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A thermodynamic characterization of future singularities?
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In this Letter we consider three future singularities in different Friedmann–Lemaître–Robertson–Walker
scenarios and show that the universe departs more and more from thermodynamic equilibrium as the
corresponding singularity is approached. Though not proven in general, this feature may characterize
future singularities of homogeneous and isotropic cosmologies.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Cosmological singularities arise as displeasing features in math-
ematical models of the universe [1,2]; world lines terminate and/or
physical quantities diverge. It is usually argued that this results
because of the exceedingly simplicity of the models in question,
implying that when we reach a much better understanding of the
physical processes that take place under the most extreme condi-
tions we will be able to design realistic models free of singularities.

Perhaps the most worrying of all is the Big Bang singularity
which persists even if the standard cosmological model is cor-
rected with the addition of an era of inflationary expansion just
before the radiation dominated epoch. This explains the interest
raised by proposals of universes, such as bouncing [3] and emer-
gent [4], with no beginning at all.

Singularities are heralded, among other things, by the growing
without bound of key physical quantities, such as energy densi-
ties and pressures. Here we focus on future cosmic singularities in
Friedmann–Lemaître–Robertson–Walker (FLRW) universes and ask
ourselves if they may be characterized by some thermodynamic
distinctive feature. Our provisory answer is in the affirmative. We
reach this tentative conclusion after considering three singularities,
linked to different cosmological models. As it turns out in the three
cases the total entropy of the systems does not tend to a maximum
as the singularity is approached. That is to say, the systems do not
move towards thermodynamical equilibrium but on the contrary:
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the closer they get to the singularity, the further away from the
said equilibrium the systems depart. By “system” we mean the ap-
parent cosmic horizon plus the matter and fields enclosed by it.

At this point it seems suitable to recall that physical systems
tend spontaneously to some equilibrium state compatible with the
constraints imposed on them. This summarizes the empirical basis
of the second law of thermodynamics. Put briefly, the latter estab-
lishes that isolated, macroscopic systems, evolve to the maximum
entropy state consistent with their constraints [5]. As a conse-
quence their entropy, S , cannot decrease, i.e., S ′ � 0, where the
prime means derivative with respect to the relevant, appropriate
variable. Further, S has to be a convex function of the said vari-
able, S ′′ < 0, at least at the last phase of the evolution.

The apparent horizon in FLRW spacetimes is defined as the
marginally trapped surface with vanishing expansion of radius [6]

r̃ A = 1/
√

H2 + ka−2, (1)

where a and k are the scale factor of the metric and the spatial
curvature index, respectively, and it is widely known to have an
entropy which, leaving aside possible quantum corrections, is pro-
portional to its area

Sh ∝ A = 4π r̃2
A, (2)

which agrees nicely well with the holographic entropy derived
from considerations of the foamy structure of spacetime [7]. Be-
sides, this horizon appears to be the appropriate thermodynamic
boundary [8].

In its turn, the entropy of the fluid enclosed by the horizon is
related to its energy density and pressure by Gibbs’ equation [5],
namely,
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T dS f = d
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where T stands for the fluid’s temperature.
As said above, for the second law to be satisfied the inequality

dSh + dS f � 0 must hold at all times, and d2(Sh + S f ) < 0 at least
at the last stage of evolution.

Application of this broad idea to cosmic scenarios leads to a
variety of interesting results. Among others, dark energy (or some
other agent of late acceleration) appears thermodynamically mo-
tivated: both in the case of Einstein gravity [9] and in modified
gravity [10]. In particular, ever expanding universes dominated
either by radiation or pressureless matter cannot approach ther-
modynamic equilibrium at late times. This is also true for those
phantom dominated universes whose equation of state parameter,
w = p/ρ , is a constant [9].

The target of this Letter is to study whether the universe gets
closer and closer to thermodynamic equilibrium as it approaches a
future singularity. We assume Einstein gravity and provide some
general relations in Section 2. Then we consider three specific
FLRW scenarios: the big crunch singularity (Section 3), a sudden
singularity (Section 4), and a “little rip” singularity (Section 5). Dis-
cussion and final comments are presented in Section 6.

2. General relations

The field equations for a spatially homogeneous and isotropic
universe are the Friedmann equation

3

(
H2 + k

a2

)
= 3

r̃2
A

= 8πGρ (k = 0,±1), (4)

and

Ḣ = −4πG(ρ + p) + k

a2
= −H2 − 1

2r̃2
A

(
1 + 3

p

ρ

)
. (5)

Quite generally we find

A′ = 12π
r̃2

A

a

(
1 + p

ρ

)
, (6)

where the prime denotes the derivative with respect to the scale
factor a, and

A′′ = 36π
r̃2

A

a2

(
1 + p

ρ

)[
2

3

(
1 + 3

p

ρ

)
− p′

ρ ′

]
. (7)

Via the proportionality Sh ∝A (cf. (2)), the relations (6) and (7)
will allow us to obtain information about S ′

h and S ′′
h , respectively,

for various choices of p/ρ and p′/ρ ′ .
To determine the derivatives of S f we must first discern the

temperature evolution of the fluid. From Euler’s relation nT s =
ρ + p, where n and s are the number density of particles in a
comoving volume and the entropy per particle, respectively, and
the conservation equations ρ ′ = −3(ρ + p)/a and n′ = −3n/a, we
find

s′ = p′ − (ρ + p)
T ′

T
. (8)

Taking into account the perfect fluid condition s′ = 0, the temper-
ature behavior is governed by

T ′

T
= p′

ρ + p
. (9)

Straightforwardly one obtains the desired expressions,
S ′
f = 2π

r̃3
A

a

ρ + p

T

(
1 + 3

p

ρ

)
(10)

and

S ′′
f = 2π

r̃3
A

a2

ρ + p

T

[
12

p

ρ

(
1 + 3

2

p

ρ

)
− 9

p′

ρ ′

(
1 + p

ρ
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+ 1

2

(
1 + 3

p

ρ

)2]
. (11)

Sections 3–5 apply the above set of formulas to three different
cosmological scenarios that harbor a future singularity.

3. Big crunch singularity

Here we focus on the radiation-dominated, spatially closed (k =
+1) FLRW universe and explore the entropy behavior of the appar-
ent horizon and radiation enclosed by it as the big crunch draws
close. Under such circumstances the temperature gets so high that
matter becomes extremely relativistic and behaves as radiation,
hence p = ρ/3 and ρa4 = const.

The scale factor and Hubble function are given by

a(t) = C

√
1 −

(
1 − ts − t

C

)2

and H ≡ ȧ

a
= −

√
C2 − a2

a2
, (12)

where ts is the time at which a = 0 and C2 ≡ 8πG
3 ρa4. The horizon

area is A = 4π
C2 a4. Either by direct calculation or as special cases

from (6) and (7) with p = ρ/3 it follows that

A′ = 16π

C2
a3 > 0 and A′′ = 48π

C2
a2 > 0, (13)

respectively. Thus, the graph of A increases and is concave for all
values of the scale factor.

Eq. (10) leads to S ′
f ∝ a2 > 0 and Eq. (11) implies S ′′

f ∝ a > 0.
Thus, the total entropy (that of the apparent horizon, Sh , plus
that of the radiation fluid), fulfills the generalized second law,
S ′

h + S ′
f > 0. However, because S ′′

h + S ′′
f > 0 the system does

not tend to thermodynamic equilibrium as the big crunch is ap-
proached.

4. Sudden singularity scenario

In this scenario the singularity occurs at finite time (say ts) and
is characterized by the divergence of the acceleration and pressure
while the energy density, scale factor and Hubble expansion rate
remain finite. As the singularity is approached, the dominant en-
ergy condition (|p| < ρ) is violated but all other energy conditions
are respected.

Let us consider the scale factor of the spatially flat (k = 0) FLRW
metric as introduced in [11,12], namely:

a(t) =
(

t

ts

)α

(as − 1) + 1 −
(

1 − t

ts

)β

, (14)

where as = a(t = ts) > 1, and α and β are constant parameters
lying in the range (0,1] and (1,2), respectively. Obviously, this ex-
pression holds for 0 < t < ts .

Since

ȧ(t) = α

ts
(as − 1)

(
t

ts

)α−1

+ β

ts

(
1 − t

ts

)β−1

> 0, (15)

the Hubble function H = ȧ/a never becomes negative.
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A subsequent derivation yields

ä(t) = α

t2
s
(α − 1)(as − 1)

(
t

ts

)α−2

− β

t2
s
(β − 1)

(
1 − t

ts

)β−2

.

(16)

In the limit t → ts the first term, both in a(t) and ȧ(t), dominates
over the second one while the latter dominates in the expres-
sion for the acceleration which becomes negative and diverges. As
a → as , H → Hs and ρ → ρs > 0 where as , Hs and ρs are all finite
but ps → ∞ via the field equation 3ä/a = −4πG(ρ + 3p).

In view of the above, in the said limit (t → ts) we can write

ȧ(a) = α

ts
(as − 1)

(
a − 1

as − 1

)(α−1)/α

,

H(a) = α

ts
(as − 1)1/α (a − 1)(α−1)/α

a
, (17)

where we have eliminated the cosmic time in favor of the scale
factor.

The area of the apparent horizon is given by

A = 4π H−2 	 4π

(
ts

α

)2

(as − 1)−2/α a2

(a − 1)2(α−1)/α
, (18)

where the second equality holds to leading order only. From (6)
one has

A′ > 0 (19)

always. This corresponds to H ′(a) < 0, which can also be checked
explicitly from the full expression of H(t). Since p′ > 0 (the pres-
sure diverges) and ρ ′ < 0, both terms in the square bracket on the
right-hand side of Eq. (7) are positive, consequently,

A′′ > 0 (20)

as well. Both A′ and A′′ diverge upon approaching the singularity.
Before concluding that in this sudden singularity scenario

the universe departs from thermodynamic equilibrium we must,
as before, examine the thermodynamic behavior of the gravity
source.

From (10) and (11) it follows immediately that with p > 0,
p′ > 0 and ρ ′ < 0 one has both S ′

f > 0 and S ′′
f > 0. The inequality

S ′
f > 0 together with A′ > 0 implies that the generalized second

law, S ′
h + S ′

f > 0, is fulfilled in this scenario. On the other hand,
the inequality S ′′

h + S ′′
f > 0 means that the total entropy is a con-

cave function of the scale factor and the universe does not tend to
thermodynamic equilibrium.

5. Little rip scenario

The expression “little rip” was coined as a contraposition to “big
rip” [13]. In this scenario the ratio p/ρ < −1 but it increases and
approaches −1 as time goes on. Although sooner or later all bound
structures rip apart, at variance with the usual big rip scenario
[13], neither the energy density nor the scale factor diverge at a
finite time. There is a future singularity but, because the expansion
rate approaches de Sitter, it is pushed to t → ∞ [14].

The equation of state of the gravity source is p = −ρ − Aρ1/2,
with A > 0. This alongside the conservation equation ρ ′ = −3(ρ +
p)/a produces

ρ = ρ0

[
3A

2
√

ρ
ln

(
a

a

)
+ 1

]2

(21)

0 0
(cf. Eq. (12) in [14]). Notice that ρ augments with expansion, a
typical feature of phantom dark energy, but logarithmically only
and diverges just when a → ∞. The zero subscript denotes some
reference time, we conveniently take it as the time at which the
dark energy overwhelms all other components (matter, radiation,
etc.) to the point that their dynamical influence can be safely ig-
nored.

Because the FLRW metric is spatially flat, we have A =
4π/H2 ∝ 1/ρ . From (6) one verifies A′ < 0 and (7) provides us
with A′′ > 0.

We next study the entropy evolution of the fluid. The equation
of state p = −ρ − Aρ1/2 in (10) yields S ′

f > 0. Since A′ and S ′
f

have opposite signs, a closer look at the behavior of these quan-
tities as they approach the singularity is necessary. Explicitly, we
have

A′ = −12π
A

aH2ρ1/2
(22)

and

S ′
f = 2π

Aρ1/2

aH3T

(
2 + 3

A

ρ1/2

)
. (23)

To proceed, information about the dependence of the tempera-
ture on a is required. The general law (9) yields

T ′

T
= 3

a

(
1 + A

2ρ1/2

)
. (24)

This integrates to

T
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Consequently,

S ′
f = 2π A

a3
0ρ

1/2
0

T0

2 + 3A
ρ1/2

a4 H3
. (26)

In approaching the singularity, ρ diverges and the term ∝ ρ−1/2

in the second numerator of (26) can be neglected. Since H ∝ ρ1/2,
one has S ′

f ∝ 1/(a4ρ3/2) in the limit of large values of a. In the

same limit A′ in (22) behaves as A′ ∝ −1/(aρ3/2). Therefore, as
a → ∞ the ratio |A′/S ′

f | diverges as a3 whence S ′
h + S ′

f < 0 in the
long run; i.e., the generalized second law is violated as the little
rip singularity gets closer and closer.

Despite we already know that in this scenario no thermody-
namic equilibrium is approached when nearing the singularity, we
shall determine whether the function Sh + S f is convex or con-
cave in that limit. From (7) we find that A′′ ∝ 1/(ρ3/2a2) for
a → ∞ while (11) yields S ′′

f ∝ −1/(ρ3/2a5) in the far-future limit.

The ratio |A′′/S ′′
f | diverges with the same power, a3, as the corre-

sponding ratio of the first derivatives, i.e., S ′′
h + S ′′

f > 0 as a → ∞.

6. Concluding remarks

Macroscopic systems moving by themselves away from thermo-
dynamic equilibrium is something far removed from daily experi-
ence. This is enshrined in the second law of thermodynamics that
introduces the entropy function and dictates its overall evolution.
In this Letter we have studied the behavior of three FLRW uni-
verses as they draw close to a future singularity. As long as the
entropy concept is related to the apparent cosmic horizon, none of
the three approaches equilibrium.
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Against this some comments may be raised: (i) The proposed
universes look too academic; we should not wonder that unrealis-
tic systems do not comply with thermodynamics. (ii) The Universe
is a very particular and unique system; why should it obey the
thermodynamical laws? (iii) Everyone expects the breakdown of
physical laws at singularities. Then, why should the second law be
an exception?

The first comment seems persuasive; however, take into ac-
count that not so academic models, as is the case of phantom
models with constant w , do not approach equilibrium as they
near the singularity [9]. Further, it is rather problematic to draw
a dividing line between “academic” and “non-academic” models
in cosmology. Regarding the second one, as far as we know, ev-
ery macroscopic portion of the Universe fulfills the second law of
thermodynamics. Therefore, there is no compelling argument by
which realistic cosmological models should not fulfill it as well. As
for the third comment, one should not forget that we are dealing
not with the singularities themselves but with the behavior of the
models as they approach their respective singularities. During the
approach physical laws still hold.

From this we may conclude that the three models considered
here are unphysical, at least in the regime nearing the singularity.
The third one, the “little rip”, more particularly because it violates
the generalized second law and it should be ruled out.

Finally, the fact that these three models do not approach equi-
librium in the last stage of their evolution may be seen as a feature
characterizing future singularities. (This is shared by the phantom
model mentioned above.) Nevertheless, since – for the moment –
the existence of counter examples cannot be ruled out it would be
rather premature to assert the general validity of the said feature
in FLRW cosmologies.
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