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Abstract

We prove that the prescription for construction of supersymmetric lattice gauge theories by orbifolding and deconstruction directly leads to
Catterall’s geometrical discretization scheme in general. These two prescriptions always give the same lattice discretizations when applied to
theories of p-form fields. We also show that the geometrical discretization scheme can be applied to more general theories.

© 2008 Elsevier B.V. Open access under CC BY license.

Among the many recent developments towards putting ex-
actly preserved supersymmetries on a space—time lattice, one of
the most striking results is that apparently quite different formu-
lations are related to each other. It appears that the orbifolding
procedure is the unifying framework [1-3]. For example, it has
been shown in [4] that Catterall’s complexified lattice theories
[5-7] constructed by a geometrical discretization scheme from
continuum theories in the twisted formulation can be repro-
duced using the orbifolding procedure.! In Ref. [13], Sugino’s
alternative lattice formulation [14-17] was shown to follow
from Catterall’s by restricting the degrees of freedom of the
complexified fields while preserving the supercharge. Further-
more, in Ref. [18], the formulations provided by the so-called
link approach [19-21] were also shown to be equivalent to those
of orbifolding.

Very recently, Catterall has shown that the orbifolded lattice
gauge theories for two-dimensional A" = (2,2) SYM theory
and four-dimensional N'=4 SYM theory can be derived from
topologically twisted continuum theories using the geometri-
cally discretization scheme without additional complexification
of fields [22]. Together with the previous results [4], this fact
strongly suggests that Catterall’s prescription for constructing
a lattice theory with exact supersymmetry from a continuum
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gauge theory is equivalent to that of orbifolding in general. The
purpose of this Letter is to prove that it is indeed the case. In the
following, we consider a general continuum gauge theory satis-
fying certain conditions and construct a lattice theory by means
of orbifolding. In this way, we derive directly from orbifolding
a set of rules to construct the lattice action from a continuum ac-
tion. We see that the rules we obtain are precisely those of the
geometrical discretization scheme. The crucial U (1) symme-
tries that generate the d-dimensional lattice in the orbifolding
formalism are behind the geometric picture which emerges. In
fact, as we will show, the rules are more general and applicable
to a theory with fields of more general tensor structure than that
considered by Catterall.

Let us start with a continuum gauge theory with gauge group
U (K) defined on the d-dimensional Euclidean flat space—time.
First, we impose certain conditions to the continuum action:

Assumptions.
(1) The action is Lorentz invariant and consists of complex
covariant derivatives D, and (bosonic and/or fermionic) tensor
+ .
fields, {fm--~up}'

Scont = Scont[Du, Z_)y,, {f/it];tp}]
E/dderﬁ(DM(x),@ﬂ(x), { £, @), (1)

where D, (x) is associated with a complex (not Hermitian) con-
nection A(x), D, (x) is defined through the complex conjugate
of Ay(x), Au(x) = AL (x), and the trace is taken over the
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gauge indices. We further assume all the fields { flfl iy (x)} are
in the adjoint representation of U (M).

(2) The theory is assumed to have at least U (14 symme-
try and the complex covariant derivative D, (15#) possesses
the U(1) charges e, (—e,), where e, is a set of d-dimensional
linearly independent integer valued vectors.

(3) We assume that the tensor field f

e has the U (1)
charge :I:Zi:l e,,. Note that we can consider a more gen-
eral field f,...u,:v,.v, Which has the “mixed” U(1) charge

P
i= 1eﬂt

only consider fui1 ot for simplicity.

2321 e,; . This extension is straightforward but we

Under these assumptions, we dimensionally reduce the the-
ory to zero dimension. At the same time, we enlarge the size of
matrices from K to K N¢ with a positive large integer N. As
a result, all space—time dependence drops out and we obtain a
matrix theory (a “mother theory”) defined by the action

Smother = Smother [Auv "Zl {fuil “Hp }]
=TrL(i Ay, i A, {fm Mp}) )

1 :l: . .
where A,, A, and fur--up are complex matrices with the

size K N¢. By assumption, the mother theory is invariant un-
der the gauge transformation @ — g 'dg (g € UKND))
and the U(1) transformation, @ — ¢'%%® (0 < 6; <2x, i =

.,d), where @ € {AM,AM, fl/-l MP} andg; i=1,...,d)
are the U (1) charges of the field @. In the orbifolding approach
one starts with no a priori assumptions about U (1) charge as-
signments. Different choices lead, in general, to different lattice
theories which can be classified systematically [12]. The ac-
tion (2) above corresponds to the mother theory after one such
choice.

This is exactly the situation where we can carry out the orb-
ifolding procedure and produce a d-dimensional lattice action
[1-3]. (See also Ref. [12].) Indeed, we can define an operator P
that projects out components that are not invariant under the
va transformation. Here, for a matrix fy., with U(1) charge
p—v=>3" e, —>9_ e, wecan parametrize the pro-
jected field as

P ¢[L;v = P@u;v = Z ¢/L;v(k) ® Ek+v,k+p,a 3)
keZ4,

where @,.,(Kk) is a complex matrix of size K, and we have
defined

Ek,l = Ek|,11 ®---® Ekd,ld ((El,m)ij = (Sli(smj)~ (4)

The orbifold projection restricts fields in the mother theory to
those which are invariant under the operation of P. We obtain
the orbifolded action by substituting (3) into (2):

Sorb—Sorb[Au(k) -A,u(k) {fltl “Mp (k)}]
=TrL(i P Ay, iPA Py, }): Q)

The lattice action is obtained by carrying out deconstruc-
tion [23] to the orbifold action (5), that is, by shifting the fields

A, (k) and A, (k) by 1/a:

1 - 1 -
A (k) — -t Ap k), A (k) — —+ A k), (6)

where a is interpreted as the lattice spacing. Instead of this
shift operation (6), however, we here adopt a replacement of
the fields as [24]

1 .
Ay (k) — —eA® = iy, (k),
a
_ 1 . _
A (k) » —e 1 A® = j7g, (), (7
a

which is equivalent to (6) to the leading order in the dimension-
ful quantity a, i.e., to the order of the naive continuum limit. As
a result, we obtain a lattice action,

Stat = Sta[Up K), Up (6, { f3;....., 10}]
= D Tr LU &), U M), { 5., (O})

keZ§,
= Sorb U K), U (&), { £3....., ®}], (8)

where the trace in the second line is taken over a matrix with
the size K. The naive continuum limit of this lattice theory is
the gauge theory given by the action (1).

Let us now recall how the orbifolded matrix theory can be
regarded as a lattice theory [1-3]. Consider a matrix @ of the
size K N9, which can be written as

D = Z Dk ® Ex, €))
k.lezd,

where @y | is a matrix with the size K. The basic idea is that the
d-vectork e Zj{, labels a site of the lattice generated by the vec-
tors {eﬂ}l‘i: p as >, kye,. Then the block P | can be regarded
as a variable living on an oriented link that goes from the site k
to the site 1, which is expressed as (k, 1) in the following. (The
“link” (k, k) corresponds to the site k.) Using this interpreta-
tion it is easy to see that the lattice variables U/, (K), Z/_{ k),

m , )(k) and 11tk (k) in (8) live on links (k k + eﬂ)
(k+e;¢,k) (k, k+eu]+ +eup)and (k+ey, +-- +eup7k)
respectively.

As discussed in [1-3], the original gauge symmetry U (K N%)
of the mother theory is broken to U (K)V ‘ by the orbifold pro-
jection (3). More explicitly, the remaining gauge transformation
is ® - g~ !dg with

g= )Y gk ®Ekk, (10)
keZd,

with g(k) € U(K). Therefore, the lattice variables translate as

U (k) — g~ W)Uy, (K)g(k +ey,),

Wk) — g7 (k+ ey (g (K),

&) = g~ W £, g+ ey, +---+ey,),

k) > g ' (k+eu, + +epu,) pp-n, ®EE). (1)

Although the lattice action (8) is determined by substituting
the decomposition (3) into the mother action (2), there is a short

ulu

R
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cut to determine all terms of the lattice action. The key point
is the U(1) charges of the fields. For example, suppose that
matrices @q and ¥ in the mother theory have U(1) charges
q=>"7 e, andr=3", j=1¢€u;, respectively. As explained
above, after the orbifold projection, the surviving blocks @ (k)
and ¥ (k) can be interpreted as lattice variables living on links
(k,k + q) and (k, k + r), respectively. On the other hand, the
product @¢¥, has the U(1) charge q + r, so it is projected
onto a (composite) variable living on the link (k,k + q + r).
Therefore, we can immediately see that this composite variable
must be expressed as @q(K)¥r(k + q) from the geometrical
or the U (1) charge point of view. An important application is
the covariant derivative in the continuum theory (1). From the
assumption of the continuum action, possible covariant deriva-
tives appearing in the action are curl-like:

Do friypn, @) =0 fi50
DSy, ) = i

or divergence-like:

L) i A, [, @],
L@ +i[A ), fp, @] (12)

Dy, fu, Oty Frayooguy XD
+i[ A 0, fiype, @],
Dy fd- 1ip O = Oy Fil i, ()

+i[ Ay ). fif

Ky ﬂp( )

L] a<i<p).
13)
Recalling that the charge assignment of the fields and the de-

construction (7), we can show that the covariant derivatives (12)
and (13) in the continuum theory turn out to be

Dy fre, @) = Dy [, @ =UsR) i), (K +e0)
— f o, U (K + ),
Dy fryops, X = D} ,;A.AM,,<k>suu<k+u> e, (K €))
ey, U (K),
Dy fifip, @ = D fE L W= fF L, K+ el (k+ p)
—uu<k>fu,4..ﬂp (K),
Dy fryeopsy @) = Df frr ) = [y (K €0)Uy (K)
— Uy &+ 1) [y, ),
(14)
and

Dyi Sy, )
= Dy, fryo, ®) = um K+ p—eu) fr oy, ®
ey (K= € Uy, (K —ey)),
2 N )]
= Dy [, 0 = [ OU, (K + e — ey,

— Uy (k=€) [, (K —e), (15)

respectively, where we have defined p = Zf’zl e,,. We call the
operators D (D:‘) and D, (L_);) the forward and backward
covariant differences, respectively.

In summary, we have shown that if a continuum gauge the-
ory satisfies the stated assumptions, we can discretize it on a
lattice generated by {e, } by combining dimensional reduction
and the orbifolding procedure. Instead of carrying out explicit
computation, we can be read off the lattice action (8) from the
continuum action (1) by using the following prescription:

Prescription.

(1) The complex covariant derivatives D, and 75“ become
link variables U, (k) and Z/_{u (k) on the links (k,k + e,) and
(k + e, k), respectively, and the tensor fields fm sty (x) and
fu_l Ly (x) become lattice variables f/fl iy (k) living on the
links (k, k+ i1 +--- 4+ fip) and (K+ 1 + --- + fip, k), re-
spectively.

(2) The gauge transformation of the lattice variables are
given by (11).

(3) Curl-like complex covariant derivatives (12) become for-
ward covariant differences (14).

(4) Divergence-like complex covariant derivatives (13) be-
come backward covariant differences (15).

These are nothing but generalizations of the geometrical dis-
cretization rules proposed by Catterall [6]. We have shown that
they follow directly from orbifolding; both procedures always
give the same lattice theory. We emphasize the novel point that
the nature of lattice variables is uniquely determined not by the
tensor structure per se but by the U (1) charges of the fields. For
example, let us consider the action of four-dimensional N = 4
SYM theory in the form [22],

_ 4 2 1 S 2, Lo 2o
= | d’xTr| |Dy, Dyl +2[DM,DM] +2[¢>,¢>]

+ (D) (D) — X Dipto)

~ VuDuil = Yl Yl — 1, 7]
1 - 1 -
- zep,uanpoDull/v - Ee;wpa)(p,v[(ﬁ’ Xpa])- (16)

If we assign U(1) charge e, (—e,) to D, (@M), we should
assign e, to v, by supersymmetry. Then the U (1) charges for
the fields ¢, ¢, 1, 77 and lﬁﬂ are automatically determined to be
—es, es, 0, —es and es — e, respectively, having defined es =
el + --- + e4. Therefore, the fields ¢, ¢, 7 and v, should be
written as @, q_Swpo, Nuvpo and €,p5 Yupo 1N our notation,
and the assignment on a lattice is uniquely determined to be the
same as suggested in Ref. [22].

We conclude this Letter by making some comments. First,
we call it a “generalized” geometrical discretization prescrip-
tion because we do not restrict the tensor fields to be p-forms.
If the continuum theory contains only anti-symmetric tensor
fields, the orbifolding procedure makes a p-form field f,..,.,,
to be a lattice variable that lives on alink (k,k+e,, +---+e, p)
or equivalently a p-cell (k;e,,,..., eﬂp). In this case, the ob-
tained lattice theory is “local” in the sense that all the variables
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live in a d-dimensional unit cell. This gives the original pre-
scription of the geometrical discretization scheme. However,
we can apply the procedure described in this Letter to a the-
ory containing general tensor fields. The lattice theory so ob-
tained might contain variables on links connecting non-nearest
neighbor sites such as a double links, etc. So it is more gen-
eral.

Second, we have not concentrated on exactly preserved lat-
tice supersymmetries in this Letter. In fact, supersymmetry is ir-
relevant in the above argument, we have only used the assump-
tion that fields carry the adjoint representation of the gauge
group. This is as expected from an earlier argument due to
Aratyn et al. [25]. However, when the continuum theory is su-
persymmetric, it is clear that the supercharges which have zero
U (1) charges are preserved by the orbifold projection [18]. In-
deed, all supersymmetric lattice theories so far constructed by
orbifolding and by the geometrical discretization scheme share
this property.

Third, when there are more than d global U (1) symmetries
in the continuum theory, there is an ambiguity in the assignment
of the U (1) charges, and as a result, we can construct infinitely
many different lattice theories whose formal continuum limit
is the same. A typical example is two-dimensional A" = (4, 4)
SYM theory, whose action can be written as

1
S = ?/dszr(|[DM,DU]

1 - _ - _ 1
+ §[¢, ¢]2 +¥uDun+ ¥, Dyun + EsuvD[qu]

1 _ _
>+ 5(Du. Dyl + (D)D)

1. - - _ - - 1. -
+ Eéuvp[ﬂwv] +7nl¢, n] + 1/’#[‘1” wﬂ] + Eguu[(ba E[I.V])a
(17)
where @, v = 1,2, D, and 15# are complex 09variant deriva-
tives, ¢ and ¢ are scalar fields and n, 7, ¥y, Y, v = —&up

and §,, = _évu are fermionic fields. Apart from the manifest
U (1)? symmetry with the charge assignment,

D/t ﬁu ¢ ‘f-’ nn W 1/_//4 &2 512
Uy xU(l)|e, —e,0000e, —e, —e; —e2 e +e

this theory has in addition two U (1) symmetries, U(1)3 x
U (1)4, whose charge assignments are given by

Dy Dy ¢ & n 71 Yu VYu & én
Uz | 0 0 1 -1 0 1 0 -1 0 1
Ul | O 0 0 0 1 -1 -1 1 1 -1

Therefore, by adding the charges of U (1)3 and U (1)4 to those
of U(1); and U (1),, we can obtain infinitely many charge as-
signments to the fields, and there are correspondingly infinitely
many lattice formulations.? Note that we can obtain supersym-
metric lattice theories by tuning the U (1) charge of at least one
of the fermionic field to be zero. The finite list of such theories
are classified in [12].

2 One would then relabel the Lorentz indices of the fields corresponding to
these different charge assignments.

Finally, as pointed out in the literature, the geometrical dis-
cretization scheme and, equivalently, the orbifolding proce-
dure, naturally give rise to Dirac—Kéhler fermions on a lattice
[26-29]. Indeed, Dirac—Kihler fermions can be defined on a
lattice by using the correspondence between differential forms
and co-chains [30,31]. This correspondence gives a beautiful
geometrical description of lattice fermions, and there is ample
evidence that they are very closely linked to exactly preserved
supersymmetries on the lattice. It remains to be shown explic-
itly why the orbifolding procedure always appears to give rise to
such Dirac—Kihler fermions. Another outstanding question to
be answered concerns the addition of matter multiplets to these
theories. The geometrical rules seem to lend themselves to mat-
ter carrying other representations than just the adjoint. From the
point of view of orbifolding this is far from trivial [32]. If, as we
expect, there also here will be an exact correspondence between
the geometrical rules of discretization and orbifolding this may
give new insight into orbifolded theories with matter in differ-
ent representations.
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