JOURNAL OF COMBINATORIAL THEORY, Series B 30, 118-120 (1981)

Note

A Remark on Hamiltonian Cycles

ROLAND HÄGGKVIST

Department of Mathematics, University of Umea, S-90187 Umea, Sweden

AND

G. G. NICOGHOSSIAN

Computing Center, Academy of Sciences, Armenian SSR and State University of Yerevan, Yerevan, Armenia, USSR

Communicated by the Editors

Received April 2, 1979

Every 2-connected graph G with $\delta \ge (\nu + \kappa)/3$ is hamiltonian, where ν denotes the order, δ the minimum degree and κ the point connectivity of G.

For unexplained terminology see, e.g., [2]. Let v(G) denote the number of vertices, $\alpha(G)$ the point-independence number, $\kappa(G)$ the vertex-connectivity and $\delta(G)$ the minimal vertex degree in the graph G. Furthermore let N(v) be the set of vertices joined to the vertex v in G.

Nash-Williams [1] proved that every 2-connected graph with $\delta \ge \{\alpha, (\nu+2)/3\}$ is hamiltonain.

We will show that Nash-Williams' theorem contains, as a special case, the

THEOREM. Every 2-connected graph with $\delta \ge (v + \kappa)/3$ is hamiltonian.

Note. The family of graphs satisfying $\delta \ge (v + \kappa)/3$ is not closed under the operation of adding an edge. It can therefore happen that a graph G which does not fulfill the condition in the theorem nonetheless contains a subgraph H which does. Any such G will, by necessity, fulfill Nash-Williams' condition, but the easiest way to verify this may well be to exhibit H.

Also note that the theorem is best possible in the sense that, for any $n \ge 5$ and $k, 2 \le k < n/2$, there exists a non-hamiltonian graph on n vertices with connectivity k and minimal degree [(n + k + 2)/3] - 1 = d; consider the graph obtained from $K_{d,d}$ by joining each of k vertices in one colour class to every vertex in a complete graph on n - 2d + 2 vertices.

^{0095-8956/81/010118-03\$02.00/0} Copyright C 1981 by Academic Press, Inc. All rights of reproduction in any form reserved.

Proof of the theorem. We will show that every graph with $\delta \ge (\nu + \kappa)/3$ satisfies $\delta \ge \alpha$ as well. This clearly suffices in view of the Nash-Williams' theorem above.

The proof is by contradiction. Assume that G is a graph with $\delta \ge (\nu + \kappa)/3$ for which $\alpha > \delta$, and let T be an independent set of α vertices in G. Let S be a separating set of κ vertices, and denote by $G_1, G_2, ..., G_s$ the components of G - S. We may assume that $\alpha \ge 2$, since otherwise G is complete.

Consider any pair v_1 , v_2 of distinct vertices in T. Since

$$|N(v_1) \cap N(v_2)| = |N(v_1)| + |N(v_2)| - |N(v_1) \cup N(v_2)|$$

and

$$|N(v_1) \cap N(v_2)| \leq v - \alpha$$

we have

$$N(v_1) \cap N(v_2) \ge 2 \frac{\nu + \kappa}{3} - (\nu - \alpha) \ge 2 \frac{\nu + \kappa}{3} - \nu + \delta + 1$$
$$\ge 2 \frac{\nu + \kappa}{3} - \nu + \frac{\nu + \kappa}{3} + 1 \ge \kappa + 1.$$

We deduce that $T \subset S \cup V(G_i)$ for some *i*, say i = 1. If $\delta \ge v/2$, then obviously $\delta \ge \alpha$. Hence $\delta < v/2$, which gives $\alpha > \kappa$, since

$$\alpha > \delta \geqslant \frac{\nu + \kappa}{3} > \frac{2\delta + \kappa}{3} \geqslant \frac{3\kappa}{3} = \kappa.$$

Hence there exists a vertex u in $T \setminus S$, i.e., in G_1 . Let v be a vertex in G_2 . Then, as before,

$$|N(u) \cap N(v)| = |N(u)| + |N(v)| - |N(u) \cup N(v)|.$$

Moreover

$$|N(u) \cup N(v)| \leq v - |T \cap V(G_1)| = v - (\alpha - |S \cap T|).$$

Hence

$$|N(u) \cap N(v)| \ge 2 \frac{\nu + \kappa}{3} - \nu + \alpha - |S \cap T|$$
$$\ge 2 \frac{\nu + \kappa}{3} - \nu + \delta + 1 - |S \cap T| \ge \kappa + 1 - |S \cap T|.$$

But obviously $N(u) \cap N(v) \subset S \setminus T$, and hence $|N(u) \cap N(v)| \leq \kappa - |S \cap T|$. This contradiction shows that $\delta \geq \alpha$ and proves the theorem.

REFERENCES

- 1. C. ST. J. A. NASH-WILLIAMS, Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, *in* "Studies in Pure Mathematics" (L. Mirsky, Ed.), pp. 157–183, Academic Press, Londen, 1971.
- 2. F. HARARY, "Graph Theory," Addison-Wesley, Reading, Mass., 1969.