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rotein Kinase C �/Early Growth Response-1 Pathway
Key Player in Ischemia, Atherosclerosis, and Restenosis
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Atherosclerosis, restenosis, and the consequences of ischemia are the major causes of
morbidity and mortality worldwide. Elucidation of key contributing pathways in animal
models of ischemia-reperfusion injury, atherosclerosis, and restenosis consequent to vascular
injury may lead to great interest in determining if blocking these pathways could prevent
vascular disease in human subjects. This review details the evidence that the protein kinase C
(PKC) �/early growth response-1 axis plays a central role in the response to both acute and
chronic vascular stresses in animal models and also indicates the clinical implications of a
specific inhibitor of PKC�, ruboxistaurin (LY333531). (J Am Coll Cardiol 2006;48:

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.05.063
A47–55) © 2006 by the American College of Cardiology Foundation
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therosclerosis, restenosis, and the consequences of isch-
mia are the key disease processes underlying vascular
iseases, which are major causes of morbidity and mortality

n both men and women worldwide. Although vascular
njury is thought to be an important stimulus to atheroscle-
osis, restenosis, myocardial ischemia, lung ischemia, and so
n, the mechanisms that mediate the aberrant response to
njury remain to be fully clarified. Advances in molecular
enetics have made it possible to remove or insert genes in
nimal models and, thereby, to determine the roles of their
roducts in models of disease (1). Animal models of
schemia/reperfusion injury, atherosclerosis, and restenosis
fter vascular injury are crucial in studying the cellular and
olecular mechanisms underlying vascular stresses. In this

eview, we will detail the evidence that the protein kinase C
PKC) �/early growth response-1 (Egr-1) axis plays a
entral role in experimental ischemia-reperfusion injury,
therosclerosis, and restenosis. These findings suggest the
ossibility that blockade of PKC�/Egr-1 pathway by a
pecific inhibitor of PKC�, for example, ruboxistaurin
LY333531), may have important clinical implications for
iabetic and non-diabetic patients with vascular disorders.

GR-1 AND PKC�II

he early growth response gene product (Egr-1), also
nown as Zif268, NGF1-A, Krox24, or TIS8, is a zinc
nger transcription factor first identified due to its charac-
eristic pattern of expression after exposure of cells to
ediators associated with growth and differentiation (2,3).

t has been assigned to the group of “immediate early genes”
ased on its rapid induction within minutes of a stimulus,
nd its rapid decay, often within hours. Although studies
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SPHS, and National Institutes of Health grants RO1 HL75529, RO1 HL73325,
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k
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ccepted May 29, 2006.
imited to the in vitro milieu suggested that Egr-1 had a
ritical role in promoting cellular differentiation along a
acrophage lineage (4–6), experiments in Egr-1–null mice

ndicated that the transcription factor was not essential for
ffective macrophage differentiation (5), because Egr-1-null
ice were viable and developed and grew normally. The

pparent absence of a life-threatening phenotype in Egr-1–
ull mice in homeostasis underscored the possibility that the
iological impact of Egr-1 was likely relevant in induced
tresses. Strongly supportive of this concept was the obser-
ation, in vitro, that Egr-1 induced a number of gene
roducts linked to cellular perturbation, especially in the
asculature, including tumor necrosis factor (TNF)-alpha,
ntercellular adhesion molecule-1 (ICAM-1), CD44,
latelet-derived growth factor A/B chain, basic fibroblast
rowth factor, transforming growth factor (TGF)-�, and
acrophage colony stimulating factor (M-CSF) (7–9). Ev-

dence from our laboratory and other investigators has
ccumulated linking activation of Egr-1 to both acute and
hronic vascular stress, such as hypoxia (10–12), ischemia/
eperfusion (13,14), and mechanical stress (15), shear stress
16,17), emphysema (18), atherosclerosis (19–21), and
cute vascular injury (22–25).

Our laboratory has elucidated key roles for PKC� in
egulation of Egr-1 in vascular stress. The PKC family is a
amily of multifunctional isoenzymes that play a central role
n signal transduction and intracellular crosstalk by phos-
horylating at serine/threonine residues an array of sub-
trates, including cell surface receptors, enzymes, contractile
roteins, transcription factors, and other kinases (26). Based
n their structure and cofactor regulation, a total of 12
soforms of PKC have been classified into 3 groups: the
iacylglycerol (DAG) and Ca2�-dependent conventional or
lassical PKC isoforms (�, �I, �II, �); the DAG-
ependent, but Ca2�-independent, novel PKC isoforms (�,
, �, �, and �); and the DAG- and Ca2�-independent
typical PKC isoforms (	, 
, and �) (the mouse and rat
omologue of human PKC	 is named PKC
) (27). Protein

inase C�I and PKC�II are generated by alternative splic-

https://core.ac.uk/display/81971247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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ng from a single gene, but they differ at their C-terminal 50
�I) or 52 (�II) residues (27). Activation of PKC occurs in
esponse to transient increases in DAG or exposure to
horbol ester (28) or hypoxia/ischemia (12,14). Other
tudies suggest that oxidant stress and hyperglycemia are
riggers to activation of PKC�II (29–30). Hyperglycemia-
nduced DAG preferentially activates one or more PKC
soenzymes in the tissues; in heart and aorta, PKC�II is
referentially activated; this includes both smooth muscle
ells (SMC) and endothelial cells (31,32). Links between
KC� activation and endothelial dysfunction in diabetes
ave been elucidated, such as impaired nitric-oxide–
ediated vasodilatation, increased release of endothelin-1,

ncreased expression of inducible nitric oxide synthase, and
CAM-1, and enhanced monocyte adhesion to the vessel
all (33–38). In studies from our laboratory, we examined

he role of PKC� in the response to hypoxia, ischemia/
eperfusion, acute vascular injury, and hyperlipidemia and in
odulating expression of Egr-1 (12,14,25,39,40) by em-

loying PKC�-null mice (41–43). These mice and phar-
acologic inhibition of PKC� provide key strategies to test

he impact of PKC� in vivo. We demonstrated that
ctivated PKC, especially �II isoform, is a critical upstream
egulator of Egr-1 (12,14,25,39,40). Early growth
esponse-1, in turn, functions as a master switch orchestrat-
ng the expression of diverse gene families to elicit a
athological response to hypoxia, ischemia/reperfusion, and
ascular stress (10–14,21).

KC�/EGR-1 AXIS AND ISCHEMIA

xygen deprivation and subsequent restoration of blood
ow to ischemic tissue somewhat paradoxically leads to
eperfusion injury. Because of their rich vascular network,
he lungs of both Egr-1–null (5) and PKC�-null (41) mice
rovided ideal model systems to assess the contribution of
KC�/Egr-1 axis in susceptibility to hypoxia or ischemia/

eperfusion-induced vascular dysfunction, such as hyperco-
gulability and inflammation. We employed two animal
odels to simulate acute vascular stress: one is global

ypoxia in which mice were placed in a hypoxic chamber
nd allowed free access to food and water, and the system
arameters were adjusted to a final oxygen concentration of
.8% to 6.2% (44); the other is murine lung ischemia/
eperfusion in which blood flow to the left lung was blocked
or up to 60 min (ischemic period) followed by reperfusion

Abbreviations and Acronyms
apoE � apolipoprotein E
Egr-1 � early growth response-1
ERK1/2 � extracellular-signal-regulated protein kinase
JNK � c-Jun N-terminal kinase
OxLDL � oxidized low-density lipoprotein
PKC � protein kinase C
or 3 h (45). o
Cells respond to oxygen deprivation by recruiting a
umber of central pathways such as hypoxia-inducible factor
HIF)-1 (46–49), nuclear factor � binding (NF�B) (50–
2), and Egr-1 (10,11,13). In an oxygen-scarce environ-
ent, HIF-1� promotes activation of the non–insulin-
ependent glucose transporter and expression of
rythropoietin and vascular endothelial growth factor
VEGF) (46–49). However, tissue-ischemia- or hypoxia-
riggered pathways involving Egr-1–mediated expression of
issue factor (TF) and deposition of fibrin in the oxygen-
eprived vasculature occurred in an HIF-1–independent
anner (10,11). Hypoxia or ischemia/reperfusion leads to

he generation of fibrin deposition in the lung (10,12–14),
hich is a critical underlying mechanism in the induction of
F. Analysis of the promoter of the gene encoding TF

ndicated the presence of binding elements for the transcrip-
ion factor Egr-1 (53,54). We found that in cultured
acrophages and HeLa cells, induction of hypoxia triggered

ncreased transcription, translation, and nuclear transloca-
ion of Egr-1 (10,11). When homozygous Egr-1–null mice
ere subjected to hypoxia or ischemia/reperfusion, they
isplayed decreased up-regulation of TF and fibrin deposi-
ion in the lung compared with wild-type mice (10,13).
hese data supported the essential role of Egr-1 in medi-

ting hypoxia- or ischemia/reperfusion-stimulated tran-
cription of TF.

To begin to dissect the mechanisms underlying expres-
ion and activation of Egr-1 when oxygen levels decline, our
tudies delineated a previously unrecognized pathway in-
olving rapid activation of PKC�II. This kinase initiates a
ignaling cascade that, via a series of steps including activa-
ion of raf, extracellular-signal-regulated protein kinase-1
nd 2 (ERK1/2), and transcription factor Elk-1, leads to
p-regulation of Egr-1, particularly in macrophages in the
ung (12,14,55) and in vitro (11). In addition to phosphor-
lation of ERK1/2, PKC� is also an early and key trigger to
he activation of c-Jun N-terminal kinase (JNK) and p38
itogen-activated protein MAP kinase (p38 MAPK) that

ccurs in response to ischemia/reperfusion (14). Consistent
ith our findings, it has been reported that activation of

NK and/or p38 MAPK appeared in the heart or kidney
xposed to ischemia/reperfusion and in cardiac myocytes
ubjected to hypoxia/reoxygenation (56–63). It is highly
ikely that the pattern and time course of ERK1/2, JNK,
nd p38 MAPK activation are tissue-specific (58,59,63,64).
n addition, to precisely link PKC�-dependent activation of
hese multifaceted signaling pathways to recruitment/
timulation of downstream targets in ischemia/reperfusion,
e have provided the evidence that suppressed expression of
gr-1 in vitro in hypoxia/reoxygenation was achieved by
reincubation of alveolar macrophages with inhibitors of
KC� (LY379196) (31,32), ERK1/2 (PD98059) (65), and
NK (SP600125) (66) before exposure to hypoxia/
eoxygenation, but not by an inhibitor of p38 MAPK
SB203580) (67). It is difficult to directly assess the impact

f these kinases on downstream targets in vivo because of
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he lack of orally administered inhibitors or ready-made
how containing such inhibitors of these 3 MAPKs
ERK1/2, JNK, or p38). Furthermore, the activated prin-
ipal isoform of PKC relevant to hypoxic or ischemia/
eperfusion lung injury was specifically PKC�II, not
KC�I, PKC�, PKC, or PKC� (12,14).
The critical dependence of PKC� on mechanisms linked

o Egr-1 and procoagulant sequelae in hypoxia or ischemia/
eperfusion was demonstrated by suppression of hypoxia- or
schemia/reperfusion-stimulated transcription, nuclear
ranslocation, and translation of Egr-1 in PKC�-null mice
ersus wild-type controls (12,14). In-depth studies revealed
hat, in addition to TF, activation of PKC� and Egr-1 in
schemia/reperfusion led to up-regulation of a diverse class
f proinflammatory cytokines (interleukin 1�), chemokines
macrophage inflammatory protein-2 [MIP-2], monocyte
hemotactic protein 1 [MCP-1]), ICAM-1, VEGF, and
rocoagulant molecule plasminogen activator inhibitor-1
PAI-1) (13,14). These initial events are well correlated
ith subsequent inflammation and thrombosis, which is

ssociated with the development of vascular diseases. In
ontrast, Egr-1–null and PKC�-null mice did not display
nhanced expression of these proinflammatory and pro-
hrombotic genes in hypoxia or ischemia/reperfusion.

oreover, in concordance with the central role for PKC�
nd Egr-1 in ischemic stress, Egr-1–null and PKC�-null
ice were virtually protected from the deleterious impact of

schemia/reperfusion injury in the lung with enhanced
nimal survival and organ function (13,14).

In addition to mice deficient in PKC�, pharmacologic
nhibition of PKC� provides an additional means to sup-
ress the effects of PKC� in vivo. Previous studies by others
ave employed the PKC� inhibitor ruboxistaurin in a
orcine model of ischemia-induced pre-retinal neovascular-
zation (68) and in diabetic rats (69,70) to ameliorate, at
east in part, early retinal and renal dysfunction (71). Our
tudies have provided the first evidence that administration
f ruboxistaurin before ischemia/reperfusion suppressed up-
egulation of Egr-1 transcripts in lung upon ischemia/
eperfusion and demonstrated that pharmacologic blockade
f PKC� confers striking protection by enhancing animal
urvival from ischemia/reperfusion injury (14).

Based on the highly significant impact of PKC�/Egr-1 in
ediating lung injury after ischemia/reperfusion, we per-

ormed preliminary experiments in the heart. Compared
ith wild-type mice, PKC�-null mice or wild-type mice

reated with ruboxistaurin displayed decreased infarct vol-
me after transient occlusion/reperfusion of the left anterior
escending coronary artery (72).
Taken together, these findings delineate novel roles for

KC�/Egr-1 axis in hypoxia or ischemia/reperfusion injury.
he observation that activation of PKC�-dependent sig-
aling regulates recruitment of proinflammatory and pro-
hrombotic mechanisms highlights the importance of block-
de of the PKC�/Egr-1 pathway by employing the PKC�

nhibitor ruboxistaurin for the prevention of organ dysfunc- a
ion and damage in disorders characterized by hypoxia or
schemia/reperfusion injury.

KC�/EGR-1 AXIS AND ATHEROSCLEROSIS

therosclerosis, the cause of ischemic heart disease, myo-
ardial infarction, stroke, and peripheral arterial disease, is
haracterized by chronic inflammation in the artery wall
73–76). Because accumulation of modified lipoproteins
ccurs in atherosclerosis, the mechanism by which lipopro-
eins or modified lipoproteins modulate signaling pathways
nd gene transcription and expression in different cell types
as been the subject of intense recent investigation. To test
he potential impact of modified lipoproteins on Egr-1
xpression, our data have shown that oxidized lipoproteins
uch as oxidized low-density lipoprotein (oxLDL) induce
xpression of Egr-1 in RAW264.7 mouse macrophages in a
ose-dependent manner (21). These findings suggest that,
n early atherosclerosis, oxLDLs use a range of molecular
athways to initiate vascular perturbation.
We tested the impact of oxLDL on activation of MAP

inases, because these pathways have been linked to regu-
ation of Egr-1. Oxidized low-density lipoprotein activated
hospho-p44/42 (ERK1/2) MAP kinase in mouse macro-
hages with peak effect observed at 15 to 30 min (21). To
etermine if the mitogen-activated protein kinase (MEK)-
RK1/2 MAP kinase pathway was linked to oxLDL-
ediated regulation of Egr-1, RAW cells were pre-treated
ith PD98059 (10 �mol/l) before incubation with oxLDL.
ompared with cells treated with oxLDL alone, RAW
ouse macrophages exposed to PD98059 and oxLDL

isplayed a significantly reduced expression of Egr-1 anti-
en by Western blotting (by 75%) (21). These data were the
rst to show that the MEK-ERK1/2 MAP kinase pathway

mportantly contributes to oxLDL-mediated induction of
gr-1 expression in macrophages, cells importantly involved

n atherogenesis and lesion progression.
Pivotal studies in the discovery of the biological impact of

gr-1 in atherosclerosis came from experiments by the
aboratories of McCaffrey et al. (19), who showed that
ranscripts for Egr-1 were up-regulated in human athero-
clerotic lesions and in the lesions of mice deficient in the
DL receptor fed a high-fat diet. Moreover, increased
gr-1 expression in the human lesion was associated with

n elevation in the expression of several known Egr-1 target
enes, such as TNF, ICAM-1, and M-CSF, suggesting
hat Egr-1 is transcriptionally active in human atheroma
19). Immunohistochemistry localized Egr-1 largely to
MC, macrophages, and to a lesser extent, endothelial cells
ithin the lesions (19). In a murine model of mice deficient

n the LDL-receptor, upon introduction of a high-fat diet,
progressive increase in expression of Egr-1 was noted in

he aorta, especially within SMC (19). Other investigators
eported that Egr-1 is expressed primarily in SMC in the
brous cap, as well as in the areas of macrophage infiltration

nd in endothelial cells (20). These observations led us to
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ypothesize that activation of Egr-1 might be implicated in
he initiation and/or progression of atherosclerosis, which
epresents the convergence of a range of complex processes
n multiple cells, such as, but not limited to, endothelial
ells, vascular SMC, macrophages, and lymphocytes. Con-
istent with this hypothesis, quantitative polymerase chain
eaction (PCR) revealed an age-dependent increase in
ranscripts for Egr-1 in the aorta of apolipoprotein E
apoE)-null mice versus wild-type C57BL/6 control mice
21). Immunohistochemistry revealed that the principal
gr-1–expressing cells in the atherosclerotic lesions of

poE-null mice were macrophages (as demonstrated by
olocalization of Egr-1 with F4/80 epitopes) and vascular
MC (as demonstrated by colocalization of Egr-1 with
lpha-smooth muscle actin) (21). These data suggested that,
n the hyperlipidemic environment triggered by genetic
eletion of apoE, a steady increase in Egr-1 potentially
eflects a response to vascular accumulation of modified
ipoproteins.

Based on the observations of others implicating roles for
gr-1 in modulation of vascular properties linked to ath-

rosclerosis, it has been shown that Egr-1 contributes, in
art, to CD40-ligand-induced expression of TF in human
ndothelial cells (77). Other studies suggest a potential role
or Egr-1 in transcriptional activation of peroxisome
roliferator-activated receptor gamma 1 in vascular SMC
78); elevated Egr-1 in human atherosclerotic cells tran-
criptionally represses TGF type II receptor, thus providing

mechanism to suppress vascular repair pathways (79).
xidized phospholipids such as oxidized L-alpha-

almitoyl-2-arachidonoyl-sn-glycerol-3-phosphorylcholin
nduce expression of Egr-1 in human umbilical vein endo-
helial cells (80), and infectious agents (Chlamydia pneu-
oniae) linked to acceleration of atherosclerosis up-regulate

xpression of Egr-1 (and, in turn, TF) in macrophages
81,82).

To establish cause-effect relationships between Egr-1 and
therogenesis, we tested the hypothesis that genetic deletion
f Egr-1 in the apoE-null background would modify the
ourse of atherosclerosis. We thus generated mice deficient
n both Egr-1 and apoE and tested the impact on athero-
clerosis. Compared with mice solely deficient in apo E,
ice deficient in both apo E and Egr-1 displayed a striking

eduction in the atherosclerotic lesion area and complexity
t age 24 weeks on a normal chow diet (21). The distinc-
ions between double- and single-null animals at age 14
eeks were also significant. In parallel, quantitative PCR

evealed that the transcripts for key mediators of inflamma-
ion and the procoagulant response, the murine homologue
f monocyte chemoattractant protein 1 (JE/MCP-1), IL-
�, TF, PAI-1, vascular cell adhesion molecule-1, and
CAM-1 were reduced in the aorta of doubly apoE- and
gr-1-null mice versus apoE-null mice at age 24 weeks

21). Importantly, levels of plasma cholesterol and triglyc-
rides did not differ between mice doubly deficient in Egr-1

nd apoE compared with apoE-null mice (21). m
Furthermore, to test the hypothesis that PKC� is a
entral upstream regulator of Egr-1 in atherogenesis in a
yperlipidemic background, we bred PKC�-null mice into
poE-null background and tested the impact on atheroscle-
osis. Our preliminary data showed that mice lacking both
poE and PKC� displayed significantly decreased athero-
clerosis compared with apoE-null mice (39,40). Further,
poE-null mice fed chow containing the PKC� inhibitor,
uboxistaurin, displayed significantly decreased atheroscle-
osis compared with the mice fed chow containing vehicle as
control (40).
Taken together, these findings provide definitive mech-

nistic support for the link between PKC�/Egr-1 axis and
he pathogenesis of atherosclerosis and suggest important
mplications of blockade of this pathway by employing the
KC� inhibitor ruboxistaurin for the management of this
isorder.

KC�/EGR-1 AXIS AND RESTENOSIS

estenosis remains a challenge after angioplasty and stent-
ng (83–93), especially in subsets of human subjects, such as
iabetic patients. In addition to paclitaxel or sirolimus-
oated stents and glycoprotein IIb/IIIa inhibitors (94–97),
fforts to identify new and powerful adjunctive therapies will
ccelerate effective therapeutic intervention strategies, par-
icularly in diabetic subjects. In this context, studies from
ur laboratory provided insights into a likely mechanism by
hich Egr-1 was up-regulated and its key upstream regu-

ator, PKC�, activated in the response to acute arterial
njury.

Key evidence for the inducibility of Egr-1 under stress
onditions of acute arterial injury first emerged from studies
n denuding arterial injury in the rat aorta. Early growth
esponse-1 and a number of its target genes were induced at
he wound margins (22,23). The first in-vivo evidence of a
pecific role for Egr-1, and not only an association, in the
esponse to arterial injury came from experiments using a
NA enzyme that specifically cleaves Egr-1 mRNA. Ap-

lication of this technology in rats subjected to carotid artery
njury blocked neointima formation (24). The recent suc-
essful application of this strategy in preventing in-stent
estenosis in a porcine model (98) suggested that this factor
ight have an impact on restenosis in human subjects

99,100). However, these studies did not elucidate the
athway by which Egr-1 is up-regulated after vascular
njury, nor have they highlighted the downstream implica-
ions of this axis on vascular repair.

Our previous observations of the striking up-regulation of
gr-1 in vascular SMC in atherosclerosis led us to test the
ypothesis that the PKC�/Egr-1 pathway might be in-
olved in the vascular response to arterial injury, as neoin-
imal expansion commonly accompanies both chronic vas-
ular stress (atherosclerosis) and the response to acute
rterial injury, such as that induced by angioplasty. In a

urine model of acute endothelial denudation of the fem-
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ral artery, a time-dependent increase in transcripts for
gr-1 was observed by quantitative PCR (25). When Egr-1
ull mice were subjected to acute femoral artery endothelial
enudation injury, a significant decrease in neointimal
xpansion was observed on day 28 versus that observed in
ild-type mice. Immunohistochemistry revealed that the
rincipal Egr-1-expressing cells in the expanding neointima
ere vascular SMC, as demonstrated by colocalization of
gr-1 and alpha-smooth muscle actin (25).
Consistent with an important role for PKC� in these

rocesses, in wild-type mice, a time-dependent increase in
ctivation of PKC�II manifested by antigen in the mem-
ranous fraction by approximately 7.5-fold was observed
rom injured femoral artery compared with sham control,
ith the peak occurring at 30 min after acute denuding

njury (25). In contrast, immunoblotting with an antibody
pecific to the PKC�I isoform showed no change between
embranous fractions in injured versus sham-treated vessel

egments. By 30 min after denudation, no changes in
KC�, PKC�, and PKC	 isoforms were detected in the
embranous fractions in injured wild-type and PKC�-null
ice versus sham (25). Based on these considerations, we

ubjected homozygous PKC�-null mice to acute arterial
njury. Compared with wild-type mice, PKC�-null animals
isplayed significantly lower intima/media ratio on day 28
fter injury (25). In parallel, transcripts for Egr-1 were
ramatically reduced in the injured femoral arteries of
KC�-null versus wild-type mice (25). The principal cells

orming the expanding neointima in wild-type mice were
MCs identified by an antibody to alpha-smooth muscle
ctin (25).

To address the mechanisms by which PKC� modulates
eointimal expansion, we assessed the expanding neointima
t an early time after injury, at which point SMC prolifer-
tion was previously found to be accelerated (101). Incor-
oration of bromodeoxyuridine (BrdU) was significantly
ecreased in SMCs of the expanding neointima in PKC�-
ull versus wild-type mice on day 7 after acute injury. In
itro, we examined the impact of PKC� on 2 central
unctional properties of SMCs, proliferation and migration,
sing a prototypic stimulus for PKC�, phorbol myristate
cetate (PMA), and the PKC� inhibitor LY379196. PMA-
riggered incorporation of titrated thymidine was sup-
ressed in human and murine aortic vascular smooth muscle
ells by LY379196 (25). Further, we studied the role of
KC� in mediating cellular migration, a key property of
MC in the expanding neointima after injury. PMA-
riggered prominently increased numbers of migrating pri-
ary murine aortic SMC was significantly suppressed by
Y379196; in parallel, in primary cultures of human and
urine aortic SMC, stimulation with PMA-triggered in-

reased expression of Egr-1 in a manner inhibited by the
KC� inhibitor LY379196 (25). These findings established

hat Egr-1 was a downstream target of PKC� in acute
rterial injury and that proliferation and migration of SMC

ere modulated, at least in part, via PKC�. P
To dissect the precise mechanisms by which the PKC�/
gr-1 axis plays a key role in neointimal expansion after

cute arterial injury, we studied signal transduction path-
ays, including MAPK pathway, especially ERK1/2, JNK,

anus kinase (Jak) 2, and signal transducer and activator of
ranscription (Stat) 3, in the response to arterial injury in
MC (102,103). Our data revealed that markedly increased
hosphorylated ERK1/2 and phospho-JNK in the injured
rterial segments from wild-type mice were significantly
uppressed in PKC�-null mice. However, there were no
ignificant differences in elevated phospho-Jak2 or
hospho-Stat3 between wild-type and PKC�-null mice on
ay 7 after injury versus sham-treated mice (25). In addi-
ion, to precisely link PKC�-dependent activation of MAP
inase signaling pathways to recruitment/stimulation of
ownstream targets after acute arterial injury, we dissected
hese pathways in vitro using primary cultures of murine
ortic SMC. Our studies demonstrated that PMA trig-
ered increased phosphorylation of ERK1/2, and JNK
as suppressed by PKC� inhibitor LY379196. In paral-

el, PMA triggered a significant increase in expression of
gr-1 transcripts in murine aortic SMC in a manner

uppressed by the ERK1/2 inhibitor PD98059, but not
y the JNK inhibitor SP600125 (25). These findings
uggested that PKC�-mediated regulation of Egr-1 was
ue, at least in part, to phosphorylation of ERK1/2, but
ot via phosphorylation of JNK. Moreover, we examined
he impact of PKC� on proliferation of murine aortic
MC. Although PMA caused a significant increase in
itrated thymidine incorporation in wild-type SMC,
re-treatment with PD98059 strikingly suppressed this
ffect, whereas SP600125 caused a statistically significant
ttenuation in proliferation, albeit to a degree less than
hat observed by blockade of ERK1/2 MAP kinase in
urine aortic SMC (25).
Furthermore, we used pharmacologic inhibition of

KC� to suppress its effects in vivo. In wild-type mice
ubjected to femoral artery injury, administration of
uboxistaurin resulted in decreased incorporation of
rdU on day 7 after injury and decreased neointimal
xpansion on day 28 after injury compared with vehicle-
reated control mice (25).

Taken together, these findings highlight novel roles for
KC�/Egr-1 axis in the SMC response to acute vascular

njury and the development of pathological neointimal
xpansion and suggest that blockade of the PKC�/Egr-1
athway by employing the PKC� inhibitor ruboxistaurin
ay have an important benefit in management of compli-

ations of angioplasty and stenting in human subjects.

GR-1 AND PKC�II AND
ASCULAR INJURY: UNIFYING HYPOTHESES

aken together, these data support the premise that

KC�II and a key downstream target in the vasculature,
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gr-1, respond acutely to vascular stress. Thus, although
eemingly disparate, atherosclerosis, restenosis, and ischemia/
eperfusion injury appear to be linked by common mecha-
isms that, by activation of endothelium, SMC, and inflam-
atory cells contribute critically to vascular injury in these

ettings. Future studies must dissect the common, or per-
aps in part distinct biochemical, species that activate
KC�II in the perturbed vessel wall. Interestingly, the
cuteness (ischemia/reperfusion injury and restenosis) or
hronicity (atherosclerosis) of the triggering stimulus does
ot discriminate in terms of ability to recruit PKC�II and
ownstream, Egr-1. In this context, clues may be deduced,
t least in part, from the biochemical species generated in
he hyperglycemic environment that activate PKC�II, such
s DAG. How this or distinct species are generated that signal
ia PKC�II in atherosclerosis, restenosis, or ischemia/
eperfusion holds the key to understanding the fascinating
iology of this axis.
In the meantime, however, valuable insights into PKC�II

s a therapeutic target in diabetes and vascular stress have
een uncovered by the development and pre-clinical and
linical testing of ruboxistaurin. In the section to follow, we
onclude with a review of the major published studies on
his agent.

igure 1. Protein kinase C�-early growth response-1 (PKC�-Egr-1): impl
inking PKC� and Egr-1 to the pathogenesis of tissue injury. Studi
ypoxia/hypoxemia and ischemia/reperfusion, as well as chronic stresses
articularly the � isoform. PKC�-mediated up-regulation of Egr-1 results
rocesses that lead to amplification of vascular inflammation, migration, and
ead to chronic vascular dysfunction and, ultimately, if left unchecked, tissue inj
reatment of these acute and chronic vascular diseases.
KC� AND CLINICAL IMPLICATIONS

uboxistaurin mesylate is a bisindolylmaleimide that shows
high degree of specificity for inhibiting PKC� isoform

104). It is currently undergoing phase 3 clinical trials. A
rowing body of evidence from animal and human studies
ndicates that inhibition of PKC� may have renal, retinal
nd vascular protective effects.

Pre-clinical studies of the impact of ruboxistaurin on
rogression of diabetic nephropathy have been completed in
animal models of diabetic nephropathy: 1) the streptozo-

ocin (STZ) rat resembles type 1 diabetes mellitus in
umans; 2) Leprdb/Leprdb (formerly known as the db/db)
ouse is a genetically obese mouse model, resembling type
diabetes mellitus in humans; and 3) the STZ-Ren2-rat is
hypertensive rat model made diabetic with STZ. In these
iabetic animal models, treatment with ruboxistaurin nor-
alized glomerular hyperfiltration, decreased urinary albu-
in excretion, and reduced glomerular TGF�1 levels and

xtracellular matrix protein production, thus reducing mes-
ngial expansion, glomerulosclerosis, tubulointerstitial fi-
rosis, and loss of renal function (105).
Diabetes also induces early functional abnormalities in

arious vascular beds. Mean retinal circulation time and

s for vascular stress. In this review, we provided the experimental evidence
pport the premise that both acute stresses, such as that induced by

as that which occurs in atherosclerosis and restenosis, activate PKC,
pression of cytokines, chemokines, procoagulant, and adhesion molecules;
iferation. Once set in motion, such processes, dependent on PKC�-Egr-1,
ication
es su
, such
in ex
prol
ury. Novel inhibitors of PKC� in clinical trials may hold promise for the
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lomerular filtration rate (GFR) were increased in rats
endered diabetic for 2 weeks by STZ (69). Oral adminis-
ration of ruboxistaurin in the chow (1 to 10 mg/kg/day for
4-week period) normalized retinal blood flow and reduced
FR in diabetic rats (69). In a porcine model, ruboxistaurin

educed ischemia-induced pre-retinal neovascularization
68). A similar normalization of retinal blood flow and
melioration of diabetes-induced retinal hemodynamic ab-
ormalities were observed in patients with diabetes who had
een treated for 28 days with 32 mg (16 mg twice a day) of
uboxistaurin compared with those who received placebo
106,107).

The development of cardiovascular disease and ne-
hropathy are closely linked in diabetes. However, stud-
es of the general population have shown that increased
isk for cardiovascular disease is associated with hyper-
lycemia regardless of whether overt diabetes has been
iagnosed previously (108). Hyperglycemia-induced
AG preferentially activates PKC� and also is associated
ith changes in endothelial cell function that precedes

he development of atherosclerosis. The evidence sug-
ested that hyperglycemia impairs endothelial function
y a process dependent on PKC� activation, and this
mpairment can be prevented by treatment with
uboxistaurin (109).

Taken together, to date, blockade of the PKC� sig-
aling pathway by employing the PKC� inhibitor
uboxistaurin in diabetic animal models and clinical trials
n patients with diabetes holds promise as a novel strategy
n the treatment of diabetes-related microvascular com-
lications such as eye disease and kidney disease. Our
ndings in euglycemia support testing this agent in
on-diabetic vascular stress.

ONCLUSIONS

hese data provide the first evidence that key species and
tresses implicated in vascular injury, such as modified
ipoproteins, glucose and DAG, acute physical stress, and
ypoxia and ischemia/reperfusion transduce their key
athogenic effects, at least in part, via rapid and, in certain
ettings, chronic recruitment of the PKC�/Egr-1 axis (Fig. 1).
his work raises the possibility that blockade of the PKC�/
gr-1 axis by a pharmacologic inhibitor of PKC�,

uboxistaurin, may attenuate neointimal expansion or organ
ysfunction and damage triggered by acute mechanical
njury, chronic atherosclerosis, or ischemia-reperfusion
tress. In addition, based on the bioavailability and tolera-
ility of ruboxistaurin in diabetes and our findings in
uglycemia, we speculate that blockade of PKC� signaling
athway may hold promise as a therapeutic intervention in
reating macrovascular disease involving the heart and large
essels in both diabetes and non-diabetes, although this

emains to be proven in clinical trials.
eprint requests and correspondence: Dr. Shi-Fang Yan, Divi-
ion of Surgical Science, Department of Surgery, College of
hysicians and Surgeons of Columbia University, 630 West 168th
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