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1. INTRODUCTION

The extension principle described by L. A. Zadeh [5] provides a natural
way for extending the domain of a mapping or a relation defined on a set U
to fuzzy subsets of U. It is particularly useful in connection with the computation
of linguistic variables [5], the calculus of linguistic probabilities [3, 5], arithmetic
of fuzzy numbers [1, 5], and, more generally, in applications which call for an
extension of the domain of a relation. Furthermore, as shown in [1}, in the
analysis of fuzzy numbers, the set-method (i.e. the use of a-level sets of a fuzzy
set) is simpler than the functional approach (i.e. the use of the membership
function of fuzzy set.)

In this note, we examine the resolution of identity [5], i.e. the set-representa-
tion of fuzzy sets, and we prove that the application of the extension principle
to a fuzzy set may be viewed as the application of this principle to the a-level
sets of the set in question. However, in general, if

i XXY>Z
and A, B are fuzzy subsets of X and Y, respectively, we do not have:

/(4 B)la = f(Aa» By) (L.1)

where A, and B, are the a-level sets of 4 and B, respectively, and [f(4, B)],
is the a-level set of f(A4, B). We shall give a necessary and sufficient condition
for obtaining this equality, and shall define a class of fuzzy numbers in which
this equality holds for all continuous f.
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2. Tue ResoLtTiON OF IDENTITY

The collection of all fuzzy subsets of a set X' is denoted by 2(X). If A € Z(.\),
its membership function is denoted by p: X — [0, 1]. We write 1, if 4 is
nonfuzzy.

For a € {0, 1], recall that the a-level set of .1 is defined by

A, ={ve X p,(x) = ah

If, 4, B € #(x), then by definition, 4 = B iff u,(x) = pp(x), Vo € X\ It is easy
to verify that
A=B<=d4,=8B,, Ya e (0, 1],

It is also obvious that S, = (J,e.1] -4, Wwhere .S, is the support of the fuzzy
set A, defined by

S = {x: pal®) > O},
On the other hand, we have

Vxe X, pa(x) = sup [a 1, (x)] (2.1)

«€[0,1]

and thus 4 may be represented as in the following form, called the resolution of
identity [5]
A ' 1 22
A=1 ad, .
} (2.2)
where f(l, represents the union over o €0, 1], and ad, is the fuzzy set whose
membership function is
Lea (%) = « if xed,,
=0 if x¢d,.

PropositioN 2.1. If A',, o €[0, 1], is a family of subsets of X such that:

1
A= A,
fo o
then
i 4,c4,, Ya e [0, 1].
(i) Useto1 4o = Usseto,n 4's-

Proof. (i) LetxeA, ,then o - 14 (%) = o, and thus:

pa(®) = sup [aly (¥)] 2 oy = xe 4,
«€[0,1]
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(i1) The quality in (ii) follows from the fact that the right and left hand
sides of (ii) are both equal to the support S, of 4.

3. THE EXTENSION PRINCIPLE

Recall that if f: X — Y, and 4 € (X)), then the fuzzy set f(4) is defined,

via the extension principle, by

f()e2(Y),  pua(y) = sup p(). (3-1)

xef"1(y)

Remark. In order to apply this principle to fuzzy mapping, we rewrite (3.1)
under the following equivalent form:

tra(y) = suplpa(x) A L) (y)] (3.2)

xreX

where 1;5(y) =1 or 0 according as y = f(x) or y % f(x).
If f is a multi-valued mapping, i.e. f: X — 2(Y), and 4 € Z(X), then (3.1)
leads to:

pra(y) = sup pa®) (3.3)
TEFH(Y)
where
¥ Y > 2(X),

fHy) ={xe Xiyef(=)

It is easy to see that (3.3) is the same as:

() = suplpa(®) A Lim(»)) (3.4)

weX
For B # @ and BC Y, we have:

f¥B)={xeX:f(x)y "B £~ &}
Now let X* be the domain of f, i.e.

X* ={xeX: f(x) % @}

and
fui P(Y) > PX): f(B) = { € X*: () C B)
then
f«B)CfX(B), VB# o
and

JB) = (B,
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where the prime stands for set-complement, thus

L@ (@) =1 — Tagy(x)
but
Lr(x) = i ()
and hence

Lrvmy(%) = 1 — sup Lyy( ).

x<B’
Note also that
iz (*) = sup ()

xeB
If f is a fuzzy mapping, i.e. f: X — Z(Y), and A € #(X), then (3.2) leads to

pr(y) = suplpa(x) A pp ()] (3.5)

reX
Define f*: Y — 2(X) by:
Hre)(%) = pr(2)- (3.6)

For BC Y, we have, by (3.5):

prxe) (%) = Sup[15(3) A paiy(x)]

yeY

= sup[la(¥) A (3]

yeY

= sup pry(3)-
YER

PropoSITION 3.1. Let AeP(x), and f: X — Y, then:

fe) = [ of A (3.7)
Proof.
pra(y) = sup  pu(x)
zef~1(y)
= sup [sup al,(x)]  by(2.1) (3.8)

zef~Uy) a€f0.1]

= sup [al,(x)].
xef " (y)
a€[0,1]
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On the other hand, let B = [ of(4,), then:

pa(y) = sup a Ly )()
a€{0,1]

— sup [x sup 1, ()]

ac0,1]  xefXy)

= sup [ sup «-1,(x)] since a0,
«€[0,1] xef1y)

= sup [al,(x)] = pra(y)
zer~Ny)
«€0,1)

Remark. From the above it follows that

£y = [ olf . = [ ()

with f(A4,) C[f(4)]., Ya€][0, 1].

But in general,

FAY # Lf( D).
ProposiTION 3.2. Let f: X X Y~ Z, and A e P(X), Be P(Y); then
1
(4, B)= | of (4., By (39)
Proof.
(@) #raml® = sup  [ua®) A pg(3)]
(x.y)efHz2)
’ (3.10)
= sup [sup al,(x)Ar sup «lp(¥)]
(x,y)ef1(2) ac[0,1] a€[0,1]
(i) Let T= [yaf(4,,B,), then:
pr(z) = sup « lf(Aa.Ba)(z)
a€[0,1]
— sup [ sup fula () A lp ()] (3.11)

ae[0,1] (x.y)ef~1(2)
= sup [aly(x)a xlgfy)]
a€f0,1]

(z,y)ef1(2)

To prove that (3.10) and (3.11) are equivalent, it is sufficient to show that:

[sup aly@®)] A [sup alg(y)] = sup [alyx)Aalg(s)] (.12

«€[0,1] a€[0,1] a€[0,1]



374 HUNG T. NGUYEN

To this end, let:
x 7= sup «l, (x),
2€[0,1]

Bo = sup alp(y).

Ag[0,1]

If ay A By =0, say g =0, then a 1, () =0 for all «€[0, 1], thus (3.12) is

verified.
Suppose now that oy A 8, > 0. We have

xed, forall o <C oy,
x¢ A, forall o > oy .
Since if there exists o’ such that:
o <a, xed,,

then x ¢ A, for all @ <o (this follows from the fact that o <8 = A, D Ay),

thus:
sup o l, (%) <o <o,
«€[0.1]

which is a contradiction; and if there exists «” such that:
o >y, xed,,
then supqefo.11 @ * 14 (¥) = o, which is also a contradiction.
In the same way, we have:
yeB,, forall @ < B,,
yé¢B,, foralla > B, .

Thus: a1, (x) A alp (3) =afor a <oy A By and =0 for all @ > oy A B, and

hence:
sup [l (®) A alpg ()] =g A By,

«€[0,1]
Remark. We have then f(A4,, B,) C[f(4, B)l., Ya€[0, 1] but in general,
f(4., By) 7 [f(4, B)l;-
ProrosiTioN 3.3.  With the notation of Proposition 3.2, a necessary and suffi-
cient condition fot the equality:

[f(A, B). = f(4., B.), Vae [0, 1]

is: V2 € Z, sup(y. peri(alpal®) A pp(3)] is attained.
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Proof. (i) Necessity. Let ze Z and

sup  [pa(x) A pa(¥)] =1.

(z.)ef1(z)
That is,
Hream)(2) =t = z€[f(4, B)],
= zef(4,, By).
That is, 3% € 4, and § € B, such that f(%, §) = =.
For (% 9) ef~4=2) and p (£) > ¢,

pa(F) =t = py(£) A pp(9) > t.
But

sup  [pa(x) A pa()] = pa(®) A pa(F)

(z.v)efUz)

and thus
pa®) A pa(9) =t

(i) Sufficiency. By Proposition 3.2 and Proposition 2.1, we have:
f(4a, B)C[f(4, By,  Vael0,1].
Now let ze[f(4, B)],, i.e.

Hrap(®) =  sup  [pa(®) A pp(y)] =

(e 9)efNz)
If p(4 )(2) > @, then by definition of sup there exists (£, ) € f~Y(2) such that:
@ < p(£) A pp(9) < pra,m@) = £€ 4, and  JeB,.

Thus z = (£, §) € f(4y, B,)
If ps(s,m(2) = o then by hypothesis, there exists (x', ") € f~1(z) such that:

pa(®) A ps(y) = sup  [pa(®) A pp(y)] =

(@, )ef(2)

1

= x'ed, and y'eB,.
Thus = = f(+', ¥') e f(4,, B.).

4. ON Convexity oF Fuzzy NUMBERS

By a fuzzy number we mean a fuzzy subset of the real line R. Interval analysis
[2] deals with closed bounded intervals (compact convex sets of R) as an exten-
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sion of numbers. Fuzzy numbers can be regarded as an extension of closed
bounded intervals, thus the definition of a fuzzy number seems too general
[see Section 5 for a smaller class of fuzzy numbers]. However, the arithmetic
for fuzzy numbers can be defined via the extension principle. Since the relation
(1.1) is not satisfied for general fuzzy numbers, the function method is the main
tool of analysis. To illustrate this point, we shall review in what follows the
concept of convexity and prove some properties of fuzzy numbers.!

Let X be the space R™ (or more generally a real linear space). To define the
convexity for fuzzy subsets of X, we start with the following remark. A subset .1
of X, we start with the following remark. A subset .1 of X is convex iff Va € R,
A, = {x: 1 (%) > o} is convex. This leads to

DeriniTION 4.1 [5]. A fuzzy subset 4 of X is convex if its membership
function p, is quasi-concave.

Remarks. (i) A useful characterization of fuzzy convexity is the following:

Va, yeX, WVAe[0,1],
alde £ (1= ) ] > pal) A pia(3):

A convex «
(ii) If A is convex, so it its support S, .

ProrositioN 4.2.  The following are equivalent:
(1) AdeP(X) s convex.
(if) V., € X the function A — p [Ax + (1 — A) y] is quasi-concave on [0, 1].
Proof. Denote by ¢ the function A — p [ + (1 — A) y].
(i) = (i1). Let X, A" €[0, 1] and A€ [A, X']. (We suppose A" << A".) For
For x, y e X, let:
£=Ax4+(1—2)
="+ (1 —A")

Then: A = ad” + (1 — a) A” for some a € [0, 1] and

o + (1 — o) § = [ - (1 — ) T2 + ol —X) + (1 — &) (1 = V)] ¥
=[N+ (I = )X+ [1 = {aX + (1 — ) A}]y
:)\x—{—(l ——-A)y:ZA.

! Many interesting results in the arithmetic of fuzzy numbers are contained in a recent

paper by M. Mizumoto and K. Tanaka [1], e.g. convexity, algebraic structures, ordering
of fuzzy numbers.
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By quasi-concavity of p, , we have then:

pa(Z) = paE) A pa( 9);

$(A) = $(X) A S(X").
(if) = (1). Let v, yeX and =M+ (1 — Ay, xe(0, 1]

$(0) = pa(¥),  H1) = pox)
since 0 <X A < | = ¢(A) = ¢(0) A (1) by quasi-convexity of ¢ on [0, 1], ie.,

palde 4 (1 — 1) 3] = pa(®) A pa(y)- QE.D.

DerINITION 4.3. A fuzzy subset .4 of X is said to be strongly convex if 4 is
convex and its membership function p, is pseudo-concave.

Remarks. (i) A function f: X — R is said to be pseudo-concave [4] if

Vxe,ye X  suchthat  f(x) == f(y),
V2 z=M+(1—2)y,  with Ae(0,1),

we have

f(2) > f(2) A f(3)-

(11) This notion of convexity is useful for fuzzy mathematical program-
ming. Note that a local maximum of a quasi-concave function is not necessarily
a global one, but for pseudo-concave function, a local maximum is also a global
one.

ProrosiTION 4.4, A convex fuzzy subset A of X is strongly convex if its
membership function p 4 is injective on {u, << 1}.

Proof. By quasi-convexity of u, , we have:

Vx, ye X, viae|o, 1], s=2x+ (1 =)y, @
pa(®) = pa(*) A pp(y). .

We have to verify that strict inequality holds in (4.1) for (x,v) such that
pa(%) £ pp(y), and for A€]0, 1[. Consider two cases:

(D) pax) =1 and py(y) <L

(@) If pa(z) =1 = pa(2) > palx) A pa().
(b) If pu(z) <1, then by injectivity of u, on {u, << I}
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We have: p (=) 5= p,(3), but p(2) verifies (4.1), i.e.,

1a(2) 22 () A pua(3) = pa().
Thus p () = p,(¥),
(i) vy e < 13
(a) If ze{p, =1} = pyl2) > pax) A py(¥)
(b) If p,(2) < 1, then from (4.1):

wal(®) = pa(x) A pg(y)
but
sy oty o PAR) 7 pa(%),
FFETY @) = pa()

and hence p ,(3) > p (%) A pa(9). Q.E.D.

Remark. 1t should be noted that quasi-convexity and pseudo-concavity are
two distinct notions. If f is pseudo-concave, then Vx, ¥ such that f(x) 54 f(y),
and A (0, 1], we have

fRa+ (1 =2 y] > f(%) A f(¥)
but for (x, y) such that f(x) = f(y), it can happen that

w4+ (1 =2 y] <flx) A f(9).

Fuzzy convex sets of R* have most of the algebraic properties of ordinary
convex sets. The following proposition is an extension to fuzzy sets in the case
of a sum.

Proposrrion 4.5. If A, B € #(R") are convex, then so is 4 - B.

Proof. Note that 4 4 B is a fuzzy subset of R defined via the extension
principle,
pasp(2) = (SUF; [a®) A pa()]-
24y
(1) Denote ¢(x, y) = pq(*) A pp(2); let (¥',5), (x", ¥") € R* X R", and
Aef0, 1];
x =X+ (1 - A)x",
y=%"+(1—=Ay"
We have:

P, ¥) = [pa(*') A pa(x)] A [15(3) A ps(3")]-

thus ¢ 1s quasi-concave on R* x R”.
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(i) Let Z',Z"e R, Ae[0,1], Z=\Z'+ (1 — N Z".
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Let € >0, and assume that there exists (x, , y,) (depending of €) such that

x* +y, =2 and

d(xy, vy) = (su;; d(x, ) — e (4.2)

rt+y=2’

There also exists (x, , v,) such that

%o byp=2Z"  and  $(xp,¥) = sup $(x,v) —« (4.3)

x,u)
2+y=2"

since
Z=2Z 4+ (0= NZ =Z=x + )+ (1 =N (& +v) =547

with
Av, + (1 — A x,,
A+ (1 —A)y,.

I

RN
I

We have
sup B(x,3) = (£, 9) = b(x1, y1) A dlx3, 35)-

a:+y'=Z

by quasi-concavity of ¢.
Hence, by (4.2) and (4.3), we have:

sup d(x, v) = [ 315 (x, ) — el A [ sup $(x, ¥) — €]

THy=2 2y=2" ety=z"
= sup é(x, y) A sup b(x, ¥)] — €
ety-z’ wty—z*

and this holds for all € > 0, thus:

Pasb(Z) Z pars(Z') A parp(Z7). QE.D.

Remark. A fuzzy convex set A is said to be strongly convex on its support if
if the restriction of p, to S, is pseudo-concave. Thus, as a consequence of the
Proposition 4.5, a fuzzy convex set is strongly convex on its support p, is
injective on S, — {1, = 1}. Bounded convex sets of R" are not strongly convex

on their support.

5. A Curass oF Fuzzy NUMBERS

Let A € Z(R), the support of 4 is denoted by S, . The topological support of

its membership function p 4 is S, = {x: u(x) = 0}, i.e., the closure of S, .
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We consider the following class of fuzzy numbers:

(4 e P(R),
AePR, S, ) < ' uyls upper semicontinuous (u.s.c.),
(S 4 compact.

This class contains all singletons, as well as closed bounded intervals.

ProrositioN 5.1. If f:R X R— Ris continuous, then¥VA, Be P(R, &, A'),
and we have:

I;f(“L B)]x :/(‘41 H Ba), Vo€ [0, 1]

Proof. By virtue of Proposition 3.3, it is sufficient to prove that:

Vze R, sup  [ua(x) A pg(¥)]

(z,9)ef L(2)
is attained.

Let ¢(x, ¥) = p4(x) A pp( ), then ¢(x, ¥) =0, and ¢ is u.s.c. Thus,
sup  $(x,y) = sup $(x, v),

(@y)yf~z) (@, e U (S 4xSp)

since ¢ = 0 outside of S, x Sj.

But S, x S; is compact, and f~Y(2) is closed by continuity of f; hence
F4=) 0 (S x Sp) is compact.

Thus ¢, being u.s.c., assumes its maximum on the compact set

=N (S, xSz), VzeR.
Remark. Itshould be observed that the following equalities (for A4, B € Z(R))
(44 B), =4, + B,,

o

(4 x B), =4, x B,,

which appeared in [1], hold only under the additional assumptions noted above.
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