The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains

Halit Orhan ${ }^{\text {a,* }}$, Erhan Deniz ${ }^{\text {a }}$, Dorina Raducanu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Mathematics and Computer Science, Transilvania University of Brasov, 50091, Iuliu Maniu, 50, Brasov, Romania

ARTICLE INFO

Article history:

Received 27 February 2009
Received in revised form 1 July 2009
Accepted 20 July 2009

Keywords:

Fekete-Szegö problem
β-uniformly convex functions
Conic domain
Hadamard product
Linear multiplier fractional differential operator

Abstract

By using a linear multiplier fractional differential operator a new subclass of analytic functions generalized β-uniformly convex functions, denoted by $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)$, is introduced. For this class the Fekete-Szegö problem is completely solved. Various known or new special cases of our results are also pointed out.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathcal{A} be the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

analytic in the open unit disk $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
Let s denote the class of functions $f \in \mathcal{A}$ which are univalent in Δ. If f and g are analytic in Δ, we say that f is subordinate to g, written symbolically as

$$
f \prec g \text { or } f(z) \prec g(z) \quad(z \in \Delta),
$$

if there exists a Schwarz function $w(z)$, which (by definition) is analytic in Δ with $w(0)=0$ and $|w(z)|<1$ in Δ such that $f(z)=g(w(z)), z \in \Delta$.

In particular, if the function $g(z)$ is univalent in Δ, then we have that:

$$
f(z) \prec g(z) \quad(z \in \Delta) \quad \text { if and only if } f(0)=g(0) \text { and } f(\Delta) \subseteq g(\Delta)
$$

A function $f \in \mathcal{A}$ is said to be in the class of uniformly convex functions of order γ and type β, denoted by $\beta-U C V(\gamma)$ [1] if

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\gamma, \tag{1.2}
\end{equation*}
$$

[^0]where $\beta \geq 0, \gamma \in[0,1)$ and it is said to be in the corresponding class denoted by $\beta-S P(\gamma)$ if
\[

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+\gamma \tag{1.3}
\end{equation*}
$$

\]

where $\beta \geq 0, \gamma \in[0,1)$.
These classes generalize various other classes which are worth mentioning here. The class $\beta-U C V(0)=\beta-U C V$ is the class of β-uniformly convex functions [2].

Using the Alexander type relation, we can obtain the class $\beta-\operatorname{SP}(\gamma)$ in the following way:
$f \in \beta-U C V(\gamma) \Leftrightarrow z f^{\prime} \in \beta-S P(\gamma)$. The classes $1-U C V(0)=U C V$ and $1-S P(0)=S P$, defined by Goodman [3] and Ronning [4], respectively.
Geometric interpretation. It is known that $f \in \beta-U C V(\gamma)$ or $f \in \beta-S P(\gamma)$ if and only if $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ or $\frac{z f^{\prime}(z)}{f(z)}$, respectively, takes all the values in the conic domain $\mathcal{R}_{\beta, \gamma}$ which is included in the right half plane given by

$$
\begin{equation*}
\mathcal{R}_{\beta, \gamma}:=\left\{w=u+\mathrm{i} v \in \mathbb{C}: u>\beta \sqrt{(u-1)^{2}+v^{2}}+\gamma, \beta \geq 0 \text { and } \gamma \in[0,1)\right\} . \tag{1.4}
\end{equation*}
$$

Denote by $\mathcal{P}\left(P_{\beta, \gamma}\right),(\beta \geq 0,0 \leq \gamma<1)$ the family of functions p, such that $p \in \mathcal{P}$, where \mathcal{P} denotes the well-known class of Caratheodory functions and $p \prec P_{\beta, \gamma}$ in Δ. The function $P_{\beta, \gamma}$ maps the unit disk conformally onto the domain $\mathcal{R}_{\beta, \gamma}$ such that $1 \in \mathcal{R}_{\beta, \gamma}$ and $\partial \mathscr{R}_{\beta, \gamma}$ is a curve defined by the equality

$$
\begin{equation*}
\partial \mathcal{R}_{\beta, \gamma}:=\left\{w=u+\mathrm{i} v \in \mathbb{C}: u^{2}=\left(\beta \sqrt{(u-1)^{2}+v^{2}}+\gamma\right)^{2}, \beta \geq 0 \text { and } \gamma \in[0,1)\right\} . \tag{1.5}
\end{equation*}
$$

From elementary computations we see that (1.5) represents conic sections symmetric about the real axis. Thus $\mathcal{R}_{\beta, \gamma}$ is an elliptic domain for $\beta>1$, a parabolic domain for $\beta=1$, a hyperbolic domain for $0<\beta<1$ and the right half plane $u>\gamma$, for $\beta=0$.

The functions $P_{\beta, \gamma}$, which play the role of extremal functions of the class $\mathcal{P}\left(P_{\beta, \gamma}\right)$, were obtained in [5], and for some unique $t \in(0,1)$, every positive number β can be expressed as

$$
\begin{equation*}
\beta=\cosh \frac{\pi \mathcal{K}^{\prime}(t)}{4 \mathcal{K}(t)} \tag{*}
\end{equation*}
$$

where \mathcal{K} is the Legendre complete elliptic integral of the first kind and \mathcal{K}^{\prime} is complementary integral of \mathcal{K} (for details see [5, 6]).

For functions $f, g \in \mathcal{A}$, given by

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad \text { and } \quad g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}
$$

we define the Hadamard product (or convolution) of $f(z)$ and $g(z)$ by

$$
(f * g)(z):=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=:(g * f)(z) \quad(z \in \Delta) .
$$

Note that $f * g \in \mathcal{A}$. Let

$$
\begin{equation*}
\varphi(a, c ; z):=z+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+1} \quad(a \in \mathbb{R} ; c \neq 0,-1,-2, \ldots ; z \in \Delta) \tag{1.6}
\end{equation*}
$$

where $(\kappa)_{n}$ is the Pochhammer symbol (or the shifted factorial) in terms of the gamma function, given by

$$
(\kappa)_{n}:=\frac{\Gamma(\kappa+n)}{\Gamma(\kappa)}= \begin{cases}1 & n=0 \\ \kappa(\kappa+1)(\kappa+2) \ldots(\kappa+n-1) & n \in \mathbb{N}:=\{1,2, \ldots\}\end{cases}
$$

The Carlson-Shaffer operator [7] $\mathcal{L}(a, c)$ is defined in terms of the Hadamard product by

$$
\begin{equation*}
\mathcal{L}(a, c) f(z)=\varphi(a, c ; z) * f(z), \quad z \in \Delta, f \in \mathcal{A} \tag{1.7}
\end{equation*}
$$

Note that $\mathcal{L}(a, a)$ is the identity operator and $\mathcal{L}(a, c)=\mathcal{L}(a, b) \mathcal{L}(b, c),(b, c \neq 0,-1,-2 \ldots)$.
We also need the following definitions of a fractional derivative.
Definition 1 (See [8]). Let the function f be analytic in a simply-connected region of the z-plane containing the origin. The fractional derivative of f of order α is defined by

$$
D_{z}^{\alpha} f(z):=\frac{1}{\Gamma(1-\alpha)} \frac{\mathrm{d}}{\mathrm{~d} z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\alpha}} \mathrm{d} \zeta \quad(0 \leq \alpha<1)
$$

where the multiplicity of $(z-\zeta)^{-\alpha}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Using $D_{z}^{\alpha} f$ Owa and Srivastava [8] introduced the operator $\Omega^{\alpha}: \mathcal{A} \rightarrow \mathcal{A}$, which is known as an extension of fractional derivative and fractional integral, as follows

$$
\begin{align*}
\Omega^{\alpha} f(z) & =\Gamma(2-\alpha) z^{\alpha} D_{z}^{\alpha} f(z) \quad(\alpha \neq 2,3, \ldots ; z \in \Delta) \\
& =z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\alpha)}{\Gamma(k+1-\alpha)} a_{k} z^{k} \tag{1.8}\\
& =\varphi(2,2-\alpha ; z) * f(z) \tag{1.9}\\
& =(\mathscr{L}(2,2-\alpha) f)(z) .
\end{align*}
$$

Note that $\Omega_{z}^{0} f(z)=f(z)$.
We define a new linear multiplier fractional differential operator $D_{\lambda, \mu}^{n, \alpha} f$ as follows

$$
\begin{align*}
& D_{\lambda, \mu}^{0, \alpha} f(z)=f(z) \\
& D_{\lambda, \mu}^{1, \alpha} f(z)=D_{\lambda, \mu}^{\alpha}(f(z))=\lambda \mu z^{2}\left[\Omega^{\alpha} f(z)\right]^{\prime \prime}+(\lambda-\mu) z\left[\Omega^{\alpha} f(z)\right]^{\prime}+(1-\lambda+\mu)\left[\Omega^{\alpha} f(z)\right] \tag{1.10}\\
& D_{\lambda, \mu}^{2, \alpha} f(z)=D_{\lambda, \mu}^{\alpha}\left(D_{\lambda, \mu}^{1, \alpha} f(z)\right) \\
& \vdots \tag{1.11}\\
& D_{\lambda, \mu}^{n, \alpha} f(z)=D_{\lambda, \mu}^{\alpha}\left(D_{\lambda, \mu}^{n-1, \alpha} f(z)\right)
\end{align*}
$$

where $\lambda \geq \mu \geq 0,0 \leq \alpha<1$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
If f is given by (1.1) then from the definition of the $D_{\lambda, \mu}^{n, \alpha}$ and Owa-Srivastava fractional derivative operator, it is easy to see that

$$
\begin{equation*}
D_{\lambda, \mu}^{n, \alpha} f(z)=z+\sum_{k=2}^{\infty} \Psi_{k, n}(\lambda, \mu, \alpha) a_{k} z^{k} \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{k, n}(\lambda, \mu, \alpha)=\left[\frac{\Gamma(k+1) \Gamma(2-\alpha)}{\Gamma(k+1-\alpha)}(1+(\lambda \mu k+\lambda-\mu)(k-1))\right]^{n} \tag{1.13}
\end{equation*}
$$

From (1.9) and (1.13), $D_{\lambda, \mu}^{n, \alpha} f(z)$ can be written, in terms of convolution as

$$
D_{\lambda, \mu}^{n, \alpha} f(z)=\underbrace{\left[\left(\varphi(2,2-\alpha ; z) * g_{\lambda, \mu}(z)\right) * \cdots *\left(\varphi(2,2-\alpha ; z) * g_{\lambda, \mu}(z)\right)\right]}_{n \text {-times }} * f(z)
$$

where

$$
\begin{align*}
g_{\lambda, \mu}(z) & =\frac{z^{3}(1-\lambda+\mu)+z^{2}(\lambda-\mu+2 \lambda \mu-2)+z}{(1-z)^{3}} \\
& =z+\sum_{k=2}^{\infty}(1+(\lambda \mu k+\lambda-\mu)(k-1)) z^{k} \tag{1.14}
\end{align*}
$$

It should be remarked that the $D_{\lambda, \mu}^{n, \alpha}$ is a generalization of many other linear operators considered earlier. In particular, for $f \in \mathcal{A}$ we have the following:
(i) $D_{1,0}^{n, 0} f(z) \equiv D^{n} f(z)$ the operator investigated by Salagean [9].
(ii) $D_{\lambda, 0}^{n, 0} f(z) \equiv D_{\lambda}^{n} f(z)$ the operator studied by Al-Oboudi [10].
(iii) $D_{0,0}^{1, \alpha} f(z) \equiv \Omega^{\alpha} f(z)$ the fractional derivative operator considered by Owa and Srivastava [8].
(iv) $D_{\lambda, 0}^{n, \alpha} f(z) \equiv D_{\lambda}^{n, \alpha} f(z)$ the operator studied by Al-Oboudi and Al-Amoudi [5].

Now, by making use of $D_{\lambda, \mu}^{n, \alpha}$, we define new subclasses of functions in \mathcal{A}.
Definition 2. For $\lambda \geq \mu \geq 0,0 \leq \alpha<1, \beta \geq 0$ and $0 \leq \gamma<1$, a function $f \in \mathcal{A}$ is said to be in the class $\beta-\operatorname{SP}_{\lambda, \mu}^{n, \alpha}(\gamma)$ if it satisfies the following condition:

$$
\begin{equation*}
\Re\left\{\frac{z\left(D_{\lambda, \mu}^{n, \alpha} f(z)\right)^{\prime}}{D_{\lambda, \mu}^{n, \alpha} f(z)}\right\}>\beta\left|\frac{z\left(D_{\lambda, \mu}^{n, \alpha} f(z)\right)^{\prime}}{D_{\lambda, \mu}^{n, \alpha} f(z)}-1\right|+\gamma \quad(z \in \Delta) . \tag{1.15}
\end{equation*}
$$

Note that $f \in \beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)$ if and only if $D_{\lambda, \mu}^{n, \alpha} f \in \beta-S P(\gamma)$. Using the Alexander type relation, we define the class $\beta-U C V_{\lambda, \mu}^{n, \alpha}(\gamma)$ as follows

$$
f \in \beta-U C V_{\lambda, \mu}^{n, \alpha}(\gamma) \quad \text { if and only if } \quad z f^{\prime} \in \beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma),
$$

and also

$$
\beta-U C V_{\lambda, \mu}^{n, \alpha}(\gamma) \subseteq \beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)
$$

Geometric interpretation. From (1.15) $f \in \beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)$ if and only if $q(z)=\frac{z\left(D_{\lambda, \mu}^{n, \alpha} f(z)\right)^{\prime}}{D_{\lambda, \mu}^{n, \alpha} f(z)}$ take all the values in the conic domain $\mathcal{R}_{\beta, \gamma}$ given in (1.4) which is included in the right half plane.

We note that by specializing the parameters $n, \alpha, \lambda, \mu, \beta$ and γ, the subclass $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)$ reduces to several well-known subclasses of analytic functions. These subclasses are:
a. $0-S P_{0,0}^{1,0}(0) \equiv S^{*}($ see [11] pp. 40-43)
b. $0-S P_{1,0}^{1,0}(0) \equiv C V($ see [11] pp. 40-43)
c. $0-S P_{0,0}^{1, \alpha}(\gamma) \equiv S T_{\alpha}(\gamma)($ see [12])
d. $0-S P_{1,0}^{n, 0}(\gamma) \equiv S T^{n}(\gamma)$ (see [9])
e. $1-S P_{0,0}^{1, \alpha}(0) \equiv S P_{\alpha}$ (see [13])
f. $\beta-S P_{1,0}^{n, 0}(0) \equiv \beta-S P^{n}($ see [14] $)$
g. $1-S P_{0,0}^{1,0}(0) \equiv S P($ see [4] $)$
h. $1-S P_{1,0}^{1,0}(0) \equiv U C V$ (see $\left.[3,15]\right)$
i. $\beta-S P_{1,0}^{1,0}(0) \equiv \beta-U C V$ (see [2]) and $\beta-S P_{0,0}^{1,0}(0) \equiv \beta-S P$ (see [16])
j. $\beta-S P_{0,0}^{1, \alpha}(0) \equiv \beta-S P_{\alpha}$ (see [17])
k. $\beta-S P_{0,0}^{1,0}(\gamma) \equiv \beta-S P(\gamma)$ and $\beta-S P_{1,0}^{1,0}(\gamma) \equiv \beta-U C V(\gamma)$ (see [1])
l. $\beta-S P_{\lambda, 0}^{n, \alpha}(\gamma) \equiv S P_{\alpha, \lambda}^{n}(\beta, \gamma)$ (see [5]).

For special values of parameters $n, \alpha, \lambda, \mu, \beta$ and γ, from the general class $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)$, the following new classes can be obtained which are open questions:

- $\beta-S P_{\lambda, \mu}^{n, 0}(\gamma) \equiv \beta-S P_{\lambda, \mu}^{n}(\gamma)$
- $0-S P_{\lambda, \mu}^{n, \alpha}(\gamma) \equiv S T_{\lambda, \mu}^{n, \alpha}(\gamma)$
- $1-S P_{\lambda, \mu}^{n, \alpha}(0) \equiv 1-S P_{\lambda, \mu}^{n, \alpha}$.

In order to prove our results, we will need the following lemmas.
In [5], were calculated the coefficients P_{1} and P_{2} from Taylor series expansion of the function $P_{\beta, \gamma}$ and give in Lemma 1 as follows.

Lemma 1 (See [5]). Let $0 \leq \beta<1$ be fixed and $P_{\beta, \gamma}$ be the Riemann map of Δ onto $\mathcal{R}_{\beta, \gamma}$, satisfying $P_{\beta, \gamma}(0)=1$ and $P_{\beta, \gamma}^{\prime}(0)>0$. If

$$
\begin{equation*}
P_{\beta, \gamma}(z)=1+P_{1} z+P_{2} z^{2}+\cdots \quad(z \in \Delta) \tag{1.16}
\end{equation*}
$$

then

$$
P_{1}= \begin{cases}\frac{2(1-\gamma) \mathscr{B}^{2}}{1-\beta^{2}} ; & 0 \leq \beta<1, \\ \frac{8(1-\gamma)}{\pi^{2}} ; & \beta=1, \\ \frac{\pi^{2}(1-\gamma)}{4\left(\beta^{2}-1\right) \sqrt{t}(1+t) \mathcal{K}^{2}(t)} ; & \beta>1,\end{cases}
$$

and

$$
P_{2}= \begin{cases}\frac{\left(\mathcal{B}^{2}+2\right)}{3} P_{1} ; & 0 \leq \beta<1, \\ \frac{2}{3} P_{1} ; & \beta=1, \\ \frac{\left[4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}\right]}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)} P_{1} ; & \beta>1,\end{cases}
$$

where

$$
\begin{equation*}
\mathscr{B}=\frac{2}{\pi} \arccos \beta \tag{1.17}
\end{equation*}
$$

and $\mathcal{K}(t)$ is the complete elliptic integral of first kind.
Lemma 2 (See [6] and [13]).] Let $h \in \mathcal{P}$ given by

$$
\begin{equation*}
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \Delta) \tag{1.18}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left|c_{n}\right| \leq 2 \quad(n \in \mathbb{N}:=\{1,2,3, \ldots\}), \tag{1.19}\\
& \left|c_{2}-c_{1}^{2}\right| \leq 2 \quad \text { and } \quad\left|c_{2}-\frac{1}{2} c_{1}^{2}\right| \leq 2-\frac{1}{2}\left|c_{1}\right|^{2} . \tag{1.20}
\end{align*}
$$

For a function $f \in \&$, Fekete-Szegö [18] obtained sharp upper bounds for the functional $\left|\eta a_{2}^{2}-a_{3}\right| \quad$ when η is real. Thus the determination of sharp upper bounds for the nonlinear functional $\left|\eta a_{2}^{2}-a_{3}\right|$ for any compact family \mathcal{F} of functions in \mathcal{A} is popularly known as the Fekete-Szegö problem for \mathcal{F}. For different subclasses of ℓ, the Fekete-Szegö problem has been investigated by many authors including (see [18,19,6,13,12], etc.). Also for the class β-SP ${ }_{\alpha}$, the Fekete-Szegö problem was solved by Mishra and Gochhayat by using a certain fractional calculus operator in [6].

In the present paper, we obtain the Fekete-Szegö inequalities for the class $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)$ defined by using $D_{\lambda, \mu}^{n, \alpha}$. Consequences of the main results and their relevance to known results are also pointed out.

2. Main results

In this section, we will give some upper bounds for the Fekete-Szegö functional $\left|\eta a_{2}^{2}-a_{3}\right|$.
In order to prove our main results we have to recall the following.
Firstly, the following calculations will be used in the proofs of each of Theorems 1-6. By geometric interpretation there exists a function w satisfying the conditions of the Schwarz lemma such that

$$
\begin{equation*}
\frac{z\left(D_{\lambda, \mu}^{n, \alpha} f(z)\right)^{\prime}}{D_{\lambda, \mu}^{n, \alpha} f(z)}=P_{\beta, \gamma}(w(z)) \quad(z \in \Delta) \tag{2.1}
\end{equation*}
$$

where $P_{\beta, \gamma}$ is the function defined in Lemma 1.
Define the function h in \mathcal{P} given by

$$
h(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \Delta)
$$

It follows that

$$
w(z)=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots
$$

and

$$
\begin{align*}
P_{\beta, \gamma}(w(z)) & =1+P_{1}\left\{\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots\right\}+P_{2}\left\{\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots\right\}^{2}+\cdots \\
& =1+\frac{P_{1} c_{1}}{2} z+\left\{\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) P_{1}+\frac{1}{4} c_{1}^{2} P_{2}\right\} z^{2}+\cdots \tag{2.2}
\end{align*}
$$

Thus, by using (2.1) and (2.2), we obtain

$$
\begin{equation*}
a_{2}=\frac{P_{1}}{2 \Psi_{2, n}(\lambda, \mu, \alpha)} c_{1} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{1}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\frac{P_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{P_{2} c_{1}^{2}}{4}+\frac{P_{1}^{2} c_{1}^{2}}{4}\right\} \tag{2.4}
\end{equation*}
$$

where $\Psi_{k, n}(\lambda, \mu, \alpha)$ is defined by (1.13).
Secondly, we introduce the following functions which will be used in the discussion of sharpness of our results.

Corresponding to the function $g_{\lambda, \mu}$ defined by (1.14), we also consider the function $g_{\lambda, \mu}^{(\dagger)}$ given by

$$
\begin{equation*}
g_{\lambda, \mu}(z) * g_{\lambda, \mu}^{(\dagger)}(z)=\frac{z}{1-z} \tag{2.5}
\end{equation*}
$$

Define the function g in Δ by

$$
\begin{equation*}
\mathcal{g}(z)=\frac{1}{z}\left[\phi_{n}(2-\alpha, 2) *\left\{z \exp \left(\int_{0}^{z} \frac{P_{\beta, \gamma}(\xi)-1}{\xi} \mathrm{~d} \xi\right)\right\}\right] \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
\phi_{n}(2-\alpha, 2) & =\underbrace{\left(\mathcal{L}(2-\alpha, 2) g_{\lambda, \mu}^{(\dagger)}\right) \ldots\left(\mathcal{L}(2-\alpha, 2) g_{\lambda, \mu}^{(\dagger)}\right)}_{n \text {-times }} \\
& =\underbrace{\left(\varphi(2-\alpha, 2 ; z) * g_{\lambda, \mu}^{(\dagger)}\right) * \cdots *\left(\varphi(2-\alpha, 2 ; z) * g_{\lambda, \mu}^{(\dagger)}\right)}_{n \text {-times }} . \tag{2.7}
\end{align*}
$$

Also we consider the following extremal function

$$
\begin{equation*}
k(z, \theta, \tau)=\phi_{n}(2-\alpha, 2) * z \exp \left(\int_{0}^{z}\left[P_{\beta, \gamma}\left(\frac{\mathrm{e}^{\mathrm{i} \theta} \xi(\xi+\tau)}{1+\tau \xi}\right)-1\right] \frac{\mathrm{d} \xi}{\xi}\right) \quad(0 \leq \theta \leq 2 \pi ; 0 \leq \tau \leq 1) \tag{2.8}
\end{equation*}
$$

Note that $k(z, 0,1)=z \mathcal{G}(z)$ defined by (2.6) and $k(z, \theta, 0)$ is an odd function.
Theorem 1. Let the function f given by (1.1) be in the class $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)(0 \leq \gamma<1 ; 0 \leq \beta<1)$. Then

$$
\left|\eta a_{2}^{2}-a_{3}\right| \leq\left\{\begin{array}{l}
\frac{2(1-\gamma) \mathcal{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{2(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{1}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{6\left(1-\beta^{2}\right)}\right) ; \quad \eta \geq \sigma_{1}, \tag{2.9}\\
\frac{(1-\gamma) \mathcal{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)} ; \quad \sigma_{2} \leq \eta \leq \sigma_{1}, \\
\frac{2(1-\gamma) \mathcal{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{6\left(1-\beta^{2}\right)}+\frac{1}{3}-\frac{2(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right) ; \quad \eta \leq \sigma_{2},
\end{array}\right.
$$

where $\Psi_{k, n}(\lambda, \mu, \alpha)$ and \mathfrak{B} are given by (1.13) and (1.17), respectively, and

$$
\begin{align*}
\sigma_{1} & =\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{5\left(1-\beta^{2}\right)}{\mathcal{B}^{2}}+\left(7-6 \gamma-\beta^{2}\right)\right) \tag{2.10}\\
\sigma_{2} & =\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\left(7-6 \gamma-\beta^{2}\right)-\frac{1-\beta^{2}}{\mathcal{B}^{2}}\right) . \tag{2.11}
\end{align*}
$$

Each of the estimates in (2.9) is sharp for the function $k(z, \theta, \tau)$ given by (2.8).
Proof. Putting the values of P_{1} and P_{2} for $0 \leq \beta<1$ from Lemma 1 in (2.3) and (2.4) we find that

$$
a_{2}=\frac{(1-\gamma) \mathscr{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{2, n}(\lambda, \mu, \alpha)} c_{1}
$$

and

$$
a_{3}=\frac{(1-\gamma) \mathscr{B}^{2}}{2\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{c_{2}-\frac{1}{6}\left(1-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{1-\beta^{2}}\right) c_{1}^{2}\right\} .
$$

An easy computation shows that

$$
\begin{equation*}
\eta a_{2}^{2}-a_{3}=\frac{(1-\gamma) \mathscr{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left\{\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta+\frac{1}{3}\left(1-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{1-\beta^{2}}\right)\right\} c_{1}^{2}-2 c_{2}\right] . \tag{2.12}
\end{equation*}
$$

Thus, from (2.12) we obtain

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| \leq & \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)} \\
& \times\left[\left|\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{5}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}\right|\left|c_{1}^{2}\right|+2\left|c_{1}^{2}-c_{2}\right|\right] . \tag{2.13}
\end{align*}
$$

If $\eta \geq \sigma_{1}$, then by applying Lemma 2 , we get

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| & \leq \frac{(1-\gamma) \mathscr{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\left(\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{5}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}\right) 4+4\right\} . \\
& =\frac{2(1-\gamma) \mathscr{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\frac{2(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{1}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{6\left(1-\beta^{2}\right)}\right\} \tag{2.14}
\end{align*}
$$

which is the first part of assertion (2.9).
Next, if $\eta \leq \sigma_{2}$ then we rewrite (2.12) as

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| & =\frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left|\left\{\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}-\frac{1}{3}-\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right\} c_{1}^{2}+2 c_{2}\right| \\
& \leq \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\left(\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}-\frac{1}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right)\left|c_{1}^{2}\right|+2\left|c_{2}\right|\right\} . \tag{2.15}
\end{align*}
$$

Applying Lemma 2 we have

$$
\begin{aligned}
\left|\eta a_{2}^{2}-a_{3}\right| & \leq \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\left(\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}-\frac{1}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right) 4+4\right\} . \\
& =\frac{2(1-\gamma) \mathscr{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{6\left(1-\beta^{2}\right)}+\frac{1}{3}-\frac{2(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right\}
\end{aligned}
$$

which is the third part of assertion (2.9).
Finally from (2.12) we get

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right|= & \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)} \\
& \times\left|\left\{\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right\} c_{1}^{2}+2\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\right| \\
\leq & \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)} \\
& \times\left\{\left|\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right|\left|c_{1}^{2}\right|+2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|\right\} . \tag{2.16}
\end{align*}
$$

We observe that $\sigma_{2} \leq \eta \leq \sigma_{1}$ implies

$$
\left|\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right| \leq 1 .
$$

Thus applying Lemma 2 to (2.16) we get

$$
\begin{equation*}
\left|\eta a_{2}^{2}-a_{3}\right| \leq \frac{(1-\gamma) \mathscr{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)} \tag{2.17}
\end{equation*}
$$

which is the second part of assertion (2.9).
We now obtain sharpness of the estimates in (2.9).

If $\eta>\sigma_{1}$, equality holds in (2.9) if and only if equality holds in (2.14). This happens if and only if $\left|c_{1}\right|=2$ and $\left|c_{1}^{2}-c_{2}\right|=2$. Thus $w(z)=z$. It follows that the extremal function is of the form $k(z, 0,1)$ defined by (2.8) or one of its rotations.

If $\eta<\sigma_{2}$ then equality holds in (2.9) if and only if $\left|c_{1}\right|=0$ and $\left|c_{2}\right|=2$. Thus $w(z)=\mathrm{e}^{\mathrm{i} \theta} z^{2}$ and the extremal function is $k(z, 0,1)$ or one of its rotations.

If $\eta=\sigma_{2}$, the equality holds if and only if $\left|c_{2}\right|=2$. In this case, we have

$$
h(z)=\frac{1+\tau}{2}\left(\frac{1+z}{1-z}\right)-\frac{1-\tau}{2}\left(\frac{1-z}{1+z}\right) \quad(0<\tau<1 ; z \in \Delta) .
$$

Therefore the extremal function f is $k(z, 0, \tau)$ or one of its rotations.
Similarly, $\eta=\sigma_{1}$ is equivalent to

$$
\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{5}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}=0
$$

Thus the extremal function is $k(z, \pi, \tau)$ or one of its rotations.
Finally if $\sigma_{2} \leq \eta \leq \sigma_{1}$, then equality holds if $\left|c_{1}\right|=0$ and $\left|c_{2}\right|=2$. Equivalently, we have

$$
h(z)=\frac{1+\tau z^{2}}{1-\tau z^{2}} \quad(0 \leq \tau \leq 1 ; z \in \Delta)
$$

Therefore the extremal function f is $k(z, 0,0)$ or one of its rotations.
The proof of Theorem 1 is now completed.
Theorem 2. Let the function f given by (1.1) be in the class $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma) \quad(0 \leq \gamma<1 ; \beta=1)$. Then

$$
\left|\eta a_{2}^{2}-a_{3}\right| \leq \begin{cases}\frac{8(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{8(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{1}{3}-\frac{4(1-\gamma)}{\pi^{2}}\right) ; & \eta \geq \delta_{1}, \tag{2.18}\\ \frac{4(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)} ; & \delta_{2} \leq \eta \leq \delta_{1}, \\ \frac{8(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{4(1-\gamma)}{\pi^{2}}+\frac{1}{3}-\frac{8(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right) ; & \eta \leq \delta_{2},\end{cases}
$$

where $\Psi_{k, n}(\lambda, \mu, \alpha)$ is given by (1.13) and

$$
\begin{align*}
& \delta_{1}=\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(1+\frac{5 \pi^{2}}{24(1-\gamma)}\right), \tag{2.19}\\
& \delta_{2}=\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(1-\frac{\pi^{2}}{24(1-\gamma)}\right) . \tag{2.20}
\end{align*}
$$

Each of the estimates in (2.18) is sharp for the function $k(z, \theta, \tau)$ given by (2.8).
Proof. We follow the same steps as in the proof of Theorem 1. We give here only those steps which differ. Putting the values of P_{1} and P_{2} for $\beta=1$ from Lemma 1 in (2.3) and (2.4) we find that

$$
a_{2}=\frac{4(1-\gamma)}{\pi^{2} \Psi_{2, n}(\lambda, \mu, \alpha)} c_{1}
$$

and

$$
a_{3}=\frac{2(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{c_{2}-\frac{1}{6}\left(1-\frac{24(1-\gamma)}{\pi^{2}}\right) c_{1}^{2}\right\}
$$

An easy computation shows that

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| & =\frac{(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left|\left(\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta+\frac{1}{3}-\frac{8(1-\gamma)}{\pi^{2}}\right) c_{1}^{2}-2 c_{2}\right| \tag{2.21}\\
& \leq \frac{(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left|\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{5}{3}-\frac{8(1-\gamma)}{\pi^{2}}\right|\left|c_{1}^{2}\right|+2\left|c_{1}^{2}-c_{2}\right|\right] \tag{2.22}
\end{align*}
$$

If $\eta \geq \delta_{1}$, then the expression inside the first modulus symbol on the right-hand side of inequality (2.22) is nonnegative. Thus, by applying Lemma 2, we get

$$
\begin{equation*}
\left|\eta a_{2}^{2}-a_{3}\right| \leq \frac{8(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{8(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{1}{3}-\frac{4(1-\gamma)}{\pi^{2}}\right) \tag{2.23}
\end{equation*}
$$

which is the first part of assertion (2.18).
Next, if $\eta \leq \delta_{2}$ then we rewrite (2.21) as

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| & =\frac{(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left|\left(\frac{8(1-\gamma)}{\pi^{2}}-\frac{1}{3}-\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right) c_{1}^{2}+2 c_{2}\right| \\
& \leq \frac{(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left|\frac{8(1-\gamma)}{\pi^{2}}-\frac{1}{3}-\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right|\left|c_{1}^{2}\right|+2\left|c_{2}\right|\right] . \tag{2.24}
\end{align*}
$$

Applying Lemma 2 we have

$$
\left|\eta a_{2}^{2}-a_{3}\right| \leq \frac{8(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{4(1-\gamma)}{\pi^{2}}+\frac{1}{3}-\frac{8(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right)
$$

which is the third part of assertion (2.18).
Finally from (2.21) we have

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| & =\frac{(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left|\left(\frac{8(1-\gamma)}{\pi^{2}}+\frac{2}{3}-\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right) c_{1}^{2}+2\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\right| \\
& \leq \frac{(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left|\frac{8(1-\gamma)}{\pi^{2}}+\frac{2}{3}-\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right|\left|c_{1}^{2}\right|+2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|\right] \tag{2.25}
\end{align*}
$$

We observe that $\delta_{2} \leq \eta \leq \delta_{1}$ implies

$$
\left|\frac{8(1-\gamma)}{\pi^{2}}+\frac{2}{3}-\frac{16(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}{\pi^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right| \leq 1
$$

Thus applying Lemma 2 to (2.25) we have

$$
\begin{equation*}
\left|\eta a_{2}^{2}-a_{3}\right| \leq \frac{4(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)} \tag{2.26}
\end{equation*}
$$

which is the second part of assertion (2.18).
Using the function $k(z, \theta, \tau)$ defined by (2.8), the sharpness of the estimates in (2.18) can be proved as in Theorem 1.

Theorem 3. Let the function f given by (1.1) be in the class $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma) \quad(0 \leq \gamma<1 ; 1<\beta<\infty)$ and let t be the unique positive number in the open interval $(0,1)$ defined by $\left(1.5^{*}\right)$. Then

$$
\left|\eta a_{2}^{2}-a_{3}\right| \leq \begin{cases}\frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-P_{1}-\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}\right) ; & \eta \geq \rho_{1}, \tag{2.27}\\ \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)} ; & \rho_{2} \leq \eta \leq \rho_{1}, \\ \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}+P_{1}-\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right) ; & \eta \leq \rho_{2},\end{cases}
$$

where $\mathcal{K}(t)$ is the complete elliptic integral of the first kind, $\Psi_{k, n}(\lambda, \mu, \alpha)$ and P_{1} are given by (1.13) and (1.16) respectively, and

$$
\begin{align*}
\rho_{1} & =\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}\left(1+P_{1}+\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}\right), \tag{2.28}\\
\rho_{2} & =\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}\left(P_{1}+\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}-1\right) . \tag{2.29}
\end{align*}
$$

Each of the estimates in (2.27) is sharp for the function $k(z, \theta, \tau)$ given by (2.8).

Proof. Putting the values of P_{1} and P_{2} for $1<\beta<\infty$ from Lemma 1 in (2.3) and (2.4) we obtain

$$
\begin{aligned}
& a_{2}=\frac{P_{1}}{2 \Psi_{2, n}(\lambda, \mu, \alpha)} c_{1}, \\
& a_{3}=\frac{P_{1}}{4 \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{c_{2}-\frac{1}{2}\left(1-P_{1}-\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}\right) c_{1}^{2}\right\}
\end{aligned}
$$

and

$$
\begin{align*}
\left|\eta a_{2}^{2}-a_{3}\right| & =\frac{P_{1}}{8 \Psi_{3, n}(\lambda, \mu, \alpha)}\left|\left(\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta+1-P_{1}-\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}\right) c_{1}^{2}-2 c_{2}\right| \tag{2.30}\\
& \leq \frac{P_{1}}{8 \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left|\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-1-P_{1}-\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}\right|\left|c_{1}^{2}\right|+2\left|c_{1}^{2}-c_{2}\right|\right] . \tag{2.31}
\end{align*}
$$

If $\eta \geq \rho_{1}$, then the expression inside the first modulus symbol on the right-hand side of inequality (2.31) is nonnegative. Thus, by applying Lemma 2 , we get

$$
\begin{equation*}
\left|\eta a_{2}^{2}-a_{3}\right| \leq \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-P_{1}-\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}\right) \tag{2.32}
\end{equation*}
$$

which is the first part of assertion (2.27).
If $\eta \leq \rho_{2}$ then

$$
\begin{equation*}
\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}+P_{1}-1-\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta \geq 0 \tag{2.33}
\end{equation*}
$$

Thus, applying Lemma 2 in (2.30) we have

$$
\begin{aligned}
\left|\eta a_{2}^{2}-a_{3}\right| & \leq \frac{P_{1}}{8 \Psi_{3, n}(\lambda, \mu, \alpha)} \| \frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}+P_{1}-1-\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta| | c_{1}^{2}|+2| c_{2}| | \\
& \leq \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}+P_{1}-\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right)
\end{aligned}
$$

which is the third part of assertion (2.27).
Finally, if $\rho_{2} \leq \eta \leq \rho_{1}$ then

$$
\left|\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}+P_{1}-\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right| \leq 1 .
$$

Again using Lemma 2 in (2.30) we have

$$
\begin{aligned}
\left|\eta a_{2}^{2}-a_{3}\right| & =\frac{P_{1}}{8 \Psi_{3, n}(\lambda, \mu, \alpha)}\left|\left\{\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(t+1) \mathcal{K}^{2}(t)}+P_{1}-\frac{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right\} c_{1}^{2}+2\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\right| \\
& \leq \frac{P_{1}}{8 \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\left|c_{1}^{2}\right|+2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|\right\} \\
& \leq \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)} .
\end{aligned}
$$

This is the second part of our assertion (2.27).
Using the function $k(z, \theta, \tau)$ given by (2.8), the sharpness of the estimates in (2.27) can be proved as in Theorem 1.
Remark 1. For special values of the parameters

$$
((n=1, \alpha=0, \lambda=1, \mu=0) \text { or }(n=1, \alpha=0, \lambda=\mu=0))
$$

in Theorems 1-3, we obtain new results for the classes $\beta-U C V(\gamma)$ or $\beta-\operatorname{SP}(\gamma)$.

Theorem 4. Let the function f given by (1.1) be in the class $\beta-S P_{\lambda, \mu}^{n, \alpha}(\gamma)(0 \leq \gamma<1 ; 0 \leq \beta<1)$. Then

$$
\begin{align*}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)-\frac{1-\beta^{2}}{\mathcal{B}^{2}}\right]\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{(1-\gamma) \mathscr{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}, \quad \sigma_{2} \leq \eta \leq \sigma_{3} \tag{2.34}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{5\left(1-\beta^{2}\right)}{\mathscr{B}^{2}}+\left(7-6 \gamma-\beta^{2}\right)\right)-\eta\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{(1-\gamma) \mathscr{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}, \quad \sigma_{3} \leq \eta \leq \sigma_{1} \tag{2.35}
\end{align*}
$$

where $\Psi_{k, n}(\lambda, \mu, \alpha), \quad \mathcal{B}, \quad \sigma_{1}$ and σ_{2} are given by (1.13), (1.17), (2.10) and (2.11), respectively, and

$$
\begin{equation*}
\sigma_{3}=\frac{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}\left(2+\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{\left(1-\beta^{2}\right)}\right) \tag{2.36}
\end{equation*}
$$

Proof. Suppose that $0 \leq \beta<1$ and $\sigma_{2} \leq \eta \leq \sigma_{3}$. Using (2.16) for $\left|\eta a_{2}^{2}-a_{3}\right|$ and (2.3) for $\left|a_{2}\right|$ we have

$$
\begin{aligned}
&\left|\eta a_{2}^{2}-a_{3}\right|+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)-\frac{1-\beta^{2}}{\mathcal{B}^{2}}\right]\right\}\left|a_{2}^{2}\right| \\
& \leq \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\left.\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta| | c_{1}^{2}|+2| c_{2}-\frac{c_{1}^{2}}{2} \right\rvert\,\right\} \\
&+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)-\frac{1-\beta^{2}}{\mathcal{B}^{2}}\right]\right\}\left(\frac{(1-\gamma)^{2} \mathcal{B}^{4}}{\left(1-\beta^{2}\right)^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)}\right)\left|c_{1}\right|^{2} \\
&= \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\left|\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right|\left|c_{1}^{2}\right|\right. \\
&\left.+\left(\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{1}{3}\right)\left|c_{1}\right|^{2}\right\}
\end{aligned}
$$

Note that, since $\eta \leq \sigma_{3}$

$$
\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta \geq 0
$$

Thus, from Lemma 2 we have

$$
\begin{aligned}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)-\frac{1-\beta^{2}}{\mathcal{B}^{2}}\right]\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\left|c_{1}^{2}\right|\right\} \\
& \quad \leq \frac{(1-\gamma) \mathcal{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}
\end{aligned}
$$

which proves (2.34). Similarly, for the value of η given in (2.35), we have

$$
\begin{aligned}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)+\frac{5\left(1-\beta^{2}\right)}{\mathscr{B}^{2}}\right]-\eta\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{(1-\gamma) \mathscr{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{\left|\frac{\left(7-6 \gamma-\beta^{2}\right) \mathscr{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{2}{3}-\frac{4(1-\gamma) \mathscr{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right|\left|c_{1}^{2}\right|+2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)+\frac{5\left(1-\beta^{2}\right)}{\mathcal{B}^{2}}\right]-\eta\right\}\left(\frac{(1-\gamma)^{2} \mathcal{B}^{4}}{\left(1-\beta^{2}\right)^{2} \Psi_{2, n}^{2}(\lambda, \mu, \alpha)}\right)\left|c_{1}\right|^{2} \\
= & \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\left|\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{2}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}\right|\left|c_{1}^{2}\right|\right. \\
& \left.+\left(\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)}+\frac{5}{3}-\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta\right)\left|c_{1}\right|^{2}\right\} .
\end{aligned}
$$

Since $\eta \geq \sigma_{3}$,

$$
\frac{4(1-\gamma) \mathcal{B}^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}{\left(1-\beta^{2}\right) \Psi_{2, n}^{2}(\lambda, \mu, \alpha)} \eta-\frac{2}{3}-\frac{\left(7-6 \gamma-\beta^{2}\right) \mathcal{B}^{2}}{3\left(1-\beta^{2}\right)} \geq 0
$$

and from Lemma 2 , we get

$$
\begin{aligned}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{12(1-\gamma) \Psi_{3, n}(\lambda, \mu, \alpha)}\left[\left(7-6 \gamma-\beta^{2}\right)-\frac{1-\beta^{2}}{\mathcal{B}^{2}}\right]\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{(1-\gamma) \mathcal{B}^{2}}{4\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)}\left\{2\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\left|c_{1}^{2}\right|\right\} \\
& \quad \leq \frac{(1-\gamma) \mathcal{B}^{2}}{\left(1-\beta^{2}\right) \Psi_{3, n}(\lambda, \mu, \alpha)},
\end{aligned}
$$

which proves (2.35). The proof of Theorem 4 is thus completed.
Theorem 5. Let the function f given by (1.1) be in the class $\beta-\operatorname{SP}_{\lambda, \mu}^{n, \alpha}(\gamma)(0 \leq \gamma<1 ; \beta=1)$. Then

$$
\begin{equation*}
\left|\eta a_{2}^{2}-a_{3}\right|+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(1-\frac{\pi^{2}}{24(1-\gamma)}\right)\right\}\left|a_{2}^{2}\right| \leq \frac{4(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}, \quad \delta_{2} \leq \eta \leq \delta_{3} \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\eta a_{2}^{2}-a_{3}\right|+\left\{\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(\frac{5 \pi^{2}}{24(1-\gamma)}+1\right)-\eta\right\}\left|a_{2}^{2}\right| \leq \frac{4(1-\gamma)}{\pi^{2} \Psi_{3, n}(\lambda, \mu, \alpha)}, \quad \delta_{3} \leq \eta \leq \delta_{1} \tag{2.38}
\end{equation*}
$$

where $\Psi_{k, n}(\lambda, \mu, \alpha), \quad \delta_{1}$ and δ_{2} are given as before by (2.13), (2.19) and (2.20), respectively, and

$$
\begin{equation*}
\delta_{3}=\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}\left(1+\frac{\pi^{2}}{12(1-\gamma)}\right) . \tag{2.39}
\end{equation*}
$$

Theorem 6. Let the function f given by (1.1) be in the class $\beta-\operatorname{SP}_{\lambda, \mu}^{n, \alpha}(\gamma) \quad(0 \leq \gamma<1 ; 1<\beta<\infty)$ and let t be the unique positive number in the open interval $(0,1)$ defined by $\left(1.5^{*}\right)$. Then

$$
\begin{align*}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\eta-\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}\left(P_{1}+\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}-1\right)\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}, \quad\left(\rho_{2} \leq \eta \leq \rho_{3}\right) \tag{2.40}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\eta a_{2}^{2}-a_{3}\right|+\left\{\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}\left(1+P_{1}+\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}\right)-\eta\right\}\left|a_{2}^{2}\right| \\
& \quad \leq \frac{P_{1}}{2 \Psi_{3, n}(\lambda, \mu, \alpha)}, \quad\left(\rho_{3} \leq \eta \leq \rho_{1}\right) \tag{2.41}
\end{align*}
$$

where $\mathcal{K}(t)$ is the complete elliptic integral of the first kind, $\Psi_{k, n}(\lambda, \mu, \alpha), P_{1}, \rho_{1}$ and ρ_{2} are given by (1.13), (1.16), (2.28) and (2.29), respectively, and

$$
\begin{equation*}
\rho_{3}=\frac{\Psi_{2, n}^{2}(\lambda, \mu, \alpha)}{2 \Psi_{3, n}(\lambda, \mu, \alpha) P_{1}}\left(P_{1}+\frac{4 \mathcal{K}^{2}(t)\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}(1+t) \mathcal{K}^{2}(t)}\right) . \tag{2.42}
\end{equation*}
$$

Proofs of Theorems 5, 6. The proofs of Theorems 5 and 6 are similar to the proof of Theorem 4, except for some obvious changes. Therefore, we omit the details.

The following particular cases can be pointed out.
Remark 2. (i) Taking $\gamma=\lambda=\mu=0$ and $n=1$ in all our work, we obtain all the results of Mishra and Gochhayat [6].
(ii) Setting $\gamma=\lambda=\mu=0$ and $n=1$ in Theorems 2 and 5 we get the results obtained by Srivastava and Mishra [13].
(iii) A special case of Theorem 2, when $\alpha=\gamma=\mu=0, \quad \lambda=1$ and $n=1$, yields to a result due to Ma and Minda [19].
(iv) We note that letting $\beta=0, \gamma=\lambda=\mu=0$ and $n=1$ in Theorem 1 we obtain a result due to Srivastava, Mishra and Das [12].

Acknowledgment

Authors would like to thank the referee for thoughtful comments and suggestions.

References

[1] R. Bharti, R. Parvatham, A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997) 17-32.
[2] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999) 327-336.
[3] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991) 87-92.
[4] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993) 189-196.
[5] F.M. Al-Oboudi, K.A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 339 (2008) 655-667.
[6] A.K. Mishra, P. Gochhayat, The Fekete-Szegö problem for k-uniformly convex functions and for a class defined by Owa-Srivastava operator, J. Math. Anal. Appl. 347 (2008) 563-572.
[7] B.C. Carlson, D.B. Shaffer, Starlike and pre-starlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737-745.
[8] S. Owa, H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987) 1057-1077.
[9] G.Ş. Salagean, Subclasses of univalent functions, in: Complex Analysis - Proc. 5th Rom.-Finn. Semin., Bucharest 1981, Part 1, in: Lect. Notes Math., vol. 1013, 1983, pp. 362-372.
[10] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 27 (2004) 1429-1436.
[11] P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[12] H.M. Srivastava, A.K. Mishra, M.K. Das, A nested class of analytic functions defined by fractional calculus, Commun. Appl. Anal. 2 (3) (1998) $321-332$.
[13] H.M. Srivastava, A.K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39 (2000) 57-69.
[14] S. Kanas, T. Yaguchi, Subclasses of k-uniform convex and starlike functions defined by generalized derivative, I, Indian J. Pure Appl. Math. 32 (9) (2001) 1275-1282.
[15] W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (2) (1992) 165-175.
[16] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000) 647-657.
[17] A.K. Mishra, P. Gochhayat, Applications of the Owa-Srivastava operator to the class of k-uniformly convex functions, Fract. Calc. Appl. Anal. 9 (4) (2006).
[18] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc. 8 (1933) 85-89 (in German).
[19] W. Ma, D. Minda, Uniformly convex functions II, Ann. Polon. Math. 58 (1993) 275-285.

[^0]: * Corresponding author.

 E-mail addresses: horhan@atauni.edu.tr (H. Orhan), edeniz36@yahoo.com (E. Deniz), dorinaraducanu@yahoo.com (D. Raducanu).

