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Abstract

The connection between orthogonal polynomials and cubature formulae for the approximation of multivariate integrals
has been studied for about 100 yr. The article J. Radon published about 50 yr ago (J. Radon, Zur mechanischen Kubatur,
Monatsh. Math. 52 (1948) 286–300) has been very inuential. In this text we describe some of the results that were
obtained during the search for answers to questions raised by his article. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The connection between orthogonal polynomials and algebraic integration formulae in higher di-
mension was already studied about 100 yr ago (early papers are, e.g., [1,6]). The problem became
widely noticed after the second edition of Krylov’s book “On the approximate calculation of inte-
grals” [43], published in 1967, wherein Mysovskikh introduced Radon’s construction of a formula
of degree 5 published in 1948 [72].
Though no �nal solution – similar to the one-dimensional case – has been found up to now, the

work in this �eld has been tremendous. In the textbooks by Krylov [43], Stroud [90], Sobolev [84],
Engels [20], Mysovskikh [66], Davis and Rabinowitz [17], Xu [94] and Sobolev and Vaskevich [85],
and in the survey article of Cools [10], the growth of knowledge in the �eld is documented. In this
text we will only try to describe some relevant results – following Radon’s ideas – that have been
found in the meantime.
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The one-dimensional algebraic case, i.e., interpolatory quadrature formulae and their relation to
orthogonal polynomials, is well known. In dimension 2 and beyond, things look worse: there are
more questions than answers. Nevertheless, some progress has been made. Though several essential
problems – important in applications – are still open, e.g., how minimal formulae of an arbitrary
degree of exactness look like for the integral over the square with constant weight function, several
results of some generality have been found. They make transparent why answers to important ques-
tions must be quite complex. We leave aside many particular results, in spite of their importance
for applications. For these we refer to the surveys in [90,14,11].

2. Basic concepts and notations

We would have liked to preserve the air of the old papers; however, we �nally decided to use
modern notations in order to achieve an easy and consistent way of presenting the results.
We denote by N the nonnegative integers. The monomials of degree m in n variables are written

in the short notation

xm = xm1
1 xm2

2 · · · xmn
n with |m|= m;

where x= (x1; x2; : : : ; xn), m = (m1; m2; : : : ; mn) ∈ Nn, and

|m|=
n∑

i=1

mi is the length of the multi-index m:

A polynomial f(x) = f(x1; x2; : : : ; xn) of (total) degree m can be represented as

f(x) =
m∑

s=0

∑
|k|=s

ckxk; ck ∈ C;

and the summation in

gs(x) =
∑
|k|=s

ckxk

is done over all multi-indices k of length s. The polynomial gs is called a homogeneous component
of degree s. Hence f is an element of the ring of polynomials with complex coe�cients, which will
be denoted by C[x] = C[x1; x2; : : : ; xn]. The degree of a polynomial f will be denoted by deg(f).
The number of linearly independent polynomials of degree 6m is

M (n; m) =
(
m+ n

n

)
;

the number of pairwise distinct monomials of degree m is M (n−1; m). When the linearly independent
monomials are needed as an ordered sequence, we will represent them by

{’j(x)}∞j=1;
where j¡k whenever deg(’j(x))¡ deg(’k(x)). Hence

{’j(x)}�
j=1; � =M (n; m);

contains all monomials of degree 6m. Most of the results in the sequel will be stated in the ring
of polynomials with real coe�cients, R[x1; x2; : : : ; xn] = R[x], which will be denoted by Pn. The
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polynomials in Pn of degree 6m will be denoted by Pn
m. The elements of Pn

m form a vector space
over R with dimension dimPn

m =M (n; m).
We consider integrals of the type

In[f] =
∫


f(x)!(x) dx; f ∈ C(
); (1)

where 
⊆Rn is a region with inner points and the real weight function ! is chosen such that the
moments

In[xm]; m ∈ Nn;

exist. In many applications !(x) is nonnegative. Hence In is a positive linear functional. In most
of the results presented, In will be even strictly positive, i.e.,

In[f]¿ 0 whenever 0 6= f¿0 on 
;

so orthogonal polynomials with respect to In are de�ned.
The type of integrals we consider includes integrals over the so-called standard regions, for which

we follow Stroud’s notation [90].
Cn: the n-dimensional cube


 = {(x1; : : : ; xn): − 16xi61; i = 1; : : : ; n}
with weight function !(x) = 1,

Sn: the n-dimensional ball


 =

{
(x1; : : : ; xn):

n∑
i=1

x2i61

}

with weight function !(x) = 1,
Tn: the n-dimensional simplex


 =

{
(x1; : : : ; xn):

n∑
i=1

xi61 and xi¿0; i = 1; : : : ; n

}

with weight function !(x) = 1,
Er2

n : the entire n-dimensional space 
 = Rn with weight function

!(x) = e−r2 ; r2 =
n∑

i=1

x2i ;

Er
n: the entire n-dimensional space 
 = Rn with weight function

!(x) = e−r ;

H2: the region bounded by the regular hexagon with vertices
(±1; 0), (± 1

2 , ± 1
2

√
3) and weight function !(x) = 1.

A cubature formula for (1) is of the form

In[f] = Q[f] + R[f]; (2)



124 R. Cools et al. / Journal of Computational and Applied Mathematics 127 (2001) 121–152

where

Q[f] =
N∑

j=1

wjf(x( j)) (3)

is called a cubature sum. The x( j)’s are called nodes, the wj’s weights or coe�cients, and R[f] is
the error. The shorthand notation

In[f] ∼=
N∑

j=1

wjf(x( j))

is often used.
A nonnegative integer d is called degree of exactness or degree of precision or simply degree

of formula (2), if R[f] = 0 for all polynomials f with deg(f)6d and if a polynomial g with
deg(g) = d+ 1 exists such that R[g] 6= 0.
Let f ∈ C[x] be given and deg(f) =m; the algebraic manifold of degree m generated by f will

be denoted by

Hm = {x ∈ Cn: f(x) = 0}:
A cubature formula (2) with N =M (n; m) which is exact for all polynomials of degree 6m is called
interpolatory if the nodes do not lie on an algebraic manifold of degree m and the coe�cients are
uniquely determined by the nodes.
If n=1, then N =m+1 and the converse is true, too. If the degree of exactness of the quadrature

formula is m, then it is interpolatory. For n¿2 this does not hold in general. The number of nodes
might be lower than M (n; m) since some of the coe�cients may vanish.

Theorem 1. Let (2) be given such that R[f] = 0 for all polynomials of degree 6m and N6� =
M (n; m). The formula is interpolatory if and only if

rank([’1(x( j)); ’2(x( j)); : : : ; ’�(x( j))]
N
j=1) = N:

We are specifying Q by Q(n; m; N ) if we refer to a cubature sum in n dimensions with a degree
of exactness m and N nodes. We only consider interpolatory cubature formulae. A noninterpolatory
formula can be transformed to an interpolatory formula by deleting nodes. In particular, minimal
formulae (N is minimal for �xed m) are interpolatory.
A polynomial P with deg(P) = m is called orthogonal with respect to the underlying In if

In[PQ] = 0 for all Q, deg(Q)6m− 1. It is called quasi-orthogonal if In[PQ] = 0 for all Q; deg(Q)
6m− 2.
A set of polynomials in R[x1; : : : ; xn] is called a fundamental system of degree m whenever it

consists of M (n− 1; m) linearly independent polynomials of the form
xm + Qm; m ∈ Nn; deg(Qm)6|m| − 1:

A set M of polynomials is called a fundamental set of degree m if a fundamental system of degree
m is contained in span{M}.
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In the two-dimensional case we drop the superscript n and use x and y as variables, i.e., P;Pm,
and,

I[f] =
∫


f(x; y)!(x; y) dx dy; f ∈ C(
); 
⊆R2:

Whenever possible, one tries to �nd cubature sums (3) such that the following constraints are
satis�ed:
(i) wj ¿ 0,
(ii) x( j) ∈ 
,
(iii) N is minimal for �xed degree m.
If n= 1, Gaussian quadrature formulae satisfy all constraints. These formulae are closely connected
to orthogonal polynomials. The zeros of a quasi-orthogonal polynomial of degree k, P1k + P1k−1
with free parameter , are the nodes of a minimal quadrature formula of degree 2k − 2 with all
weights positive. The parameter  can be chosen such that all nodes are inside the domain of
integration, and, if  = 0 one obtains a uniquely determined formula of degree 2k − 1 satisfying
(i), (ii), (iii). Nonminimal interpolatory quadrature formulae have been characterised by Sottas and
Wanner, Peherstorfer, and many others, most recently by Xu [86,68,69,96].

3. Radon’s formulae of degree 5

The paper by Johann Radon [72], which appeared in 1948, is not the oldest studying the application
of orthogonal polynomials to cubature formulae (earlier papers are, e.g., [1] to which Radon refers,
and [6]). However, Radon’s contribution became fundamental for all research in that �eld. Although
the word “cubature” appeared in the written English language already in the 17th century, this paper
is probably the �rst that used the term “Kubaturformel” (i.e., German for “cubature formula”) for
a weighted sum of function values to approximate a multiple integral (in contrast to quadrature
formula to approximate one-dimensional integrals). As an introduction to the survey which follows,
we will briey sketch its main ideas.
Radon discusses the construction of cubature formulae of degree 5 with 7 nodes for integrals over

T2; C2; S2. We are sure Radon knew the estimate (22) and knew that this bound will not be attained
for classical (standard) regions in the case of degree 5. In order to construct a cubature formula of
degree m he counted the number of monomials of degree 6m and used this divided by 3 as number
of necessary nodes. He was aware that for degrees 2, 3 and 4 this will not lead to a solution and
thus degree 5 is the �rst nontrivial case he could consider.
Assuming a formula of degree 5 with 7 nodes for an integral I, a geometric consideration leads

to polynomials of degree 3 vanishing at the nodes. These polynomials have to be orthogonal with
respect to I to all polynomials of degree 2, and exactly three such polynomials, P1, P2, P3, can
vanish at the nodes. In the next step further necessary conditions are derived for the Pi. They must
satisfy

3∑
i=1

LiPi = 0 (4)
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for some linear polynomials Li 6= 0. This can be reduced to
xK1 + yK2 = K3; (5)

where Ki are orthogonal polynomials of degree 3. Assuming the orthogonal basis of degree 3 in a
form

P3i = x3−iyi + Qi; Qi ∈ P2; i = 0; 1; 2; 3;

one obtains

K1 = �P31 + �P32 + P33 and K2 =−�P30 − �P31 − P32 :

The parameters �, �,  have to be chosen such that K3 is also an orthogonal polynomial of degree
3. Thus, by setting

A=I[P30P
3
2 − P31P

3
1]; B=I[P30P

3
3 − P31P

3
2]; C =I[P31P

3
3 − P32P

3
2]; (6)

one obtains the linear system
 0 A B
−A 0 C
−B −C 0




 �
�



= 0: (7)

Two cases may occur. The parameters �, �,  can be determined up to a common factor, if

A2 + B2 + C2¿ 0; (8)

otherwise they can be chosen arbitrarily. Radon did not further pursue the last case. He just remarked
that he did not succeed in proving that this case never occurs.
In case (8) the polynomials K1, K2, K3 can be computed. If they are linearly independent, the

desired equation (4) is given by xK1 + yK2 = K3. If these polynomials vanish at 7 pairwise distinct
nodes, the degree of exactness follows from the orthogonality property of the Ki’s.
If the Ki are linearly dependent, it follows that

K1 = yQ and K2 =−xQ

for some Q ∈ P2. In this case it can be shown that there is a K3 such that all Ki vanish at 7 pairwise
distinct nodes. This construction again is based on geometric considerations and �nally allows the
conclusion that such K3’s can be computed.
Radon’s article continues with the construction of formulae of degree 5 with 7 nodes for integrals

over the standard regions with constant weight function T2, C2 and S2. The amount of computational
work – in a pre-computer time – is tremendous. The article �nishes with an examination of the
cubature error.
Though the results are limited to a special case, Radon’s approach is the basis for fundamental

questions that were studied in the years following the publication of his result:
(i) Can this constructive method be generalised to a higher degree of exactness?
(ii) Can this constructive method be generalised to more than two dimensions?
(iii) Are there integrals for which the second case occurs, i.e., A= B= C = 0?
(iv) Is 7 a lower bound for the number of nodes of cubature formulae of degree 5 if (8) holds?
(v) Are there lower bounds of some generality for the number of nodes?
(vi) What intrinsic tools were applied for the solution?
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Fifty years after the publication of Radon’s paper, it is still not possible to answer these questions
completely. We will outline what is known in the sequel.

4. Multivariate orthogonal polynomials

We assume that In is strictly positive. Di�erent methods of generating an orthogonal polyno-
mial basis were discussed by Hirsch [34]. If the moments In[xm]; m ∈ Nn, are known, one can
either orthogonalise the monomial basis by the Gram–Schmidt procedure, or compute step by step
fundamental systems of orthogonal polynomials of degree m.
A third way is to �nd a partial di�erential equation with boundary conditions the polynomial

solutions of which lead to orthogonal systems. This permits �nding formulae for the coe�cients of
the polynomials and deriving recursion formulae. However, one has to �nd out if there is an integral
for which the polynomials form an orthogonal system.

4.1. Simple properties

The strictly positive integral (1) de�nes a scalar product in C[x] by

(�;  ) =In[�; � ] =
∫


�(x) (x)!(x) dx; �;  ∈ C[x]: (9)

Consider the polynomial

Pk+1(x) = gk+1(x) +
�∑

i=1

ai’i(x); � =M (n; k); (10)

where gk+1(x) is a given homogeneous component of degree k + 1 and the ai’s are unknown
coe�cients. Assuming (10) to be orthogonal to ’j(x); j=1; 2; : : : ; �; with respect to (9), we obtain

�∑
i=1

ai(’i; ’j) =−(gk+1(x); ’j); j = 1; 2; : : : ; �: (11)

The matrix of this system is the Gram matrix of the linearly independent polynomials ’1(x);
’2(x); : : : ; ’�(x). Hence, the ai are uniquely determined. The polynomial (10) is uniquely deter-
mined by its homogeneous component of degree k + 1 and by orthogonality to all polynomials of
degree 6k.
We state some simple properties of orthogonal polynomials, which will be of use later.

Theorem 2. The following properties hold for an orthogonal polynomial Pk+1.
(1) If the homogeneous component of degree k + 1 has real coe�cients; then all coe�cients are

real. This follows from (11).
(2) A real polynomial Pk+1 changes sign in 
. In particular;

{x ∈ 
: Pk+1¿ 0} and {x ∈ 
: Pk+1¡ 0}
are of positive measure; which follows from∫



Pk+1(x)!(x) dx= 0:
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(3) Whenever Pk+1 = UV with polynomials U and V of degree at least 1; then U is orthogonal
with respect to 
 and the weight function !(x)|V (x)|2. This implies Properties (1) and (2)
for the factors as well.

(4) If the coe�cients belonging to the highest-degree terms in the homogeneous component of a
factor are real; then the remaining coe�cients are real; too.

(5) A real factor U of an orthogonal polynomial changes sign in 
. In particular;

{x ∈ 
: U ¿ 0} and {x ∈ 
: U ¡ 0}
are of positive measure. From this we obtain

(6) An orthogonal polynomial has no real multiple factors.

We normalise the orthogonal polynomials of degree k to

Pk = xk + Qk; k ∈ Nn; |k|= k; deg(Qk)6k − 1:
This fundamental system of degree k will be gathered in a polynomial vector of dimension M (n−1; k)
and be written as Pk . We refer to the common zeros of all Pk as zeros of Pk . The known explicit
expressions for these normalised orthogonal polynomials are collected in [10].

4.2. Recursion formulae

For n=2 the following results were found. Jackson [37] discusses a three-term recursion formula
for a given orthogonal system, Gr�obner [27] generates orthogonal systems by solving a variational
problem under constraints; Krall and She�er [42] study in a class of second-order di�erential equa-
tions special cases the polynomial solutions of which generate classical orthogonal systems. Since
their approach is closely related to recursion formulae and leads to concrete results we will outline
the main ideas.
Let

Pk
j = xk−jyj + Qj; Qj ∈ Pk−1; j = 0; 1; : : : ; k; k ∈ N;

be a basis of P. We can collect these fundamental systems of degree k in vectors

Pk = (Pk
0 ; P

k
1 ; : : : ; P

k
k )
T:

The basis Pk ; k ∈ N; is said to be a weak orthogonal system if there exist matrices

Ck; �Ck ∈ Rk+1×k+1 and Dk; �Dk ∈ Rk+1×k ;

such that
xPk = Lk+1Pk+1 + CkPk + DkPk−1;

yPk = Fk+1Pk+1 + �CkPk + �DkPk−1;
(12)

with shift matrices Lk+1 and Fk+1 de�ned by [Ek 0] and [0 Ek], where Ek is the identity in Rk+1×k+1

and P−1 = 0.
A polynomial basis is said to be orthogonal with respect to a linear functional L : P→ R, if, for

each k ∈ N; L[PkPTl ]=0; l=0; 1; : : : ; k−1, and if rank(L[PkPTk ])=k+1. Here, PkPTl is the tensor
product of the vectors Pk and Pl, and L[PkPTl ] is the matrix whose elements are determined by the
functional acting on the polynomial coe�cients of the tensor product. The matrix Mk =L[PkPTk ] is
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known as the kth moment matrix. The basis {Pk}k∈N is said to be a (positive) de�nite orthogonal
system in case the matrices Mk; k ∈ N, are (positive) de�nite.
A de�nite system {Pk}k∈N is a weak orthogonal system, i.e., it satis�es the recurrence relations

(12). Conversely, it follows from work by Xu [93] that a weak orthogonal system is an orthogonal
system with respect to some L if and only if

rank(Sk) = k + 1 where Sk = [Dk �Dk] ∈ Rk+1×2k :

The associated moment problem consists in assigning a measure to the functional L de�ned by a
de�nite system. In particular, assigning a positive measure in case the system is positive de�nite
(Favard’s theorem) is quite complicated. We refer to Fuglede [24] and Xu [95].
Krall and She�er [42] studied the orthogonal polynomial systems which are generated by the

following second-order di�erential equation:

D!=−�k!; �k ∈ R; k ∈ N; (13)

where

D!= (ax2 + d1x + e1y + f1)
@2!
@x2

+ (2axy + d2x + e2y + f2)
@2!
@x@y

+(ay2 + d3x + e3y + f3)
@2!
@y2

+ (gx + h1)
@!
@x
+ (gy + h2)

@!
@y

for some real constants a 6= 0; g; di; ei; fi; hi, and for

�k =−k((k − 1)a+ g); g+ ka 6= 0; k ∈ N:

They determined all weak orthogonal systems which are generated from (13) and proved that they
are de�nite or positive de�nite, �nding the classical orthogonal systems which had been derived in
[2] and some new de�nite systems.
In [4] the recursion formulae for all positive-de�nite systems have been computed in the following

way. Let {Pk}k=0;1; ::: be a de�nite orthogonal system with respect to I. Multiplying (12) by PTk−1; P
T
k ,

and PTk+1, respectively, and applying I, we obtain

CkMk =I[xPkPTk ]; DkMk−1 =I[xPkPTk−1] =MkLTk ;

�CkMk =I[yPkPTk ]; �DkMk−1 =I[yPkPTk−1] =MkFTk :

By means of these identities the moment matrices can be computed by induction. Indeed, let Gk =
diag{[2; Ek−2]} and �Gk = diag{[Ek−2; 2]}; then

2Ek = LTk GkLk + FTk �GkFk;

and consequently,

2Mk =MkLTk GkLk +MkFTk �GkFk = DkMk−1GkLk + �DkMk−1 �GkFk:

If one sets M0 = 1, the last equation allows us to compute Mk from Mk−1; k ∈ N. Based on [2],
Verlinden [91] has computed explicit recursion formulae for classical two-dimensional integrals, too.
So we refer to [91,4], if explicit recursion formulae are needed for standard integrals.



130 R. Cools et al. / Journal of Computational and Applied Mathematics 127 (2001) 121–152

Not all two-dimensional orthogonal systems of interest can be obtained from (13). For further
systems we refer to Koornwinder [38] and the references given there.
Kowalski in [39] presented a n-dimensional recursion formula and characterised it in [40,41]; Xu

[93] re�ned this characterisation by dropping one condition. We will briey outline these results.
For a more complete insight into this development of a general theory of orthogonal polynomials in
n dimensions we refer to the excellent survey by Xu [98].
Let In be given, and let

Mk =In[PkPTk ] ∈ RM (n−1; k)×M (n−1; k)

be the moment matrix for In. Then the recursion formula can be stated as follows.

Theorem 3. For k = 0; 1; : : : there are matrices

Ak; i ∈ RM (n−1; k)×M (n−1; k+1); Bk; i ∈ RM (n−1; k)×M (n−1; k);

and

Ck; i ∈ RM (n−1; k)×M (n−1; k−1);

such that

xiPk = Ak; iPk+1 + Bk; iPk + Ck; iPk−1; i = 1; 2; : : : ; n; k = 0; 1; : : : ;

where P−1 = 0 and for all i = 1; 2; : : : ; n and all k

Ak; iMk+1 =In[xiPkPTk+1];

Bk; iMk =In[xiPkPTk ];

Ak; iMk+1 =MkCT
k+1; i :

Furthermore; there are matrices

Dk; i; Gk ∈ RM (n−1; k+1)×M (n−1; k); Hk ∈ RM (n−1; k+1)×M (n−1; k)

such that

Pk+1 =
n∑

i=1

xiDk; iPk + GkPk + HkPk−1;

where
n∑

i=1

Dk; iAk; i = EM (n−1; k+1)×M (n−1; k+1)

and
n∑

i=1

Dk; iBk; i =−Gk;
n∑

i=1

Dk; iCk; i =−Hk:

We will denote the fundamental set of orthonormal polynomials (with respect to In) of degree
k by pk . The recursion for orthonormal polynomials is given by Xu [95]. We reuse the notations
Ak; i; Bk; i. In the following, these matrices will refer to the recursion for orthonormal matrices.
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Theorem 4. For k = 0; 1; : : : there are matrices

Ak; i ∈ RM (n−1; k)×M (n−1; k+1); Bk; i ∈ RM (n−1; k)×M (n−1; k)

such that

xi pk = Ak; i pk+1 + Bk; i pk + ATk−1; i pk−1; i = 1; 2; : : : ; n; k = 0; 1; : : : ;

where p−1 = 0; A−1; i = 0 and

rank(Ak) = rank([ATk;1|ATk;2| · · · |ATk; n]T) =M (n− 1; k + 1):
For i; j=1; 2; : : : ; n; i 6= j; and k¿0; the following matrix equations hold for the coe�cient matrices:
(i) Ak; i Ak+1; j = Ak;j Ak+1; i ;
(ii) Ak; iBk+1; j + Bk; iAk; j = Bk;jAk; i + Ak;jBk+1; i ;
(iii) ATk−1; iAk−1; j + Bk; iBk; j + Ak; iATk; j = ATk−1; jAk−1; i + Bk;jBk; i + Ak;j ATk; i.

In order to characterise Gaussian cubature formulae, see Section 7:1:4; the use of orthonormal systems
gives more insight and often is easier to apply.

4.3. Common zeros

A direct analog of the Gaussian approach for n¿2 suggests considering the common zeros of all
orthogonal polynomials of degree k as nodes of a formula of degree 2k − 1. So the behaviour of
common zeros of all orthogonal polynomials of degree k is of interest.
The following theorem, due to Mysovskikh [60,66], holds for (not necessarily orthogonal or real)

fundamental systems of polynomials; it turned out to be essential.

Theorem 5. Let

Rm = xm + Qm; deg(Qm)6m− 1; |m|= m;

be a fundamental system of degree m. Then the following is true.
(i) The polynomials Rm have at most dimPn

m−1 common zeros.
(ii) No polynomial of degree m − 1 vanishes at the common zeros of the Rm; if and only if the

Rm have exactly dimPn
m−1 common pairwise distinct zeros.

We will briey derive the main properties of the zeros of fundamental systems of orthogonal
polynomials. Orthonormalising the monomials {’j(x)}∞j=1 with respect to In, e.g., by the Gram–
Schmidt procedure, we obtain

{Fj(x)}∞j=1 where In[FiFj] = �ij:

The reproducing kernel in Pn
m is a polynomial in 2n variables,

Km(u; x) =
�∑

j=1

Fj(u)Fj(x); � =M (n; m); (14)

having the property

In[Km(u; x)f(x)] = f(u) for all f ∈ Pn
m: (15)
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Lemma 6. For an a ∈ Cn let l be a linear polynomial such that l(a) = 0. Then R= l(x)Km(a; x)
is quasi-orthogonal. Whenever a is a common zero of Pm+1; then R is orthogonal.

Proof. If Q ∈ Pn
m−1 we obtain by (15)

In[l(x)Km(a; x)Q(x)] = l(a)Q(a) = 0:

If a is a common zero of Pm+1, then

FM (n−1;m)+i(a) = 0; i = 1; 2; : : : ; M (n− 1; m+ 1);
and thus Km(a; x) = Km+1(a; x). Hence

R(x) = l(x)Km+1(a; x) = l(x)Km(a; x)

is orthogonal to Pn
m. Assuming deg(l(x)Km(a; x))6m; we obtain that R is zero, in contradiction to

Km(a; �a) =
�∑

i=1

|Fj(a)2|¿ 0; � =M (n; m):

The following theorem was proved in [61,65].

Theorem 7. The zeros of Pm+1 are real and simple; and they belong to the interior of the convex
hull of 
. Furthermore; Pm+1 and Pm have no zeros in common.

Proof. Let a ∈ Cn be a common zero of Pm+1. By Lemma 6 the polynomials

(xi − ai)Km(a; x); i = 1; 2; : : : ; n; (16)

are orthogonal to all polynomials of degree m. Because of property (3) in Theorem 2, the linear
factor xi − ai is real, hence a ∈ Rn. The Jacobian matrix of (16) in a is diagonal with elements
Km(a; a)¿ 0. This implies that a is simple. If a is not an interior point of the convex hull of 
,
there is a separating hyperplane l(x) through a, e.g., l(x)¿0 for all x in the interior of the convex
hull. Since l(x) is a real factor of l(x)Km(a; x), this is a contradiction to property (5) in Theorem
2. Finally, a is no common zero of Pm since by Lemma 6 the degree of (16) is m + 1, hence
deg (Km(a; x)) = m.

Using the matrices presented in Theorem 4, Xu [97] de�nes in�nite tridiagonal block Jacobi
matrices of the form

Ti =



B0; i A0; i 0 0 : : : 0
AT0; i B1; i A1; i 0 : : : 0
0 AT1; i B1; i A2; i : : : 0
...

...
...

...
...

...


 ; i = 1; 2; : : : ; n;

and truncated versions of these. He found a relation between an eigenvalue problem for these matrices
and the zeros of all orthogonal polynomials of a �xed degree. These results and their relation to
cubature formulae are further elaborated in [94].
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5. Lower bounds

5.1. Numerical characteristics

Mysovskikh [56] proved that Radon’s formulae are minimal whenever (8) holds. In [67] an
integral is constructed where the matrix in (7) is zero and a formula of degree 5 with 6 nodes can
be constructed. Applying Radon’s method to formulae of degree 3, Mysovskikh [59] found that such
formulae with 4 nodes exist if and only if

I[P20P
2
2 − P21P

2
1] 6= 0; (17)

otherwise the formula has only 3 nodes. This has been further studied by G�unther [28,29]. Fritsch
[23] gave an example of an integral for which Q(n; 3; n+1) exists. Cernicina [9] constructed a region
in Rn; 36n68, admitting minimal formulae of type Q(n; 4; (n+ 1)(n+ 2)=2); for n= 2 a formula
Q(2; 5; 6) is obtained. Stroud [90] extended (6) in the following way:

B= [I[Pk
i P

k
j − Pk

�P
k
�]]i+j=�+�; � 6=i 6=�; 06i; j; �; �6k ; (18)

in order to obtain the lower bound in Theorem 10.
Mysovskikh [60] generalised (5) and (6) (in order to study the case which Radon did not further

pursue) by de�ning for given k and I the following matrices:

M?
k−1 = [I[P

k
j+1P

k
i − Pk

j P
k
i+1]]i; j=0;1; :::; k−1; (19)

– note that M?
k is skew-symmetric – and

A= 1
2[I[P

k
i+1P

k
j−1 − 2Pk

i P
k
j − Pk

i−1P
k
j+1]]i; j=1;2; :::; k−1:

The elements of these matrices characterise the behaviour of the orthogonal polynomials with respect
to I; so they were called numerical characteristics.

Theorem 8. The following are equivalent:
(i) the matrix A vanishes;
(ii) the matrix M?

k−1 vanishes;
(iii) the orthogonal basis of degree k has k(k + 1)=2 common pairwise distinct real zeros;
(iv) a cubature formula of degree 2k − 1 with the lowest possible number of nodes exists. Its

nodes are the common zeros of the orthogonal basis of degree k.

The proof in [66, p. 189], is based on Theorem 5 and the following considerations. The polyno-
mials

Qi = yPk
i − xPk

i+1; i = 0; 1; : : : ; k − 1; (20)

are of degree k; this is Radon’s equation (5). Hence if the common zeros of all Pk
i are the nodes

of a formula of degree 2k − 1, then the Qi are orthogonal polynomials of degree k. This implies
M?

k−1 = 0. Evidently, M
?
k−1 = 0 implies A= 0. On the other hand, if A= 0, then M?

k−1 is of Hankel
type, and, since M?

k is skew-symmetric, this implies M?
k−1 = 0. The existence of integrals admitting

the conditions of Theorem 8 was studied by Kuzmenkov in [44–46].
The articles based on Mysovskikh’s results prefer to work with M?

k−1, and it turns out that this
matrix in many ways characterises the behaviour of the associated orthogonal polynomials.
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In order to generalise Theorem 8 to n dimensions, Eq. (20) has to be studied for all possible
variables. By means of the recursion formulae for orthonormal systems, n-dimensional numerical
characteristics can be de�ned. By condition (ii) in Theorem 4,

Ak−1; jxi pk − Ak−1; i xj pk

can be computed under the condition that these polynomials are orthogonal to Pn
k−1. This leads to

the matrices

M?
k−1(i; j) = Ak−1; i ATk−1; j − Ak−1; j ATk−1; i ; i; j = 1; 2; : : : ; n; i 6= j; (21)

which are representing the numerical characteristics of orthogonal polynomials in n dimensions.

5.2. Lower bounds

To settle the question of minimal formulae, lower bounds for the number of nodes are needed.
The one-dimensional result can be generalised directly to �nd the following result, which seems to
be folklore.

Theorem 9. If Q(n; m; N ) is a cubature sum for an integral In; then

N¿dimPn
bm=2c =M (n; bm=2c): (22)

As we have seen in Section 3, this lower bound is not sharp for n = 2 and m = 5. A simple
consequence of Theorem 8 is

Theorem 10. If Q(2; 2k − 1; N ) is a cubature sum for an integral I for which rank(M?
k−1)¿ 0;

then

N¿dimPk−1 + 1:

Stroud [90] showed this under the condition that B in (18) does not vanish.
Considerable progress was made by M�oller [49], who improved the lower bound for n= 2.

Theorem 11. If Q(2; 2k − 1; N ) is a cubature sum for an integral I; then

N¿dimPk−1 + 1
2 rank(M

?
k−1): (23)

Proof. If a cubature sum Q(2; 2k−1; N ) is given, then no polynomial in Pk−1 vanishes at all nodes.
If no polynomial of degree k vanishes at all nodes, then N¿dimPk ¿ dimPk−1 + 1

2 rank(M
?
k−1),

since M?
k−1 ∈ Rk×k . So M�oller assumed the existence of s orthogonal polynomials Qi of degree k

which vanish at the nodes and �rst searched for a bound on s. Note that Qi; xQi; yQi belong to an
ideal which does not contain any polynomial of Pk−1. Let

W = span{Qi; xQi; yQi; i = 1; 2; : : : ; s};
then

3s− �= dimW6k + 2 + s;
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where � is the number of those xQi; yQi which can be dropped without diminishing the dimension
of W. These dependencies in W are of the form

x
k∑

i=1

aiPk
i − y

k−1∑
i=0

ai+1Pk
i =

k∑
i=0

biPk
i :

By orthogonality this leads to
k−1∑
i=0

ai+1I[Pk
j P

k
i+1 − Pk

j+1P
k
i ] = 0; j = 0; 1; : : : ; k − 1;

i.e.,

M?
k−1(a1; a2; : : : ; ak)T = 0:

Thus we get �6k − rank(M?
k−1), from which we �nally obtain

s6k + 1− 1
2 rank(M

?
k−1):

For all classes of integrals for which the rank of M?
k−1 has been computed, it turned out that either

the rank is zero (cf. [82]) or

rank(M?
k−1) = 2bk=2c:

Classes of integrals for which the second rank condition holds have been already given by M�oller
[49]. He showed this for product integrals and integrals enjoying central symmetry. This includes the
standard regions C2; S2; H2; Er2

2 and Er
2. Further classes with the same rank were detected by Rasputin

[73], Berens and Schmid [3]. These include the standard region T2.
Another important fact was observed by M�oller. If (23) is attained, then the polynomials xQi; yQi

form a fundamental set of degree k + 1.
The improved lower bound, in general, is not sharp. Based on a characterisation of cubature sums

Q(2; 4k + 1; 2(k + 1)2 − 1) for circularly symmetric integrals in [92], it was shown in [16] that for
all k ∈ N \ {1} the integrals∫

R2
f(x; y)(x2 + y2)�−1e−x2−y2 dx dy; �¿ 0;

and for �; �¿− 1 the integrals∫
S2
f(x; y)(x2 + y2)�(1− x2 − y2)� dx dy

admit cubature sums Q(2; 4k+1; N ) where at least N¿2(k+1)2. Note that this includes the standard
regions S2 and Er2

2 . This result can however not be generalised to all circularly symmetric integrals.
In [92] the existence of a circularly symmetric integral admitting a cubature sum Q(2; 9; 17) has
been proven.
The n-dimensional version of Theorem 11 was stated in [51]. An explicit form of the matrices

involved was given in [97], using (21), which allows us to formulate (23) as follows.

Theorem 12. If Q(n; 2k − 1; N ) is a cubature sum for an integral In; then

N¿dimPn
k−1 +

1
2max{rank(M?

k−1(i; j)): i; j = 1; 2; : : : ; n}: (24)
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Let us denote by G2m the linear space of all even polynomials in Pn
2m and by G2m−1 the linear

space of all odd polynomials in Pn
2m−1. For integrals In which are centrally symmetric, i.e., for

which

In[Q] = 0 if Q ∈ G2m−1; m ∈ N;

holds, another lower bound is known, which is not based on orthogonality.

Theorem 13. If Q(n; 2k − 1; N ) is a cubature sum for a centrally symmetric integral In; then

N¿2 dimGk−1 −
{
1; if 0 is a node and k is even;
0; else:

This bound was given for degree 3 by Mysovskikh [55]; the general case is due to M�oller [47,51]
and Mysovskikh [64]. M�oller proved that cubature formulae attaining the bound of Theorem 13
(having the node 0, if k is even) are centrally symmetric, too. For n¿3 and In centrally symmetric,
the bound of Theorem 13 is better than the one of Theorem 12. For n=2 and In centrally symmetric,
they coincide.
To conclude this section, we remark that cubature formulae with all nodes real and attaining the

bounds of Theorem 9 or Theorem 13 are known to have all weights positive [58,90,47,12].

6. Methods of construction

6.1. Interpolation

Let 
⊆Rn be given and assume that 
 contains interior points. By virtue of the linear inde-
pendence of {’j(x)}∞j=1 we can �nd for each m exactly � =M (n; m) points from 
 such that they
generate a regular Vandermonde matrix. We remark that � points, �¡�, are always contained in an
algebraic manifold of degree m, hence � is the minimal number of points which do not belong to
such a manifold. We denote by

Vm = [’1(x( j)); ’2(x( j)); : : : ; ’�(x( j))]
�
j=1; � =M (n; m); (25)

the Vandermonde matrix de�ned by x( j); j = 1; 2; : : : ; �.

Theorem 14. The points x( j); j = 1; 2; : : : ; �; do not lie on an algebraic manifold of degree m if
and only if det Vm 6= 0.

A natural way to construct a cubature formula is interpolation. Choose � points x( j) ∈ Rn which do
not lie on a manifold of degree m. Because of the nonsingularity of the corresponding Vandermonde
matrix we can construct the interpolating polynomial of f:

Pm(x) =
�∑

j=1

L(m)j (x)f(x( j));
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where

L(m)j (x(i)) = �ij; i; j = 1; 2; : : : ; �:

Substituting Pm for f in (1), we obtain

I[f] =
�∑

j=1

wjf(x( j)) + R[f]; (26)

where

wj =
∫


L(m)j (x)!(x) dx: (27)

A cubature formula obtained in this way is obviously interpolatory, see Theorem 1.

6.2. Reproducing kernels

The method of reproducing kernel was introduced in [58] in order to construct cubature formulae
of degree 2k with a minimal number of nodes N = M (n; k). Most often the method will produce
cubature formulae with more nodes. By means of the orthonormal basis such cubature formulae may
be constructed by inserting f = FlFm in (2) and studying

N∑
j=1

wjFl(x( j))Fm(x( j)) = �lm; l; m= 1; 2; : : : ; N: (28)

Introducing the N × N matrices

F = [F1(x( j)); F2(x( j)); : : : ; FN (x( j))]
N
j=1

and C = diag{w1; w2; : : : ; wN}, we can write Eq. (28) as
FTCF = E:

This can be written as FFT = C−1, i.e.,
N∑
i=1

Fi(x(r))Fi(x(s)) = w−1
r �rs; r; s= 1; 2; : : : ; N:

If we are using (14), this can be rewritten as

Kk(x(r); x(s)) = w−1
r �rs; r; s;=1; 2; : : : ; N: (29)

If we assume that (28) will lead to a cubature formula, then the nodes and coe�cients can be
determined by (29).
Let a(i); i=1; 2; : : : ; n; be pairwise distinct nodes of such a formula. We denote by Hi the algebraic

manifold de�ned by the polynomial Kk(a(i); x). From (29) we obtain

Kk(a(i); a( j)) = bi�ij; bi = w−1
i ; i; j = 1; 2; : : : ; n: (30)

The remaining nodes of the formula belong to
⋂n

i=1Hi and can be computed by solving for the
unknown variables x from

Kk(a(i); x) = 0; i = 1; 2; : : : ; n:
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Since the nodes of the cubature sum Q(n; 2k;M (n; k)) are not known, we proceed in the following
way. The nodes a(i) are chosen (whenever possible) in 
 but di�erent from any of the common
zeros of the fundamental system of orthogonal polynomials of degree k. So the order of the manifold
Hi generated by Kk(a(i); x) is k.
If a(1) is �xed, then a(2) will be chosen on H1, and, if possible in 
. If a(i); i=1; 2; : : : ; t−1, are

�xed, the next node a(t) is chosen on
⋂t−1

i=1 Hi, if possible in 
. The a(i); i= 1; 2; : : : ; n, constructed
in this way satisfy (30). If all nodes are chosen in Rn, then bi ¿ 0; in fact,

bi =
N∑

j=1

F2j (a
(i))¿ 0;

since the a(i) are no zeros of the fundamental system of orthogonal polynomials of degree k.
If there are no points at in�nity on H =

⋂n
i=1Hi, then H consists of r points x( j). Thus we

obtain ∫


f(x)!(x) dx ∼= Q(n; 2k; n+ r) =

n∑
j=1

Ajf(a( j)) +
r∑

j=1

Bjf(x( j)): (31)

The coe�cients Ai can be computed from (31) since the formula is exact for Kk(a(i); x), i.e.,∫


Kk(a(i); x)!(x) dx=

n∑
j=1

AjKk(a(i); a( j)) = AiKk(a(i); a(i));

or, by using (15) with f ≡ 1,

Ai =
1
bi
=

1
Kk(a(i); a(i))

:

If n+ r =N =M (n; k), the coe�cients Bj can be computed in an analogous way; if n+ r ¿N , the
Bj are determined by the condition for (31) to be of degree 2k.
The method of reproducing kernels can be applied to regions in Rn without inner points, see

[36,52]. The method was applied in [58,7,8,25] to construct cubature formulae of degree 4 for a
variety of regions and in [47] to construct a cubature formula of degree 9 for the region S2.
M�oller [47] and Gegel’ [26] proved

Theorem 15. If a(i); i = 1; 2; : : : ; n; satisfy (30) where bi 6= 0; and if ⋂n
i=1Hi consists of pairwise

distinct nodes x( j); j = 1; 2; : : : ; kn; then

∫


f(x)!(x) dx ∼= Q(m; 2k; n+ kn) =

n∑
i=1

1
bi
f(a(i)) +

kn∑
j=1

wjf(x( j));

where bi = Kk(a(i); a(i)).

M�oller modi�ed this for centrally symmetric integrals by using the following important observation.
For these integrals, the orthogonal polynomials of degree m are even (odd) polynomials, if m is
even (odd). For the linear space P̃n

k of all even (odd) polynomials of degree 6k if k is even (odd)
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the reproducing kernel

K̃k(u; x) =
N∑′

j=t

Fj(u)Fj(x); t = k − 2bk=2c+ 1; N =M (n; k);

is considered. Here
∑′ denotes summation over all even (odd) polynomials Fj if j is even (odd).

Again, nodes a(i), i = 1; 2; : : : ; n, are chosen (whenever possible) in 
 but di�erent from any of
the common zeros of the fundamental system of orthogonal polynomials of degree k.
The manifolds corresponding to K̃k(a(i); x) will be denoted by H̃i. If a(i), i = 1; 2; : : : ; t − 1; are

already selected, the node a(t) is chosen on
⋂t−1

i=1 H̃i, if possible in 
. These nodes satisfy

K̃k(a(i); a( j)) = bi�ij; i; j = 1; 2; : : : ; n; (32)

where bi ¿ 0 since a(i) ∈ Rn.
We remark that the nodes in the modi�ed method are chosen as a(i);−a(i), i=1; 2; : : : ; n. By central

symmetry it follows that

K̃k(a(i);−a( j)) = (−1)k K̃ k(a(i); a( j));

hence by (32), if bi 6= 0, we get a(i) 6= −a( j) if i 6= j. So the a(i);−a(i) are pairwise distinct, if
a(i) 6= 0, i = 1; 2; : : : ; n. If k is odd, this is satis�ed; if k is even, the number of pairwise distinct
nodes a(i) and −a(i) may be 2n or 2n− 1. In [47] the following is derived.

Theorem 16. Let the integral be centrally symmetric. If the nodes a(i), i = 1; 2; : : : ; n; satisfy (32)
where bi 6= 0; and ⋂n

i=1 H̃ i consists of pairwise distinct points x( j), j = 1; 2; : : : ; kn; then∫


f(x)!(x) dx∼=Q(n; 2k + 1; 2n+ kn)

=
n∑

i=1

1
2bi
[f(a(i)) + f(−a(i))] +

kn∑
j=1

wjf(x( j));

where bi = K̃k(a(i); a(i)).

6.3. Ideal theory

Let

X = {x( j); j = 1; 2; : : : ; N}⊂Rn

be a �nite set of points, and de�ne the subspace

W = {P ∈ Pn
m: P(x) = 0 for all x ∈ X }⊂Pn:

Sobolev [83] proved

Theorem 17. The points X are the nodes of Q(n; m; N ) for In if and only if

P ∈ W implies In[P] = 0:

An English rendering of the proof can be found in [10].
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The relationship of orthogonal polynomials and cubature formulae was studied since 1967 by
Mysovskikh [57,59,61–63] and Stroud [87–90]; in particular they introduced elements from algebraic
geometry.
M�oller [47] recognised that this connection can be represented more transparently by using ideal

theory, and that this theory will help in determining common zeros of orthogonal polynomials. E.g.,
Theorem 5 follows easily from this theory. Let Q(n; m; N ) be given such that

X = {x( j); j = 1; 2; : : : ; N}⊂Rn

is the �nite set of nodes, and de�ne the polynomial ideal

A= {P ∈ Pn: P(x) = 0 for all x ∈ X }⊂Pn:

Then we obtain for each P ∈ A ∩ Pn
m the orthogonality condition In[PQ] = 0, whenever PQ ∈ Pn

m.
M�oller introduced the notion of m-orthogonality. A set of polynomials is said to be m-orthogonal if
for every element P we have In[PQ]=0, when PQ ∈ Pn

m. Hence, orthogonal polynomials of degree
m are (2m−1)-orthogonal, while quasi-orthogonal polynomials of degree m are (2m−2)-orthogonal.
The main problem is the selection of a suitable basis. It turns out that an H -basis suits best.

{P1; P2; : : : ; Ps} is such a basis, if every Q ∈ A can be written as

Q =
s∑

i=1

QiPi where deg(QiPi)6deg(Q):

The ideal then is written as A= (P1; P2; : : : ; Ps).

Theorem 18. Let Qi; i=1; 2; : : : ; s; be an H-basis of a zero-dimensional ideal A. Then the following
are equivalent:
(i) The Qi are m-orthogonal with respect to In.
(ii) There is a Q(n; m; N ) using the N common zeros of A as nodes if no multiple nodes appear.

For multiple nodes, function derivatives can be used; this was proposed in [62,63]. M�oller called
formulae of this type generalised cubature formulae of algebraic degree. This was further developed
in [48–50].
In this ideal-theoretic setting, condition (5) can be interpreted as syzygy. If an H -basis of A is

�xed, then syzygies of higher order will occur; e.g., if P1; P2 ∈ A are of degree m, then it is possible
that

Q1P1 − Q2P2 ∈ Pn
m−1 for Qi ∈ Pn:

M�oller found that such syzygies will occur in an H -basis and that they impose restrictions on the
polynomials which can be used constructively to compute a suitable ideal. Furthermore, the Hilbert
function can be used to study the number of common zeros. For the connection to Gr�obner bases
we refer to [53,13].
However, Theorem 18 allows nodes to be in Cn. Schmid [78] proposed to avoid this by considering

real ideals.
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If the common zeros of an ideal A are denoted by V(A) and the ideal of all polynomials which
vanish at a �nite set X ⊂Rn by AX , then

X ⊆V(AX ):

An ideal A is called real if

X =V(AX ):

So m-orthogonal real ideals characterise cubature formulae, and real ideals are characterised by the
following theorem due to Dubois et al. (cf. [18,19,75,76]).

Theorem 19. The following are equivalent:
(i) A is a real ideal;
(ii) the common zeros of A are pairwise distinct and real;
(iii) P vanishes on V(A) if and only if P ∈ A;
(iv) for all M ∈ N and all Qi ∈ Pn; i = 1; 2; : : : ; M;

M∑
i=1

Q2
i ∈ A implies Qi ∈ A; i = 1; 2; : : : ; M:

By combining M�oller’s results and the conditions which can be derived from Theorem 19 it is
possible to give a complete characterisation of cubature formulae. However, if the degree of the
formula m is �xed, the conditions which have to be satis�ed strongly depend on the number of
nodes. Indeed, the number of nodes inuences the number of polynomials in the ideal basis and
their degree. The conditions derived from Theorem 19 depend on the structure of the ideal basis,
and their complexity therefore increases with m.
In [79] Theorem 5 is extended by using Theorem 19 and applying it to ideals containing a

fundamental set of an arbitrary degree. It was then applied to construct cubature formulae for the
regions C2; S2; T2.

Theorem 20. Let Ri; i = 1; 2; : : : ; t; be linearly independent polynomials in Pn
m containing a funda-

mental system of degree m. If A= (R1; R2; : : : ; Rt); then
(i) V(A)6N = dimPn

m − t;
(ii) V(A) = N if and only if A is a real ideal.

6.3.1. Even-degree formulae
By applying the syzygies of �rst order to quasi-orthogonal polynomials it is possible to characterise

all even-degree formulae attaining the lower bound in (22).

Theorem 21. Let

Ri = Pk
i +

k−1∑
j=0

ijPk−1
j ; i = 0; 1; : : : ; k;
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be quasi-orthogonal polynomials generating the ideal A. A cubature formula Q(2; 2k−2; dimPk−1)
with all weights positive exists if and only if the parameters ij can be chosen such that

yRi − xRi+1 ∈ span{Rj; j = 0; 1; : : : ; k}; i = 0; 1; : : : ; k − 1; (33)

holds. If (33) holds; then the nodes of the formula are given by V(A); and A is real.

Morrow and Patterson [54] proved this by applying M�oller’s Theorem 18 and using the Hilbert
function to count the common zeros, counting multiplicities.
Schmid [77] applied Theorem 19 to prove that (33) is necessary and su�cient for A to be a

real ideal. From the work in [54] a classical integral is known for which all even-degree minimal
formulae can be computed, see Section 7:1.
The complexity of (33) can be realised by considering the equivalent matrix equation given in

[81] for integrals having central symmetry. The quadratic matrix equation

0 =M?
k−1 + �kM−1

k M?
k M−1

k �Tk

has to be solved. Here Mk = [I[Pk
i P

k
j ]]i; j=0;1; :::; k is the moment matrix and M?

k−1 the matrix of the
numerical characteristics. �k is a k × k + 1 Hankel matrix, which has to be determined; from its
coe�cients the ij’s can be computed.
The straightforward generalisation to the n-dimensional case has been studied in [79,74]; however,

only moderate-degree formulae could be constructed for Cn, n= 2; 3; 4; 5.

6.3.2. Odd-degree formulae
Stroud and Mysovskikh [88,59] proved that Q(2; 2k − 1; k2) can be constructed if two orthogonal

polynomials of degree k can be found having exactly k2 common pairwise distinct real zeros. Franke
[21] derived su�cient conditions implying the existence of Q(2; 2k−1; N ), where N ¡k2, for special
integrals over planar regions. Further generalisations were obtained in [62,63] by admitting point
evaluations of derivatives and preassigning nodes.
We recall Theorem 8 in the following form.

Theorem 22. Q(n; 2k − 1; dimPk−1) exists if and only if the nodes are the zeros of Pk .

For the standard regions, such formulae exist for n= 1 and k = 1; 2; : : : or k = 1 and n= 1; 2; : : :;
for n¿2, k¿2, such formulae do not exist. The existence of M (n; k − 1) common roots of the
polynomials gathered in Pk can be reduced to the solution of a nonlinear system in n unknowns;
however, the number of equations is larger than n, since for n; k¿2, we have

M (n− 1; k)¿M (n− 1; 2) = n(n+ 1)
2

¿n+ 1:

The existence of special regions for which Theorem 22 holds for moderate k have been discussed
in Section 5.2. A class of integrals for which Theorem 22 holds for arbitrary k was presented in
[82] for n= 2, and in [5] for n arbitrary.
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In order to �nd cubature sums Q(2; 2k − 1; N ) where N attains the improved lower bound (23),
M�oller derived the following necessary conditions:

Theorem 23. If Q(2; 2k − 1; N ) exists where N = dimPk−1 + 1
2 rank(M

?
k−1), then there are s= k +

1− 1
2 rank(M

?
k−1) orthogonal polynomials Pi of degree k vanishing at the nodes of the formula and

satisfying the following conditions.
(i) Whenever orthogonal polynomials of degree k satisfy xQ1−yQ2 =Q3; then Qi ∈ span{Pi; i=

1; 2; : : : ; s}.
(ii) xPi; yPi form a fundamental set of degree k + 1.
(iii) There are 2k − 3

2 rankM
?
k−1 linearly independent vectors a ∈ R3(k+1) such that

x2
k∑

i=0

aiPi + xy
k∑

i=0

ak+1+iPi + y2
k∑

i=0

a2k+2+iPi =
s∑

i=1

LiPi;

where Li are linear polynomials.

These conditions are almost su�cient, too.

Theorem 24. If there are s=k+1− 1
2 rank(M

?
k−1) orthogonal polynomials Pi of degree k satisfying

the conditions (i); (ii); and (iii) in Theorem 23; then these polynomials have N = dimPk−1 +
1
2 rank(M

?
k−1) a�ne common zeros. If they are pairwise distinct and real; then a cubature sum

Q(2; 2k − 1; N ) exists.

The surprising result from this theorem was the construction of Q(2; 9; 17) for C2, the square
with constant weight function. Franke [22] expected that 20 would be the lowest possible number
of nodes for such a formula. Haegemans and Piessens [70,33] conjectured that 18 would be lowest
possible.
Again, by applying Theorem 19 one can determine further conditions which guarantee that the

polynomials Pi generate a real ideal, i.e., have pairwise distinct real zeros. To check this, choose
Ui; i = 1; 2; : : : ; k + 1 − s; such that Pi; Ui are a fundamental system of degree k. By virtue of
condition (ii) of Theorem 23 there are polynomials Rij and P ∈ span{Pi; i = 1; 2; : : : ; s} such that
UiUj − RijP ∈ Pk+1. If, in addition, the Pi are chosen such that

I[U 2 − RP]¿ 0

for all U ∈ span{Ui; i=1; 2; : : : ; k+1− s}, P ∈ span{Pi; i=1; 2; : : : ; s}, and R such that U 2−RP ∈
Pk+1, then the ideal (P1; P2; : : : ; Ps) is real.
This holds in the n-dimensional case, too, even if we admit ideals with a fundamental system of

maximal degree m+ 1 [79].

Theorem 25. Let Ri; i = 1; 2; : : : ; t; be an m-orthogonal fundamental set of degree m + 1 of lin-
early independent polynomials in Pn; and let A=(R1; R2; : : : ; Rt) and W=span{R1; R2; : : : ; Rt}. Let
U; dimU= N; be an arbitrary; but �xed; complement of W such that Pn

m+1 =W ⊕U. Then the
following are equivalent:
(i) A positive Q(n; m; N ) for In exists with nodes in V(A).
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(ii) A and U are characterised by
(a) A ∩U= (0);
(b) In[Q2 − R+]¿ 0 for all Q ∈ U; where R+ is chosen such that Q2 − R+ ∈ Pn

m.
(iii) A is a real ideal with a zero-set of N pairwise distinct real points; which are the nodes of

the cubature formula of degree m.

6.4. Formulae characterised by three orthogonal polynomials

The nodes of a Gauss quadrature formula are the zeros of one particular polynomial. The nodes
of a Gauss product cubature formula in n dimensions are the common zeros of n polynomials in
n variables. Franke [21] derived conditions for planar product regions implying the existence of
cubature sums Q(2; 2k − 1; N ) where N ¡k2, see Section 6.3.2. This is based on the common zeros
of two orthogonal polynomials.
Huelsman [35] proved that for fully symmetric regions, Q(2; 7; 10) cannot exist. Franke [22]

proved that for these regions, and also for symmetric product regions, a cubature sum Q(2; 7; 11)
cannot exist. He observed that from Stroud’s characterisation [90] there follows that a cubature sum
Q(2; 7; 12) is characterised by three orthogonal polynomials of degree 4, and he exploited this to
construct some formulae.
In [70,71], Piessens and Haegemans observed that there are actually three orthogonal polynomials

of degree k that vanish in the nodes of their cubature formulae of degree 2k − 1 for k = 5; 6.
Following this observation, and using earlier results of Radon and Franke, in a series of articles
[30,32,33] they constructed cubature formulae for a variety of planar regions whose nodes are the
common zeros of three orthogonal polynomials in two variables. They restricted their work to regions
that are symmetric with respect to both coordinate axes and noticed that Radon’s cubature formulae
for these regions have the same symmetry.
At �rst sight, it may look strange that Radon, Franke, Haegemans and Piessens characterised

cubature formulae in two dimensions as the common zeros of three polynomial equations in two
unknowns, i.e., as an overdetermined system of nonlinear equations. We now know, see Section 5.2,
that for centrally symmetric regions there are b k

2c + 1 linearly independent orthogonal polynomials
of degree k that vanish in the nodes of a cubature formula of degree 2k − 1 that attains the lower
bound of Theorem 11. We thus know that formulae of degree 5 and 7 that attain this bound are
fully characterised by three such polynomials. Formulas of higher degrees 2k − 1 that attain this
bound will have even more than three linearly independent orthogonal polynomials of degree k that
vanish in their nodes.
Franke, Haegemans and Piessens proceeded as follows. They assumed the existence of three

linearly independent orthogonal polynomials of the form

�i =
k∑

j=0

aijPk
j ; i = 1; 2; 3:

The �rst set of conditions on the unknowns aij is obtained by demanding that whenever a node
(�i; �i) is a common zero of �1, �2, and �3, then also (±�i;±�i) is. A second set of conditions is
obtained by demanding that these three polynomials have su�ciently many common zeros. Obtaining
these conditions requires much labour, and a computer algebra system was used to derive some of
these. For higher degrees, the result contains some free parameters, and consequently a continuum
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Table 1
Number of nodes in known cubature formulae [22,30,32,33]a

Degree C2 S2 Er2
2 Er

2 H2

7 12(∞) 12(∞) 12(∞) 12(∞) 12(∞)

9 19(∞) 19(∞) 19(∞) 19(∞) 19(∞)
18(2) 18(1) 18(1) 18(1)

11 28(∞) 28(∞) 28(∞) 28(∞) 28(∞)
26(∞) 26(∞) 26(∞) 26(∞) 26(∞)
25(2) 25(1) 25(1) 25(1)

aIn parentheses the number of such cubature formulae is given.

of cubature formulae was obtained. In such a continuum Haegemans and Piessens searched for the
formula with the lowest number of nodes, e.g., by searching for a formula with a weight equal to
zero. An overview of the cubature formulae for the symmetric standard regions C2; S2; Er2

2 ; Er
2, and

H2 obtained in this way is presented in Table 1.
This approach was also used to construct cubature formulae of degree 5 for the four standard

symmetric regions in three dimensions [31]. A continuum of formulae with 21 nodes is obtained.
It is mentioned that this continuum contains formulae with 17, 15, 14 and 13 nodes, the last being
the lowest possible.

7. Cubature formulae of arbitrary degree

For an overview of all known minimal formulae, we refer to [10]. In this �nal section we present
those integrals for which minimal cubature formulae for an arbitrary degree of exactness were
constructed by using orthogonal polynomials. Though these examples are limited, they illustrate
that all lower bounds which have been discussed will be attained for special integrals and that the
construction methods based on orthogonal polynomials can be applied. Indirectly this shows that
improving these bounds will require more information about the given integral to be taken into
account. The symmetry of the region 
 and the weight function ! is not enough!

7.1. Minimal formulae for the square with special weight functions

Two-dimensional integrals with an in�nite number of minimal cubature formulae have been pre-
sented by Morrow and Patterson [54]. They studied

I1=2[f] =
∫ 1

−1

∫ 1

−1
f(x; y)(1− x2)1=2(1− y2)1=2 dx dy:

The associated fundamental orthogonal system of degree k, Uk
i ; i = 0; 1; : : : ; k, is gathered in

Uk = (Uk
0 ; U

k
1 ; : : : ; U

k
k )
T:
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Similarly, they studied

I−1=2[f] =
∫ 1

−1

∫ 1

−1
f(x; y)(1− x2)−1=2(1− y2)−1=2 dx dy;

where the associated fundamental orthogonal system of degree k; T k
i ; i = 0; 1; : : : ; k, is gathered in

Tk = (Tk
0 ; T

k
1 ; : : : ; T

k
k )
T:

7.1.1. Even-degree formulae for I1=2

A minimal cubature sum Q(2; 2k − 2; dimPk−1) has been derived in [54]; the nodes are the
common zeros of

Uk + 1=2FTk Uk−1;

where Fk = [0 Ek]. This is the special case � = 1 from the following result [80,81]:
For k¿6, up to symmetries, all minimal cubature sums Q(2; 2k − 2; dimPk−1) are generated by

the common zeros of

Uk + 1=2�TkUk−1;

where �k is a Hankel matrix of the form

�k =




0 �0 �20 · · · �k−10 1=�
�0 �20 �30 · · · 1=� 0
...

...
...

...
...

�k−10 1=� 0 · · · 0 0


 ; 0 =

1− �2

�k+1
; 0 6= � ∈ R:

7.1.2. Odd-degree formulae for I1=2

Up to symmetries, all minimal cubature sums Q(2; 2k − 1; dimPk−1 + bk=2c), k odd, for I1=2 are
generated by the common zeros of

(Ek + �k)Uk ;

where �k is an orthogonal Hankel matrix of the form

�k =




0 �0 : : : �k−10 �k0 − �
�0 �20 : : : �k0 − � 0
...

...
...

...
�k−10 �k0 − � : : : �k−30 �k−20

�k0 − � 0 : : : �k−20 �k−10



; (34)

where

0 = 2=(k + 1); �2 = 1; or 0 =
�2 − 1
�k+1 − 1 ; �2 6= 1; � ∈ R:

Note that there are redundancies in (34), rank(Ek +�k)= bk=2c+2. The general form is obtained in
[81], special cases having been known long before: for �=0; 0 = 1 see [78], for �=1 and �=−1
see [15].
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For odd-degree formulae, k even, no general formula is known. However, there are minimal
cubature sums Q(2; 2k − 1; dimPk−1 + k=2), k even, for I1=2, generated by the common zeros of

(Ek + �k)Uk ;

where �k is an orthogonal Hankel matrix of the form (34), where

0 = 2=(k + 1); � = 1; or 0 =
�2 − 1
�k+1 − 1 ; � 6= 1; � ∈ R:

The case �=−1; 0 = 0 was stated in [54]. The result for �=1 is obtained in [15], for � 6= 1 it is
obtained in [81].

7.1.3. Odd-degree formulae for I−1=2
If k is even, a minimal formula of degree 2k − 1 exists, the nodes being the common zeros of

Tk
i + Tk

k−i ; i = 0; 1; : : : ; k=2;

this result is due to [54]. Minimal formulae of degree 2k − 1; k odd or even, were derived in [15],
the nodes are the common zeros of

Tk
i − Tk

k−i ; i = 0; 1; : : : ; bk=2c; T k
0 + Tk

1 + · · ·+ Tk
k−1 + Tk

k :

A third formula of degree 2k − 1 for k even is given in [15], the nodes are the common zeros of
Tk
i − Tk

k−i ; i = 0; 1; : : : ; k=2− 1; T k
0 + Tk

2 + · · ·+ Tk
k−2 + Tk

k :

7.1.4. Gaussian formulae
Cubature formulae attaining the lower bound (22) for even and odd degree are often called

formulae of Gaussian type or Gaussian formulae. They exist for a class of (nonstandard) integrals,
which will be shown in this section. This result is due to [82].
Let !(x) be a nonnegative function on I ⊆R and let {ps} be the orthonormal polynomials with

respect to !. Koornwinder [38] introduced bivariate orthogonal polynomials as follows.
For given s ∈ N let u= x + y and v= xy and de�ne

Ps; (−1=2)
i (u; v) =

{
ps(x)pi(y) + ps(y)pi(x) if i¡ s;√
2ps(x)ps(y) if i = s;

and

Ps; (1=2)
i (u; v) =

ps+1(x)pi(y)− ps+1(y)pi(x)
x − y

:

Then Ps; (±1=2)
i are polynomials of total degree s. Koornwinder showed that they form a bivariate

orthogonal system with respect to the weight function

(u2 − 4v)±1=2W (u; v):
Let xi; s be the zeros of the quasi-orthogonal polynomial ps+�ps−1 where � ∈ R is arbitrary but �xed.
The roots are ordered by x1; s ¡ · · ·¡xs;s. Let u= x+y and v= xy, and de�ne W (u; v)=!(x)!(y).
Then we have the following Gaussian cubature formula of degree 2k − 2:∫∫



f(u; v)W (u; v)(u2 − 4v)−1=2 du dv ∼=

k∑
i=1

i∑
j=1

!i;jf(xi; k + xj; k ; xi; kxj; k);



148 R. Cools et al. / Journal of Computational and Applied Mathematics 127 (2001) 121–152

and

∫∫


f(u; v)W (u; v)(u2 − 4v)1=2 du dv ∼=

k+1∑
i=1

i−1∑
j=1

!i;jf(xi; k+1 + xj; k+1; xi; k+1xj; k+1);

where


 = {(u; v): (x; y) ∈ I × I and x¡y}:
If �= 0, then a uniquely determined formula of degree 2k − 1 will be obtained.
So there are classes of two-dimensional integrals for which the one-dimensional result of Gaussian

quadrature formulae can be regained. The lower bound (22) will be attained for odd and even degree,
the common zeros of

Pk + ��kPk−1; �k ∈ Rk+1×k ; � ∈ R;
are the nodes of the formula, where �k is determined from commuting properties in the orthonormal
recursion formula in Theorem 4 and a matrix equation which follows from (33) in Theorem 21.
These examples have been extended to the n-dimensional case in [5].
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