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1. INTRODUCTION 

The extension principle described by L. A. Zadeh [5] provides a natural 
way for extending the domain of a mapping or a relation defined on a set U 
to fuzzy subsets of U. It is particularly useful in connection with the computation 
of linguistic variables [5], the calculus of linguistic probabilities [3, 51, arithmetic 
of fuzzy numbers [l, 51, and, more generally, in applications which call for an 
extension of the domain of a relation. Furthermore, as shown in [l], in the 
analysis of fuzzy numbers, the set-method (i.e. the use of &eve1 sets of a fuzzy 
set) is simpler than the functional approach (i.e. the use of the membership 
function of fuzzy set.) 

In this note, we examine the resolution of identity [5], i.e. the set-representa- 
tion of fuzzy sets, and we prove that the application of the extension principle 
to a fuzzy set may be viewed as the application of this principle to the &eve1 
sets of the set in question. However, in general, if 

f:Xx Y--+2 

and A, B are fuzzy subsets of X and Y, respectively, we do not have: 

(1.1) 

where A, and B, are the x-level sets of A and B, respectively, and [f(A, B)], 
is the a-level set of f(A, B). We shall give a necessary and sufficient condition 
for obtaining this equality, and shall define a class of fuzzy numbers in which 
this equality holds for all continuous f. 

* Research sponsored in part by the National Science Foundation Grant MCS-76- 
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2. THE RESOLUTION OF IDENTITY 

The collection of all fuzzy subsets of a set S is denoted by .--4(-k-i,. I f  =1 E CT(l\), 
its membership function is denoted by p,,,: S--f [0, I]. [Ve write 1 , if -1 is 
nonfuzzy. 

For 01 E [0, 11, recall that the a-level set of -4 is defined b\ 

If, A, B E T(x), then by definition, A-1 = B i f f  p.,(s) = pa(x), Vs E ,Y. It is easy 
to verify that 

2-l == B - A, =~ B,, , \s’a:E(O, 11, 

It is also obvious that S,,, = (Jbt(,,il 9, where S, is the support of the fuzz! 
set A, defined by 

s, = (x: p&r) > O}. 

On the other hand, we have 

vs E x, P&) = sup [a 
Le[O.l] 

1 &)I (2. 1) 

and thus A may be represented as in the following form, called the resolution of 
identity [5] 

A = l lx-l, 
I (2.4 

0 

where $ represents the union over d E [0, 11, and aA, is the fuzzy set whose 

membership function is 

l&x) = LY if s E A, , 

=o if .%-$A,. 

PROPOSITION 2.1. If A’, , M E [0, 11, is a family of subsets of X such that: 

then 

A= ‘aA’, 
s 0 

(i) A’, CA, , VdE [O, 11. 

(4 LIOJI A, = LI~,~I A’,. 

Proof. (i) Let x E AA,, then or, . lA;,(x) = 01~, and thus: 

/LA(X) = sup [a l/,(X)] >, iya * x E AEO 
ue[o.l] 
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(ii) The quality in (ii) follows from the fact that the right and left hand 
sides of (ii) are both equal to the support S,., of A. 

3. THE EXTENSION PRINCIPLE 

Recall that if f: X+ Y, and A E q(X), then the fuzzy set f(A) is defined, 
via the extension principle, by 

pf(A)(Y) = suP PA@). 
xEf-t(u) 

(3.1) 

Remark. In order to apply this principle to fuzzy mapping, we rewrite (3.1) 
under the following equivalent form: 

pf(Ad3’) = s”PbA(x) h lfdY)l 
XEX 

(3.2) 

where lfo..(y) = 1 or 0 according as y =f(x) or y # f(x). 
If f is a multi-valued mapping, i.e. f: X-+ q(Y), and A E q(X), then (3.1) 

leads to: 

where 

pf(AdY) = suP PA@) 
sef*(ii,) 

(3.3) 

j*: Y-dgX), 

f*(y) = {x E x: y Ef(X)}. 

It is easy to see that (3.3) is the same as: 

ForB# ~andBCY,wehave: 

f*(B)={x~X:f(x)nB# a} 

Now let X* be the domain off, i.e. 

and 

x* = {x E x:f(x) # Ef} 

then 

and 

f*: 9’(Y) + P(X):f,(B) = (ix E X*:f(x) C B} 

fdB) &f*(B), VB# o 

f,(B) = [f*FV’, 

(3.4) 
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where the prime stands for set-complement, thus 

l&(B)(S) = 1 - 1,*(&k,) 

but 

and hence 

lr*ca,(4 = h(?> 

b*(B)@) = 1 - Sup hth’). 
XPB’ 

Note also that 

lf*(B+) = suP lfdY)* 
XEB 

I f  f  is a fuzzy mapping, i.e. f :  X-t ?(I’), and A E?(X), then (3.2) leads to 

PfdJ’) = suP[Y.4(4 * Pfdv)l* (3.5) 
XEX 

Definef*: Y-+ q(X) by: 

Pf*(Yd”) = Pf.f(Z)W (34 

For B C Ef we have, by (3.5): 

&*(B)@Z.) = s”P[lB(?‘) * &*(ydd 
YPY 

= s”dlB(Y) A &hd.d 
YEY 

= sup CLfW(Y)* 
YEB 

PROPOSITION 3.1. Let A c?(x), and f: X-+ I’, then: 

Proof. 

f(A) = J”l ~f(4. 

PfdY) = sup CL?&9 
zcf-‘(Y) 

= sup [ sup 01 IA,@)] by (2-l) 
xEf-‘(Y) aq0.11 

= sup [a 1 A,WI. 
XEf-’ CT/) 
aqo,l] 

(3.7) 

(3.8) 
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On the other hand, let B = ji c~j(A,), then: 

/4?(Y) = sup 01 1&4,)(Y) 
UE[O.I] 

= SUP b sup 1A,WI 
aqo.11 s.f-‘(a 

= sup [ sup a: . 1,&c)] since 
rr'[O.l] ZEf-lc?d) 

= sup [a L&)1 = PfdY). 
xErl(Y) 
Le[O,l] 

01 t 0, 

Remark. From the above it follows that 

with f(A,) _C If(A)lor , Vor E [0, 11. 
But in general, 

f(A) z w4>1a . 

PROPOSITION 3.2. Let f:X x Y + 2, and A E q(X), B E q(Y); then 

f (A B) = Jo1 af(-+L 7 BJ. (3.9) 

Proof. 

zzz sup [sup lx I‘&) A sup 01 Is,(y)]. 
(t.B)Ef-1(2) ceE[O,l] qo.l] 

(3.10) 

(ii) Let T = si af(S, , B,), then: 

P&4 = sup 01 lf(.q&) 
UE[O.l] 

= sup [ sup b l&(4 A O1 b&N 
ae[o.l] (S,Y)EP-I(Z) 

= sup [a 1.4,@) A 01 l&)1 
orq0,11 

(x:,v)Ef-*(Z) 

(3.11) 

To prove that (3.10) and (3.11) are equivalent, it is sufficient to show that: 

[ SUP 01 IA&)] A [ SUP a ha(Y)] = SUP b 1A,(X) h O1 lB,b’)lm (3.12) 
ctO[O.l] aqo.11 uqo.11 
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To this end, let: 

“0 = sup oi I.&), 
ae[n.l] 

13, = sup a ls,(?‘). 
Iqo.11 

I f  CY,, A &, = 0, say 01~ = 0, then 01 I,.,,(X) = 0 for all cv E [0, I], thus (3.12) is 
verified. 

Suppose now that 01~ A pa > 0. We have 

x E A, for all ol < 01~ , 

x$A, for all a > 01~ . 

Since if there exists 0~’ such that: 

a’ < 010, NE/l,,, 

then x 4 & for all 01 < a’ (this follows from the fact that LY < /3 =z- A, 2 &), 

thus: 
sup a: IA,(X) < (5’ < Ng , 

ilE[O,l] 

which is a contradiction; and if there exists LX” such that: 

cl’ > qJ I Y E A,” , 

then SU~,,[~,~I 01 . lAp) > “0 , which is also a contradiction. 

In the same way, we have: 

3’EB,, for all 01 < & , 

?‘#B,, for all 01 > pa . 

Thus: 01 IA, A 01 lBX(y) = 01 for 01 < 01~ A p,, and =0 for all 01 > a,, A /z$, and 
hence : 

SUP [a lo, A 01 l&')] = 01,, A &, . 
L=[O,l] 

Remark. We have then f(A, , B,) C cf(A, B)]= , Va E [O, l] but in general, 

fVa 3 Rx) + [fW 41u. 

PROPOSITION 3.3. With the notation of Proposition 3.2, a necessary and su$- 
cient condition fot the equality: 

iX4 B)la = f  (4, 9 &I, va E [O, l] 

is: Vz E Z, SU~(~,~)~~~(~)[~~(X) A pB(y)] is attabled. 
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Proof. (i) Necessity. Let z E Z and 

That is, 

sup k4(4 * dY)I = t. 
(Z.Yk-~(Z) 

That is, El? E A, and j E B, such that f (a, 9) = z. 
For (a, 3) E f -i(z) and ~~(a) > t, 

But 

and thus 

&I(4 ff PBW = t. 

(ii) Su$ici~zcy. By Proposition 3.2 and Proposition 2.1, we have: 

f (4 3 B,) C [f (4 WI. , vol E [O, I]. 

Now let z E [f (A, B)la, i.e. 

I-Lr(A.Bb) = suP [I-Ldx) * ~B(Y)I > O1. 
(X.Y)Ef--l(Z) 

If ~~(~~,~)(z) > (11, then by definition of sup there exists (a,?) E f -l(z) such that: 

O1 < p.4ta) * pB.B($) < hhBdz) * 4 E Aa and jEB,. 

Thus x = f (a,$) E f (A, , B,). 
If ~~(,~,~)(z) = (Y then by hypothesis, there exists (x’, y’) E f -l(x) such that: 

dx’) A tLBb”) = suP h4(x) h pB(3))1 = O1 
(r.YEf-l(z) 

* X’EA, and ~‘EB,. 

Thus z = f (x’, y’) Ef (A, , Be)- 

4. ON CONVEXITY OF FUZZY NUMBERS 

By a fuzzy number we mean a fuzzy subset of the real line R. Interval analysis 
[2] deals with closed bounded intervals (compact convex sets of R) as an exten- 
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sion of numbers. Fuzzy numbers can be regarded as an extension of closed 
bounded intervals, thus the definition of a fuzzy number seems too general 
[see Section 5 for a smaller class of fuzzy numbers]. However, the arithmetic 
for fuzzy numbers can be defined via the extension principle. Since the relation 

(1.1) is not satisfied for general fuzzy numbers, the function method is the main 
tool of analysis. To illustrate this point, we shall review in what follows the 
concept of convexity and prove some properties of fuzzy numbers.’ 

Let X be the space R” (or more generally a real linear space). To define the 
convexity for fuzzy subsets of X, we start with the following remark. A subset -1 
of X, we start with the following remark. A subset .4 of X is convex if f  t/a E R, 
A, = (x: lA(x) 3 CY) is convex. This leads to 

DEFINITION 4.1 [5]. A fuzzy subset A of X is convex if its membership 
function p* is quasi-concave. 

Remarks. (i) A useful characterization of fuzzy convexity is the following: 

(ii) I f  4 is convcs, so it its support S, . 

PROPOSITION 4.2. Tke folloming are equiz~alent: 

(i) rZ E q’(X) Zs conves. 

(ii) VJ,,, E S tke function X ---f pa[hs + (1 - h) y] is quasi-concare on [O, I]. 

Proof. Denote by $ the function h - pL,[Xs + (1 - h) y]. 

(i) 3 (ii). Let X’, h” E [0, I] and A E [h’, /I’]. (We suppose A’ < X”.) For 
For s, y  E X, let: 

.C=h’s+(l -h’)y. 

1’ = h”s + (1 - A”) ?‘. 

Then: h = olh’ + (1 - a) h” for some a E [0, l] and 

012 + (1 - E)f = [cth’ + (1 - CY) h”] x + [CY.(l - h’) + (1 - a) (1 - Y)]y 

= [CA’ + (1 - a) h”] ,2’ + [ 1 - {c&Y + (1 - C-r!) h”}] y  

= xx + (1 - /I) y  = 8. 

1 Many interesting results in the arithmetic of fuzzy numbers are contained in a recent 

paper by M. Mizumoto and K. Tanaka [l], e.g. convexity, algebraic structures, ordering 

of fuzzy numbers. 
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By quasi-concavity of pa , we have then: 

/44(-a 3 PAW A PLA(jh 
i.e. 

cm 2 d(X) A WY 

(ii) :=- (i). Let x, y E X and z = Xx + (1 - X) y, h E [0, l] 

4(O) = 11.4(Y), W) = P&9 

since 0 r: X < 1 > 4(h) > 4(O) A +(l) by quasi-convexity of 4 on [0, 11, i.e., 

CLAP + (1 - 4Yl 3 CLW * dv). Q.E.D. 

DEFINITION 4.3. A fuzzy subset ;2 of X is said to be strongly convex if A is 
convex and its membership function pLA is pseudo-concave. 

Remarks. (i) A function f: X+ R is said to be pseudo-concave [4] if 

we have 

Vx,yeX such that f(x) f f(y), 

VZ z = Ax + (1 - X)y, with h E (0, I), 

f(z) > f(x) A f(r)- 

(ii) This notion of convexity is useful for fuzzy mathematical program- 
ming. Note that a local maximum of a quasi-concave function is not necessarily 
a global one, but for pseudo-concave function, a local maximum is also a global 
one. 

PROPOSITION 4.4. A convex fuzzy subset A of X is strongly convex if its 
membership function p.4 is injective on {pA < 1). 

Proof. By quasi-convexity of pFLa , we have: 

vx, y E x, VA E LO, 11, z = xx + (1 - X) J’, 

PA(4 3 PA@4 * P*-B(Y). 
(4.1) 

We have to verify that strict inequality holds in (4.1) for (.z, y) such that 
pJ.1~) f am, and for h ~10, l[. Consider two cases: 

(9 P.&) = 1 and PAY) < 1. 

(a) If CL&~ = 1 => ~~(4 > P.~(x) * P.AJ~. 
(b) If pFL(z) < 1, then by injectivity of p4 on (p, < 1). 
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\Ve have: I*,,(X) + p.JJ,), but P,~(z) verifies (4.1), i.e., 

P-l@4 2 PA(4 * p/l(?1) = cL.A(??). 

Thus p..,(z) Y /A~( _\.), 

(ii) X, y  E {p,r < 11. 

(a) If z 6 {pA = 11 =- pA(z) > P-~(X) A p.Jy). 

(b) If  ~~(2) < 1, then from (4.1): 

CL.&4 3 PAW * PA(Y) 

but 

and hence P.,&) > p,&) * P,LY). Q.E.D. 

Remark. It should be noted that quasi-convexity and pseudo-concavity are 
two distinct notions. If  f  is pseudo-concave, then Vx, y  such that f(x) # f(y), 
and X E (0, l[, we have 

f[Aa + (1 - 43’1 >fM *f(Y) 

but for (x, y) such that f(s) = .f( y), it can happen that 

fb + (1 - 4 Yl < fb> * f(Y). 

Fuzzy convex sets of LP have most of the algebraic properties of ordinary 
convex sets. The following proposition is an extension to fuzzy sets in the case 
of a sum. 

PROPOSITION 4.5. If A, B E q(LWl) are convex, then so is A + B. 

Proof. Note that d + B is a fuzzy subset of UP defined via the extension 
principle, 

(i) Denote #(x, y) -= P,~(x) A ps(y); let (x’, y’), (x”, y”) E Iw” i< R”, and 

h E lo, 11; 

We have: 

.t = Xx’ + (1 - A) xz, 

y  = Ay’ + (1 - X)y”. 

4(x, Y) 2 h4(4 * PAW1 * [PB(Y’) A PB(YT 

thus 4 is quasi-concave on llP x BP. 
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(ii) Let Z’, 2” E [w”, h E [0, 11, 2 = hz’ + (1 - h) Z”. 

Let c > 0, and assume that there exists (x1 , yr) (depending of e) such that 
x1 + yr I= Z’ and 

There also exists (x? , ya) such that 

since 

2-2 -+ y* = Z” and (4.3) 

with 

We have 

S=XN*+(l--)X:!, 

$=xy,+(l -A)y,. 

by quasi-concavity of 4. 
Hence, by (4.2) and (4.3) we have: 

and this holds for all E > 0, thus: 

PAffM 3 h+sW * Pa+L@“). Q.E.D. 

Remark. A fuzzy convex set d is said to be strongly convex on its support if 
if the restriction of pa to S, is pseudo-concave. Thus, as a consequence of the 
Proposition 4.5, a fuzzy convex set is strongly convex on its support I*..~ is 
injective on S, - {pL.4 = 1). Bounded convex sets of Rn are not strongly convex 
on their support. 

5. A CLASS OF FUZZY NUMBERS 

Let A E e(R), the support of A is denoted by S, . The topological support of 
its membership function pa is S, = {x: ~.~(x) + 0}, i.e., the closure of S, . 
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\Ce consider the following class of fuzzy numbers: 

A E q[w, 9, X) 0 
(‘4 am, 
’ pA is upper semicontinuous (u.s.c.), 
! S, compact. 

This class contains all singletons, as well as closed bounded intervals. 

PROPOSITION 5.1. If  f : [w x R + R is continuous, then VA, B E ?( [w, .Ysp? .X), 
and we have: 

IX% B)lx =f‘(=Ix > 4, Qir E [0, 11. 

Proof. By virtue of Proposition 3.3, it is sufficient to prove that: 

QZE 58, sup lA(x) A Pd?91 
(B*Y)Efr’(Z) 

is attained. 

Let &x,y) = pA(x) A p8(y), then c,A(s,J~) > 0, and 4 is U.S.C. Thus, 

sup 4(x, JT) = sup 4% rh 
(z.Y)Yf-1(2) cz,aE-~czhcS~xS~, 

since 4 = 0 outside of S, x c?, . 
But s,., x s, is compact, and f-‘(. ) z is closed by continuity of f,  hence 

f-l(z) n ($ X S,) is compact. 
Thus 4, being u.s.c., assumes its maximum on the compact set 

f--W f-7 (% x %A QZE R. 

Remark. It should be observed that the following equalities (for A, B E cT([w)) 

(A + B)m = -12, + B, , 

(A x B),, = d, x B, , 

which appeared in [l], hold only under the additional assumptions noted above. 
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