r, s, and n, were found by E. L. Spitznagel in \[6\. Section 2 of this paper will determine when $E_{r,s}$ holds in $GL(n, q)$ if 2, $p \not\equiv \pi$. This will give counterexamples to Hall's conjecture.

Let H be a subgroup of $GL(n, q)$ acting on an n-dimensional vector space V. Then H acts irreducibly if it leaves no proper non-trivial subspace invariant. If H is irreducible and $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$, where $k > 1$ and with the action of H preserving this decomposition (but permuting the W_i's), then H is said to be imprimitive. The direct sum decomposition is a system of imprimitivity. If H is irreducible but not imprimitive then H is said to be primitive. The proofs below divide into three cases according as H is reducible, irreducible but imprimitive, or primitive. For the primitive case, we need a result of Suprunenko \[7\. To facilitate the discussion, we introduce the following concepts.

Definition 1.3. A subgroup G of $GL(n, q)$ is said to be of type \mathcal{G} if there exist a divisor d of n and a normal series

$$F \triangleleft A \triangleleft V \triangleleft G$$

with the following properties:
(1) F is isomorphic to the multiplicative group $F_{q^d}^*$ of F_{q^d} and $F < G$;
(2) $V = C_{cl}(F)$ is isomorphic to a subgroup of $GL(n/d, q^d)$;
(3) A is such that A/F is the maximal normal abelian subgroup of V/F and is elementary abelian of order $(n/d)^2$;
(4) If
\[
\frac{n}{d} = t_1^{t_1} t_2^{t_2} \cdots t_k^{t_k}
\]
is the canonical primary decomposition of n/d, then V/A is isomorphic to a subgroup of
\[
Sp(2j_1, t_1) \times \cdots \times Sp(2j_k, t_k),
\]
and
(5) G/V is isomorphic to a subgroup of $Gal(F_{q^d}/F_q)$.

We will call d the field degree of the group G of type \mathcal{F}.

In this notation, Suprunenko's Theorem states

Theorem 1.4 (Suprunenko). Any primitive solvable subgroup X of $GL(n, q)$ is contained in a group of type \mathcal{F}.

We will want to apply the series $F < A < V < G$ to possibly imprimitive groups. Therefore, we will make the following definition.

Definition 1.5. An (r, s)-group L is of type \mathcal{P} if it is contained in a group of type \mathcal{F} with field degree d such that

(1) $n = d$, n/d is divisible by r, or n/d is divisible by s and
(2) One of a or b divides d.

By Lemma 11 in [7], we also have

Theorem 1.6. Any primitive (r, s)-subgroup of $GL(n, q)$ is of type \mathcal{P}.

Suppose that G is of type \mathcal{F}. To prove that D_x holds, we will need to show that the indices $[A : F]$, $[V : A]$, and $[G : V]$ in the series $F < A < V < G$ are all prime to s. This is handled by the following lemma.

Lemma 1.7. Let s be a prime and let G be a subgroup of $GL(n, q)$ of type \mathcal{F} with field degree d. If $n/d < s$, then one of the following holds:

(1) The index $[V : F]$ is prime to s. If also d is prime to s, then $[G : F]$ is prime to s; or
(2) \(n/d = 2^j \) and \(s = 2^j + 1 \) for some \(j \). In this case, \(s \) divides \([V:F] \) only to the first power. If we also have \(d < s \), then \([G:F] \) is divisible by \(s \) only to the first power.

In particular, if \(s > n + 1 \), then \([G:F] \) is prime to \(s \).

Proof. By Definition 1.3, \([A:F] = (n/d)^2 \) and \(n/d < s \) by hypothesis. This shows that \([A:F] \) is prime to \(s \). Now consider the index \([G:V] \). Since the factor group \(G/V \) embeds in a Galois group of order \(d \), \([G:V] \) is prime to \(s \) if \(d \) is prime to \(s \).

Now consider the index \([V:A] \). We have an embedding of \(V/A \) into a direct product of symplectic groups \(Sp(2j, t) \), where \(t \) is a prime and \(t^j \|(n/d) \). The order of the symplectic group is

\[
|Sp(2j, t)| = t^d(t^2 - 1)(t^4 - 1) \cdots (t^{2j} - 1) \\
= t^d(t - 1)(t + 1)(t^2 - 1)(t^2 + 1) \cdots (t^j - 1)(t^j + 1). \tag{1}
\]

We now attempt to show that each factor in the second line of (1) is prime to \(s \). Since \(t \parallel (n/d) \) and \(n/d < s \), \(t \) and \(s \) are distinct primes and \(t^j \) is prime to \(s \). Since all other factors are at most \(t^j + 1 \), it suffices to show that \(t^j + 1 < s \).

Now

\[
t^j + 1 \leq \frac{n}{d} + 1 \leq s, \tag{2}
\]

where the first inequality follows from \(t^j \|(n/d) \) and the second inequality is by assumption. If either inequality in (2) is strict, then \(t^j + 1 < s \) as required. If, however, equality holds throughout then \(t^j = n/d \) and \(s = t^j + 1 \). Since \(s \) is odd and \(t \) is prime, \(t = 2 \) and \(s = 2^j + 1 \). Since the factor \(t^j + 1 \) occurs only once in the factorization of \(|Sp(2j, t)| \), \(s \) divides \(|Sp(2j, t)| \) only to the first power. Thus either \([V:A] \) is prime to \(s \) or \(s = 2^j + 1 = (n/d) + 1 \) and \([V:A]_s = s \).

By the first paragraph of this proof, \([A:F] \) is prime to \(s \) and \([G:V] \) is prime to \(s \) if \(d \) is prime to \(s \). Since

\[
[G:F] = [G:V][V:A][A:F],
\]

all the conditions in (1) are satisfied if \([V:A] \) is prime to \(s \). If, however, \([V:A] \) is divisible by \(s \), then all the statements in (2) hold.

There now only remains to prove the last statement. Assume that \(s > n + 1 \). Then \((n/d) + 1 \leq n + 1 < s \). Also, \(d \) is a divisor of \(n \), so \(d < s \) is prime to \(s \). Hence either (1) or (2) holds. However, (2) implies that \(s = n + 1 \), contrary to the hypothesis that \(s > n + 1 \). Therefore, (1) must be true. Since \(d \) is prime to \(s \), \([G:F] \) is prime to \(s \). This completes the proof.
Another useful fact is the following lemma of Hall [5]:

Lemma 1.8 (Hall). Let G be a finite group and N a normal subgroup of G. If H is a Hall π-subgroup of G, then $H \cap N$ is a Hall π-subgroup of N and HN/N is a Hall π-subgroup of G/N.

2. E_π in $GL(n, q)$

Consider the general linear group $GL(n, q)$ and assume that all the notation is as in 1.1. In this section, we will first recall the conditions for $E_{r,s}$ and the construction of Hall subgroups, which were determined in [6]. Then we will generalize the theorems on E_π to the case where π may contain any number of odd primes other than p.

In order to describe the Hall subgroups, we will need an embedding (which may also be found in [6]) of F_q^a into $GL(a, q)$. Let $F = F_q$ and $K = F_q^{a_i}$. Then K is the splitting field of a certain irreducible polynomial $f(x)$ of degree a with coefficients in F. Let $\xi \in K$ be a root of $f(x)$. Then K can be regarded as a vector space over F with basis $1, \xi, \xi^2, ..., \xi^{a-1}$. Multiplication by an element of K is an F-linear transformation of K. This transformation can be represented as a matrix with respect to the basis $\{1, \xi, \xi^2, ..., \xi^{a-1}\}$. As the non-zero elements of K are invertible, they will be embedded into $GL(a, q)$.

We will now quote Spitznagel's conditions for $E_{r,s}$ in $GL(n, q)$, given in [6]. Recall the notation in 1.1; r and s are two odd primes neither of which is the field characteristic p, $r < s$, and a and b are the orders of q modulo r and s, respectively.

Theorem 2.1 (Spitznagel). Let r, s, a, and b be as in 1.1. Then $E_{r,s}$ holds in $GL(n, q)$ if and only if one of the following three sets of conditions is true:

I. $a = b$ and $n < as$.

II. $a = r - 1$, $b = 1$, $n < bs$, $[n/a] = [n/r]$, and $|q^a - 1|, = r$.

III. $a = r - 1$, $b = r$, $n < bs$, $[n/a] = [n/r]$, and $|q^a - 1|, = r$.

In Cases II and III, we must also have $n < ar$. For $n/a - n/r = n/(r - 1) - n/r = n(1/(r - 1) - 1/r)$, an increasing function of n, so once n exceeds ar, $n/a - n/r \geq ar/a - ar/r = r - a = 1$. Thus $[n/a] - [n/r] \geq 1$ if $n \geq ar$. Hence $n < ar$ in Cases II and III.

The Hall subgroups constructed in [6] are as follows:

I. Here $a = b$. Let $k = [n/a]$, and consider the group $GL(k, q^a)$. We will construct a Hall subgroup of $GL(k, q^a)$ first. Consider the subgroup D of diagonal matrices of order $(q^a - 1)^k$. Take a Hall $\{r, s\}$-subgroup H_0 of
The group \(P \) of permutation matrices normalizes \(D \) and hence \(H_0 \). Since \(n < as \), \(|P|\) is prime to \(s \). Then let \(R \) be a Sylow \(r \)-subgroup of \(P \), which therefore normalizes \(H_0 \). Thus \(H = H_0 R \) forms a group of order

\[
|H_0| \cdot |R| = |q^a - 1|_{r,s} |k!|_r = |GL(k, q^a)|_{r,s},
\]

the second equality coming from Lemma 1.2. Thus \(H \) is a Hall \(\{r, s\} \)-subgroup of \(GL(k, q^a) \).

To obtain a Hall subgroup of \(GL(n, q) \) we proceed as follows. The group \(H \) described above consists of monomial matrices with entries from \(F_q^x \). If \(x \in F_q^x \) is one such entry, we may represent \(x \) as a matrix in \(GL(a, q) \) as described above. By replacing all entries of \(H \) in this manner, we may regard \(H \) as a subgroup of \(GL(a[n/a], q) \). By taking a direct product with an \((n-a[n/a])\)-dimensional identity matrix, we may consider \(H \) to be a subgroup of \(GL(n, q) \). Since

\[
|GL(k, q^a)|_r = |q^a - 1|_r |k!|_r = |GL(n, q)|_r,
\]

and similarly for \(s \), \(H \) is a Hall subgroup of \(GL(n, q) \).

II. Since \(a \neq b \) and \(b = 1 \), we can form a Sylow \(s \)-subgroup \(S \) of diagonal matrices. A Sylow \(r \)-subgroup \(R \) will consist of a Sylow \(r \)-subgroup of permutation matrices. Since permutation matrices normalize diagonal matrices, \(H = RS \) forms a Hall \(\{r, s\} \)-subgroup of \(GL(n, q) \).

III. Here \(b = r \). Let \(S \) be the image of a Sylow \(s \)-subgroup of \(F_q^x \) under the embedding \(F_q^x \subset GL(r, q) \). Choose an element \(\alpha \) of order \(r \) from Gal\((F_q/F_q)\). Then \(\alpha \) is an \(F_q \)-linear transformation of \(F_q \). With respect to the basis \(\{1, \zeta, \zeta^2, \ldots, \zeta^{r-1}\} \), \(\alpha \) corresponds to an \(r \) by \(r \) matrix \(A \). Since \(A \) normalizes \(S \), \(S \langle A \rangle \) is a Hall \(\{r, s\} \)-subgroup of \(GL(n, q) \). Embed \([n/r]\) copies of this group down the main diagonal to form the Hall \(\{r, s\} \)-subgroup.

Now let \(\pi \) be an arbitrary set of odd primes, none of them \(p \). We will now see when \(E_\pi \) holds, generalizing the two prime case in Theorem 2.1.

Theorem 2.2. Let \(\pi \) be a set of odd primes with \(p \notin \pi \) and \(r < s \) the least two, and let \(t \) be any prime in \(\pi \) with \(t \neq r \). Define \(a \) and \(b \) as in 1.1, and define \(c \) analogously (i.e., \(c \) is the order of \(q \) mod \(t \)). Then \(GL(n, q) \) satisfies \(E_\pi \) if and only if \(c = b \) for all \(t \) and one of the following holds:

I. \(a = b \) and \(n < as \);

II. \(a = r - 1, b = 1, n < bs, [n/a] = [n/r] \), and \(|q^a - 1|_r = r \);

III. \(a = r - 1, b = r, n < bs, [n/a] = [n/r] \), and \(|q^a - 1|_r = r \).

Proof. Assume that \(GL(n, q) \) satisfies \(E_\pi \). By the Feit–Thompson and
Hall Theorems, $E_{r,s}$ holds. By Theorem 2.1, one of the sets of conditions I, II, or III is true.

We now show that $c = b$ for all primes $t \in \pi$ with $t > r$. If $t = s$, then trivially $c = b$, so assume that $t \neq s$. By the Feit-Thompson and Hall Theorems, $E_{r,s}$, $E_{r,t}$, and $E_{s,t}$ all hold for every t. Assume (for a contradiction) that $b \neq c$ and thus II or III holds for (s, t). In particular, $b = s - 1$ is even. If II or III should hold for (r, s), then we would have $b = 1$ or $b = r$, contradicting the fact that s is odd. Hence I holds for (r, s) and $a = b = s - 1$. This is a contradiction, since $a < r - 1 < s - 1$. Hence I holds for (s, t) and $b = c$, as desired.

Conversely, assume that I, II, or III holds. Begin by supposing that all the conditions of I are satisfied. In this case, first form a Hall π-subgroup H_0 of F_q^\times (as embedded in $GL(a, q)$). Construct H_1 by placing $[n/a]$ copies of H_0 down the main diagonal, together with a complementary identity matrix. Then choose a Sylow r-subgroup R of permutation matrices on a by a blocks, isomorphic to a Sylow r-subgroup of $\Sigma_{[n/a]}$. Let $H = H_0 R$. Then

$$|H| = |q^a - 1|^{[n/a]} |\Sigma_{[n/a]}| = |GL(n, q)|_r,$$

and $|H| = |q^a - 1|^{[n/a]} = |GL(n, q)|_r$, since $n < as < at$ and $[n/a] < t$.

If II holds, we may take a Hall $\pi - \{r\}$-subgroup of F_q^\times and embed n copies of it diagonally into $GL(n, q)$. Let H be the group generated by a Sylow r-subgroup of the permutation matrices and a subgroup of (normal) diagonal matrices. This is a Hall π-subgroup since

$$|GL(n, q)|_r = |q^a - 1|^{[n/a]} |\Sigma_{[n/a]}| = r^{[n/a]} = r^{[n/r]} = |H|,$$

since $n < ar$, as in the two prime case. Also,

$$|GL(n, q)|_t = |q^b - 1|^{[n/b]} |\Sigma_{[n/b]}| = |q - 1|^n = |H|.$$

If III holds, then embed F_q^\times into $GL(b, q)$. Since the extension has degree r its Galois group, $Gal(F_q^\times / F_q)$, has an element of order r. This normalizes F_q^\times, where both are in matrix form, just as when π had two primes. Thus the two form a solvable group. By Hall’s Theorem, this has a Hall π-subgroup. Embed $[n/b]$ copies of it in $GL(n, q)$ down the main diagonal. Call this group H. Then

$$|GL(n, q)|_r = |q^a - 1|^{[n/a]} |\Sigma_{[n/a]}| = r^{[n/a]} = r^{[n/r]} = r^{[n/b]} = |H|,$$

$$|GL(n, q)|_t = |q^b - 1|^{[n/b]} |\Sigma_{[n/b]}| = |q - 1|^b = |H|,$$

so we have a Hall π-subgroup in this case also.
3. $D_{r,s}$ in $GL(n, q)$

Now, turn to the question of $D_{r,s}$. First consider Case II.

Theorem 3.1. Let r and s be odd primes dividing the order of $GL(n, q)$. Assume the conditions for $E_{r,s}$ in Case II of Theorem 2.1. Then $D_{r,s}$ does not hold.

Proof. Since $r \mid |GL(n, q)|$ we have $n \geq a$. Suppose that $n = a$. Then since $a = r - 1$,

$$0 = \left[\frac{a}{a + 1} \right] = \left[\frac{a}{r} \right] = \left[\frac{a}{a} \right] = 1,$$

a contradiction. Then $n > a$, i.e., $n \geq r$.

Let U be an n-dimensional space of column vectors over F_q on which $GL(n, q)$ acts naturally. Let $\{e_1, \ldots, e_n\}$ be the usual basis for U. Let $m = \lfloor n/r \rfloor$ and $c = n - rm$. Decompose U as a direct sum

$$U = U_1 \oplus U_2 \oplus \cdots \oplus U_m \oplus W,$$

where each $U_i = \langle e_{(i-1)r+1}, \ldots, e_{ir} \rangle$ is an r-dimensional subspace and $W = \langle e_{mr+1}, \ldots, e_n \rangle$ is a subspace of dimension $n - rm$. Let H be the Hall subgroup constructed in Theorem 2.1. We will now describe the Sylow r- and s-subgroups of H as they act on U. Let R_i be a group, acting on U_i, generated by a permutation matrix of order r. The Sylow r-subgroup R of H is then

$$R = R_1 \times R_2 \times \cdots \times R_m.$$

Since $b = 1$, $GL(n, q)$ has a Sylow s-subgroup S of diagonal matrices. Let $H = \langle R, S \rangle$. By construction, each U_i is an irreducible subspace of H.

We now construct an $\{r, s\}$-subgroup not contained in a conjugate of H. Take a Sylow r-subgroup from F_q^\times as embedded in $GL(a, q)$, along with a non-trivial s-group of scalar (hence central) matrices. These commute, and thus form a group L'. Let

$$U = U'_1 \oplus U'_2 \oplus \cdots \oplus U'_m \oplus W'$$

be a decomposition of n-dimensional space with $\dim U'_i = a$ for each i. Since $\dim U'_i = a = r - 1 = \dim U_i - 1$, we have $\dim W' = c + m$. Let L_i be the group acting as L' on U_i and trivially elsewhere. Then let

$$L = L_1 \times L_2 \times \cdots \times L_m$$
be the direct product. Since \(|L|_r = r^{[n/a]}\), \(L\) contains a full Sylow \(r\)-subgroup of \(GL(n, q)\).

Suppose that \(L\) is conjugate to a subgroup \(L^x\) of \(H\). By a further conjugation if necessary, we may assume that \(R \subseteq L^x\). We will derive a contradiction by comparing the number of invariant vectors of \(L^x\) with the number of those of the subgroups of \(H\). An \(r\)-cycle in \(R_i\) leaves invariant only the 1-dimensional space spanned by

\[v_i = \sum_{j=1}^{r} e_{(i-1)r+j} \in U_i \quad \text{for} \quad i = 1, 2, \ldots, m. \]

Since \(R\) acts trivially on \(W\), \(R\) also leaves invariant

\[v_{m+k} = e_{mr+k} \in W \quad \text{for} \quad k = 1, 2, \ldots, c. \]

Thus the \(R\)-invariant vectors span a space

\[U_0 = \langle v_1, v_2, \ldots, v_{m+c} \rangle \]

of dimension \(m + c\).

Since \(L\) acts trivially on \(W'\), \(L\) leaves \(m + c\) linearly independent vectors invariant. Conjugation preserves the number of invariant vectors, so \(L^x\) must also act trivially on a space of dimension at least \(m + c\). But this space must be \(U_0\) because \(R \subseteq L^x\) leaves only the vectors in \(U_0\) invariant. By assumption, \(L^x \subset H\). Thus to complete the proof it suffices to show that no \(\{r, s\}\)-subgroup of \(H\) properly containing \(R\) leaves all the vectors in \(U_0\) invariant. We have already seen that the Sylow \(r\)-subgroup \(R\) of \(H\) acts trivially on \(U_0\). Recall that \(S\) consists of diagonal matrices. Let

\[y = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n) \]

be an element of \(S\). Assume that the subgroup \(\langle R, y \rangle\) of \(H\) is contained in \(L^x\). Then \(y\) sends the vector \(\sum \alpha_i e_i\) to \(\sum \sigma_i \alpha_i e_i\). Therefore \(yw_i = v_i\), for \(i = 1\) to \(n\), only if \(y = 1\). It follows that \(L^x = R\) is an \(r\)-group, which is not the case. This contradiction shows that \(L\) is not conjugate to a subgroup of \(H\), and \(D_{r,s}\) fails.

However, in the remaining cases, we will have a theorem to show that \(D_{r,s}\) holds. We will need the following lemma in order to apply induction.

Lemma 3.2. Assume the conditions for \(E_{r,s}\) in \(GL(n, q)\) hold in Case III of Theorem 2.1. Let \(X\) be a maximal \(\{r, s\}\)-subgroup of \(GL(n, q)\) acting naturally on an \(n\)-dimensional space \(U\). If \(X\) acts irreducibly on a subspace \(W\) of \(U\), then \(X\) acts primitively on \(W\). If in addition \(X\) acts non-trivially on \(W\), then \(\dim W\) is divisible by \(b\).
Proof. If \(X \) is not primitive on \(W \), then let \(W = W_1 \oplus W_2 \oplus \cdots \oplus W_k \) be a system of imprimitivity. Since \(X \) is irreducible, \(X \) does not consist entirely of permutation matrices. Thus \(X \) acts non-trivially on \(W_1 \) and \(\dim W_1 \geq a \). But \(X \) is an \(\{ r, s \} \)-group, and \(k \) is a divisor of \(|X| \). Thus \(k \geq r \). Then \(n = k \dim W_1 \geq ar \), a contradiction. This proves the first statement.

Assume that \(X \) acts non-trivially on \(W \). By Theorem 1.6, \(X \) is contained in a group \(G \) of type \(\mathcal{S} \) with field degree \(d \). Since \(X \) is an \(\{ r, s \} \)-group acting non-trivially on \(W \), either \(a \) or \(b \) divides \(\dim W \). If \(b \mid \dim W \), we are done, so assume that \(a \mid \dim W \). We will show that \(X \) acts on \(W \) as an \(r \)-group. We have

\[
\frac{\dim W}{d} \leq \frac{n}{d} < r < s.
\]

Should \(s \mid d \), then \(d \geq as \) since either \(a \) or \(b \) divides \(d \) and since \(s > b > a \). This contradicts \(d \leq n < ar < as \).

We now show that \([G : V]\) is prime to \(s \). If not, then by Lemma 1.7 with \(n \) replaced by \(\dim W \), we have \(s = (n/d) + 1 \). But by Theorem 2.1, \(n/d \leq n/a < r \). This contradicts the fact that \(r \) and \(s \) are two distinct odd primes. Therefore \([G : F]\) is prime to \(s \). Also, \(|F|_s = |q^d - 1|_s = 1 \) since \(b \nmid d \). Hence \(|X|_s = |G|_s = 1 \), as claimed.

We now show that \(b \) divides the dimension of \(W \). Decompose \(U \) as a direct sum

\[
U = W_1 \oplus W_2 \oplus \cdots \oplus W_k
\]

of \(X \)-irreducible subspaces \(W_i \). Suppose that at least one \(W_i \) has dimension divisible by \(a \). Let \(n_i = \dim W_i \) and \(c_0, c_1, \) and \(c_2 \) be defined by

\[
c_0 = \sum_{\dim W_i = 1} \dim W_i;
\]

\[
c_1 = \frac{1}{a} \sum_{a \mid \dim W_i} \dim W_i;
\]

\[
c_2 = \frac{1}{b} \sum_{b \mid \dim W_i} \dim W_i.
\]

Then (using \(b = r \)) \(n = c_0 + c_1 a + c_2 r \). We also have

\[
\left[\begin{array}{c} n \\ a \end{array} \right] = \left[\begin{array}{c} c_1 a + c_2 r + c_0 \\ a \end{array} \right] \geq c_1 + c_2.
\]
Assume first that \(c_0 < c_1 \). Then

\[
\left[\frac{n}{r} \right] = \left[\frac{c_1 a + c_2 r + c_0}{r} \right] < \left[\frac{c_1 r + c_2 r}{r} \right] = c_1 + c_2,
\]

where the strict inequality holds because \(c_1 a + c_2 r + c_0 < c_1 r + c_2 r \). This is a contradiction to \(\left[\frac{n}{a} \right] = \left[\frac{n}{r} \right] \). Then \(c_0 \geq c_1 > 0 \).

Let \(W_i \) be an \(X \)-irreducible subspace of dimension \(ma \). Then \(m \leq c_1 \). Since \(c_0 \geq c_1 \geq m \), there is a space \(W_0 \) of dimension \(m \) on which \(X \) acts trivially. Let \(\bar{W} = W_0 \oplus W_i \). Then \(\dim \bar{W} = m + ma = mr \). Let \(\bar{X} = X/C_X(W) \) be the group that \(X \) induces on \(W \). Since \(W \) is a direct summand of \(U \), \(\bar{X} \) is a maximal \(\{r, s\} \)-subgroup of \(GL(\bar{W}) \).

Now \(\dim \bar{W} = mr \leq n < ar \) and \(\left[\frac{mr}{r} \right] = \left[\frac{mr}{a} \right] = m \). Therefore \(GL(\bar{W}) \) satisfies \(E_{r,s} \). Let \(H \) be a Hall subgroup of \(GL(\bar{W}) \). Then \(\bar{X} \) embeds in a conjugate of a Sylow \(r \)-subgroup of \(H \). By replacing \(H \) by a conjugate, we may assume that \(\bar{X} \subset H \). But \(\bar{X} \) is a maximal \(\{r, s\} \)-group, so \(\bar{X} = H \). This contradicts the fact that \(\bar{X} \) is an \(r \)-group. Thus \(c_1 = 0 \), and any irreducible \(X \)-subspace \(W \) has dimension divisible by \(b \) unless \(X \) acts trivially on \(W \) and \(\dim W = 1 \).

Theorem 3.3. Assume that the conditions for \(E_{r,s} \), given in Theorem 2.1, hold either in Case I or in Case III. Then \(D_{r,s} \) holds.

Proof: Let \(U \) be the space on which \(GL(n, q) \) acts, and let \(L \) be a maximal \(\{r, s\} \)-subgroup of \(GL(n, q) \). It suffices to show that \(L \) is a Hall subgroup. We will prove that \(L \) has a normal subgroup \(S \) with \(|S| = |GL(n, q)|/s \). The proof proceeds by induction on \(n \).

Assume the following inductive hypothesis: If \(GL(n', q) \) satisfies \(E_{r,s} \) with \(n' < n \), then a maximal \(\{r, s\} \)-group \(L' \) is a Hall subgroup of \(GL(n', q) \) and the Sylow \(s \)-subgroup of \(L' \) is normal in \(L' \). The proof divides according to the following three cases.

Case 1: \(L \) is reducible. In this case, \(U = W_1 \oplus \cdots \oplus W_k \) with each \(W_i \) \(L \)-irreducible. Let \(n_i = \dim W_i \). Define \(L_i \) to be the group induced by \(L \) on \(W_i \). That is, \(L_i = L/C_L(W_i) \). Then \(L \) is isomorphic to a subgroup of \(L_1 \times \cdots \times L_k \) with \(L_i \subset GL(W_i) \). By the maximality of \(L \), \(L = L_1 \times L_2 \times \cdots \times L_k \) and \(L_i \) is a maximal \(\{r, s\} \)-subgroup of \(GL(W_i) \). In order to apply the induction, we must show that \(GL(n_i, q) \) satisfies \(E_{r,s} \).

We must show that if \(E_{r,s} \) holds in \(GL(n, q) \), then \(E_{r,s} \) holds in \(GL(n_i, q) \). In Case I, if \(n < as \) then \(n_i < n < as \), as required. In Case III, we similarly get \(n_i < n < ar \). But we must also show that \(\left[\frac{n_i}{a} \right] = \left[\frac{n_i}{r} \right] \) for each \(i \).

By Lemma 3.2, \(r \mid \dim W_i \). If \(\dim W_i = 1 \), then \(E_{r,s} \) holds.
trivially. But if \(r \mid \dim W_i \), then \(\dim W_i/r = \dim W_i/a \), and \(GL(W_i) \) satisfies \(E_{r,s} \) in this case also.

By induction, each \(L_i \) is a Hall subgroup of \(GL(W_i) \). Let \(S_i \) be the normal Sylow \(s \)-subgroup \(S_i \) of \(L_i \) with

\[
|S_i| = |GL(n_i, q)|_s = q^b - 1 \left[\frac{n_i}{b} \right], \quad \text{for } i = 1, 2, \ldots, k.
\]

Since \(n < bs \) in either Case I or Case III, \(\left[\frac{n_i}{b} \right]_s = 1 \) for all \(i \). Let \(S = S_1 \times S_2 \times \cdots \times S_k \). We will show that \(S \) is the required normal Sylow \(s \)-subgroup of \(L \). Clearly, \(S \) is a normal subgroup of \(L \). Assume then that \(|S| < \left| GL(n, q) \right|_s \). By induction, we need only consider the case \(k = 2 \). We have

\[
|S| = |S_1| |S_2| = q^b - 1 \left[\frac{n_1}{b} \right] + \left[\frac{n_2}{b} \right] < q^b - 1 \left[\frac{n}{b} \right].
\]

This implies that \(\left[\frac{n_1}{b} \right] + \left[\frac{n_2}{b} \right] < \left[\frac{n}{b} \right] \). Since \(n = n_1 + n_2 \), we have \(\left\{ \frac{n_1}{b} \right\} + \left\{ \frac{n_2}{b} \right\} \geq 1 \), where \(\left\{ \frac{n_i}{b} \right\} \) indicates the fractional part of \(\frac{n_i}{b} \).

We know from the structure of the Sylow subgroups that \(S_i \) has \(\left[\frac{n_i}{b} \right] \) invariant \(b \)-dimensional spaces. Therefore, \(S_i \) acts trivially on a space of dimension \(n_i - b\left[\frac{n_i}{b} \right] = b\left\{ \frac{n_i}{b} \right\} \). Let \(W_0 \) be the space of all vectors on which \(S \) acts trivially. Then \(\dim W_0 = b\left\{ \frac{n_1}{b} \right\} + b\left\{ \frac{n_2}{b} \right\} \geq b \). Since \(S \leq L \), \(W_0 \) is \(L \)-invariant.

Let \(L_0 \) be the restriction \(L|_{W_0} \) of \(L \) to \(W_0 \). Since \(W_0 \) is \(L \)-invariant and \(L \) is maximal, \(L_0 \) is a direct factor of \(L \). Moreover, \(L_0 \) is a maximal \(\{r, s\} \)-subgroup of \(GL(W_0) \) because of the maximality of \(L \). Since \(\dim W_0 < n \), \(L_0 \) is a Hall \(\{r, s\} \)-subgroup of \(GL(W_0) \) by induction. Also, \(|L_0| \neq 1 \) since \(\dim W_0 \geq b \). But by the definition of \(W_0 \), \(L_0 \) is an \(r \)-group. This contradiction shows that \(|S| = \left| GL(n, q) \right|_s \). Thus \(S = S_1 \times S_2 \) is a full Sylow \(s \)-subgroup of \(GL(n, q) \), normal in \(L \), as required.

Case 2: \(L \) is irreducible but imprimitive. In Case III, this case is impossible by Lemma 3.2. So we must be in Case I. Let \(U \) be the space of dimension \(n \) on which \(L \) acts irreducibly. Also, let \(U = W_1 \oplus W_2 \oplus \cdots \oplus W_k \) be a decomposition of \(U \) into systems of imprimitivity. All \(W_i \) have the same dimension, say \(n' \). By Lemma 5 in [7], \(L = P(L_1 \times L_2 \times \cdots \times L_k) \), where \(P \) is a permutation group on \(\{1, 2, \ldots, k\} \) and \(L_i \) is a maximal \(\{r, s\} \)-subgroup of \(GL(W_i) \). By induction, \(L_i \) is a Hall subgroup of \(GL(W_i) \). Let \(S_i \) be the normal Sylow \(s \)-subgroup of \(L_i \), and let \(S = S_1 \times S_2 \times \cdots \times S_k \). We claim that \(S \) is a normal Sylow \(s \)-subgroup of \(L \). Clearly, \(S \) is normal
in L. To show that S is a Sylow s-subgroup, we compute its order. We have

$$|S| = |S_1| |S_2| \cdots |S_k| = |S_1|^k = (|q^a - 1|_{s^{n'/a}})[n'/a]|_s)^k,$$

the last equality by Lemma 1.2. Since $n' \leq n < as$, we have $[n'/a]|_s = 1$. Then the equation simplifies to

$$|S| = |q^a - 1|_{s^{n'/a}}.$$

By Definition 1.5 and Theorem 1.6, one of a or b divides d. But we are in Case I, where $a = b$, so $a|d$. Furthermore, $d|n'$, so we may conclude that $a|n'$. So $[n'/a] = n'/a$ and

$$|S| = |q^a - 1|_{s^{kn'/a}} = |q^a - 1|_{s^{n/a}}.$$

Thus S is a Sylow s-subgroup of $GL(n, q)$, again using Lemma 1.2 and the fact that $n < as$. This completes the proof of the inductive hypothesis in this case.

Case 3: L is primitive. By Theorem 1.6, L embeds in a group of type S with field degree d and normal series $F \triangleleft A \triangleleft V \triangleleft G$ and satisfying the conditions of Definition 1.5.

We now use Lemma 1.7 to show that $[G : F]$ is prime to s. The hypotheses we need to check are that $n/d < s$ and that d is prime to s. Either $a|d$ or $b|d$. In Case I, $n < as = bs$. In Case III, $n < ar < as$ and $n < ar = ab < rh < hs$. If $a|d$, then $n/d \leq n/a < s$. If, however, $b|d$, then $n/d \leq n/b$, which is also less than s.

We now show that $s \nmid d$. Since d is a multiple of either a or b, we may let $d - ca$ or $d = cb$. Assume, for a contradiction, that $s|d$. Since $(s, a) = 1 = (s, b)$, $d \geq as$ or $d \geq bs$. Then $d > n$, a contradiction since $d|n$. Therefore, d is prime to s as required.

Assume (for a contradiction) that $[G : F]$ is divisible by s. Then by Lemma 1.7, $s = 2^j + 1$ is a Fermat prime and $n/d = 2^j$. Since r and s are odd, Definition 1.5 implies that $n = d$, a contradiction, thus $[G : A]$ is prime to s.

First assume that $a = b$ and $ar|d$. Let $d = er^c$ with $r \nmid e$. Note that $a|e$ since $a < r$ and $a|d$, and recall that $s \nmid d$. Let S be the Sylow s-subgroup of F_∞^\times. Since $|(q^d - 1)/(q^a - 1)|_s = 1$, $S \subset F_\infty^\times$. Thus S is in the center of $GL(n/a, q^a)$. We now show that S is also in the center of L. Since $S \subset F$, and since V is the centralizer of F in G, S is centralized by V. Now G/V is isomorphic to a subgroup of Gal($F_\infty^\times/F_\infty^\prime$). An automorphism ϕ of
order \(r^c \) in this Galois group is given by \(\phi(x) = x^{4'} \). This leaves invariant a field of \(q^e \) elements. In particular, \(\phi \) leaves invariant the subfield \(F_{q^e} \) of \(F_{q^f} \). Hence \(\phi \) leaves \(S \) invariant since \(S \subset F_{q^e} \). Thus \(G/V \) and \(V \) both centralize \(S \), so \(G \) (and hence \(L \)) centralizes \(S \). Now assume that \(r \nmid d \) in Case I. We will again prove that \(L \) centralizes \(S \). In this case, \(d \) is prime to \(r \) and \(s \), so \(L \subset V \). But \(V \) is the centralizer of \(F \) and \(S \subset F \). Thus \(S \) is in the center of \(L \) in both cases.

Let \(R \) be a Sylow \(r \)-subgroup of \(L \). Consider the natural embedding of \(GL(n/a, q^n) \subset GL(n, q) \). Since \(|GL(n/a, q^n)|_{r,s} = |GL(n, q)|_{r,s} \), there is a Hall subgroup \(H \) of \(GL(n, q) \) contained in \(GL(n/a, q^n) \). Then \(H \) and \(R \) are both contained in \(C_\sigma(S) \). By Sylow's Theorem, \(R^x \subset H \) for some \(x \in C_\sigma(S) \). But then \(L^x \subset H \) since \(S^x = S \). This proves the theorem in Case I.

Now assume we are in Case III. If \(b \nmid d \), then \(|L|_s = 1 \) and \(L \) is an \(r \)-group. But then \(L \) embeds in a Hall subgroup since \(E_{r,s} \) holds. Thus \(|F|_s > 1 \) and \(b|d \). Since \(n < ar \) and since \(b \leq d \), we have \(n/d \leq n/b = n/r < a < r \). By Lemma 1.7 with \(s \) replaced by \(r \), \([V : F] \) is prime to \(r \). But \(d \) is divisible by \(b \) and not by \(a \), so \(|F| \) is also prime to \(r \). We may conclude that \(|V|_r = 1 \). Then the Sylow \(r \)-subgroup of \(L \) is isomorphic to a subgroup of \(G/V \) which is a cyclic group of order \(d \). In Case III, \(n < ar < r^2 \), so \(r \| d \).

Then \(|L| = rs^r \) where \(s^r = |q^b - 1|_s \).

Over \(F_q \), there are \((s^r - 1)/r \) distinct irreducible representations of \(L \) of degree \(r \) nontrivial on the Sylow \(s \)-subgroup. By Theorem 47.11 and Remark (1), page 600, in [2], there is no other irreducible representation which is non-trivial on the Sylow \(s \)-subgroup. Since \(L \) is irreducible, we have \(n = r = b = d \).

Then

\[
|GL(n, q)|_{r,s} = |q^r - 1|_s r
\]
in Case III, so \(L \) is a Hall subgroup of \(GL(n, q) \). This completes the proof of the inductive hypothesis.

Let \(H \) be a Hall subgroup of \(GL(n, q) \). We may assume that \(S \subset H \). Let \(R_0 \) be the Sylow \(r \)-subgroup of \(L \) and let \(R \) be the Sylow \(r \)-subgroup of \(H \). By Sylow's Theorem applied to \(N(H) \), \(R_0 \) is conjugate, within \(N(H) \), to a subgroup of \(R \). This conjugation leaves \(S \) invariant, so it carries \(L \) into \(H \).

REFERENCES

