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Scheduling production in open-pit mines is characterized by uncertainty about the metal content of the 

orebody (the reserve) and leads to a complex large-scale mixed-integer stochastic optimization problem. 

In this paper, a two-phase solution approach based on Rockafellar and Wets’ progressive hedging algo- 

rithm (PH) is proposed. PH is used in phase I where the problem is first decomposed by partitioning the 

set of scenarios modeling metal uncertainty into groups, and then the sub-problems associated with each 

group are solved iteratively to drive their solutions to a common solution. In phase II, a strategy exploit- 

ing information obtained during the PH iterations and the structure of the problem under study is used 

to reduce the size of the original problem, and the resulting smaller problem is solved using a sliding 

time window heuristic based on a fix-and-optimize scheme. Numerical results show that this approach 

is efficient in finding near-optimal solutions and that it outperforms existing heuristics for the problem 

under study. 
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. Introduction 

Scheduling production for open-pit mines is an important and

ritical issue in surface mine planning as it determines the raw

aterials to be produced yearly over the life of the mine and can

ave a huge impact on the economic value of a mining operation.

he expense of setting up mining operations, the volatility of the

arkets, and the in-situ spatial variability of the deposit grades are

ll factors that make profit margins tight and investments risky.

here is thus a clear interest in careful planning that can reduce

isk and establish the most economically efficient mine production

chedule possible that enables the mine operator to meet produc-

ion targets and make the best possible return on investment. Even

 1 percent increase in the efficiency of the ore removal scheme

an significantly increase the profitability of an operation that is

orth hundreds of millions of dollars, as mining companies recog-

ize and as the body of literature on the topic attests (see for ex-

mple Dimitrakopoulos (2011) ; Newman, Rubio, Caro, Weintraub,

nd Eurek (2010) ; Whittle (2015) , and the references therein). 

In formulating the mine production scheduling problem (MPSP),

he mineral deposit is typically represented as a three-dimensional
∗ Corresponding author. Tel.: +1 514 733 8489. 

E-mail addresses: amina.lamghari@mcgill.ca (A. Lamghari), 

oussos.dimitrakopoulos@mcgill.ca (R. Dimitrakopoulos). 
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rray of blocks, each of which represents a volume of material that

an be mined and then sent either to a processing facility to re-

over the metal it contains, to a stockpile for possible future pro-

essing, or to a waste dump. Each block has a weight, a metal con-

ent, and an economic value. Blocks with a metal content above a

ertain cut-off grade are referred to as ore blocks and are to be

rocessed, while those whose metal content is below the cut-off

rade are waste. The metal content is estimated using information

btained from drilling, while the economic value represents the

alue of the metal recovered less the mining, the processing, and

he selling costs. MPSP seeks to determine the mining sequence of

he blocks; i.e., deciding which blocks to mine in each period of

he life of the mine, so that the highest possible net present value

f the mine is achieved. There are constraints specifying physical

nd operational limitations that must be taken into account. In ba-

ic terms, a block can be mined at most once (reserve constraints)

nd only after the blocks overlying it have been mined (slope con-

traints). Both extraction equipment and processing facilities have

apacities that cannot be exceeded in any period (mining and pro-

essing constraints, respectively). 

Metal uncertainty (also referred to as reserve uncertainty) is an

nherent part of mine production scheduling, as the metal con-

ent required for the decision-making is known only from lim-

ted drilling information. Ignoring metal uncertainty; that is, solv-

ng a deterministic model using a single estimate for the blocks’
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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metal content, can lead to incorrect assessments of the the pro-

duction forecasts, the final pit limits, and the net present value

( Albor & Dimitrakopoulos, 2010; Asad & Dimitrakopoulos, 2013;

Dimitrakopoulos, Farrelly, & Godoy, 2002; Dowd, 1994; Marcotte

& Caron, 2013; Menabde, Froyland, Stone, & Yeates, 2007; Raven-

scroft, 1992 ). One should therefore consider metal uncertainty in

the scheduling process, which gives rise to the stochastic MPSP

considered in this paper. 

Most of the literature on the stochastic MPSP has been devoted

to designing heuristic-based solution methods, as exact methods

are only effective for small problem instances with a few thou-

sand blocks ( Boland, Dumitrescu, & Froyland, 2008; Ramazan &

Dimitrakopoulos, 2013 ), while realistic instances involves typically

tens to hundreds of thousands blocks. Early work proposed a sim-

ulated annealing algorithm ( Godoy, 2002 ). A three-phase construc-

tive approach that involves generating nested pits, grouping them

in mining phases, and generating a schedule based on these phases

has been developed by Albor and Dimitrakopoulos (2010) . The

method used in Lamghari and Dimitrakopoulos (2012) is based on

Tabu search, and hybrid approaches embedding variable neighbor-

hood descent and a very large-scale neighborhood search mech-

anism have been developed in Lamghari, Dimitrakopoulos, and

Ferland (2013) and Lamghari and Dimitrakopoulos (2013) , respec-

tively. Behrang, Hooman, and Clayton (2014) used a clustering ap-

proach to reduce the number of binary variables and thus make

larger instances computationally tractable by exact methods, while

Chatterjee (2014) proposed a sequential heuristic where the sub-

problems are solved using lagrangian relaxation techniques. Lagos,

Espinoza, Moreno, and Amaya (2011) compared three approaches

for optimization under uncertainty, namely Value-at-Risk, Condi-

tional Value-at-Risk and a robust optimization approach. Marcotte

and Caron (2013) studied the effect of metal uncertainty on the

pit limits, and Fricke, Velletri, and Wood (2014) developed an ana-

lytic framework to quantify the impact of uncertainty and support

strategic mine planning decisions. 

In this paper, a novel heuristic-based method is proposed to ef-

ficiently address the stochastic MPSP. It is based on the progres-

sive hedging algorithm (PH) introduced by Rockafellar and Wets

(1991) for optimization problems under uncertainty. In PH, uncer-

tainty is modelled by a limited number of scenarios that reflect the

information available about the uncertain parameters of the prob-

lem under study (i.e., metal uncertainty in the case of this paper).

Each scenario has a known probability of occurrence and provides

possible values of the uncertain parameters. PH decomposes the

problem according to the scenarios and solves the sub-problem for

each scenario separately. This step provides multiple solutions that

are tailored to the scenarios and thus might be different from each

other. Each solution indicates what should be done if a specific

scenario is realized. But, what is needed is an implementable so-

lution; that is, a non scenario-specific solution that will be feasi-

ble and can be implemented regardless of which scenario is real-

ized and that is also well-hedged against uncertainty. The essence

of the PH algorithm is to introduce implementability constraints to

drive the solutions of the sub-problems towards a single imple-

mentable solution. Such constraints are relaxed and dualized in the

objective function; that is, a penalty term measuring their violation

is added to each sub-problems objective function to minimize the

differences between the scenario-solution (the sub-problem solu-

tion) and an estimation of the implementable solution. PH iterates

between updating the estimation of the implementable solution,

adjusting the penalties, and solving the sub-problems until an im-

plementable solution is obtained. At this point, the method is said

to have converged, and for continuous stochastic problems, it con-

verges to a global optimum. 

A limitation of PH is that convergence is guaranteed only in

the convex case. When applied to mixed-integer stochastic prob-
ems, such as the one at hand, convergence might be difficult to

btain and, if PH converges, it converges to a local optimum. The

pproach proposed in Løkketangen and Woodruff (1996) to allevi-

te the convergence problem proceeds in 2 phases. Phase I applies

H, but with a different stopping criterion. Rather than waiting for

ull convergence, PH terminates when a fixed number of iterations

r a fixed amount of CPU time is reached. The variables that have

onverged to that point (i.e., those that have the same values in

ll sub-problems solutions) are fixed in the original problem. One

hus obtains a smaller mixed-integer stochastic problem, referred

o as the restricted problem, which is solved in phase II to gener-

te an implementable solution. Because the restricted problem is

f reduced size, it will not take as much time to solve as the orig-

nal problem would. 

This approach was successfully used to solve stochastic lot-

izing problems ( Haugen, Løkketangen, & Woodruff, 2001 ) and

tochastic network design problems ( Crainic, Fu, Gendreau, Rei, &

.W., 2011 ). However, applying it in the context of the stochastic

PSP addressed in this paper is computationally expensive be-

ause the sub-problems associated with the scenarios involve a

arge number of binary variables and are themselves difficult to

olve. Moreover, preliminary tests showed that although the re-

tricted problem is of smaller size compared to the original prob-

em, it remains a large-scale problem and requires long computa-

ional times if solved with an exact method, as is typically done

n the literature. To overcome these difficulties, we made the fol-

owing refinements to improve the performance of the approach

roposed in Løkketangen and Woodruff (1996) : 

• At phase I, instead of having each sub-problem associated with

a single scenario, the sub-problems are comprised of multiple

scenarios. Grouping scenarios and solving multi-scenario sub-

problems not only will reduce the number of sub-problems to

be solved at each iteration of phase I (PH), and hence the time

required to complete phase I, but it should also result in faster

convergence. Similar ideas were recently used by Crainic, He-

witt, and Rei (2014) in the context of stochastic network design.

While Crainic et al. (2014) use different strategies to group the

scenarios, we use here a random strategy. 
• We take advantage of the structure of the problem to better

exploit the information that becomes available during the iter-

ations of PH and fix additional variables (in addition to those

that have converged). This substantially reduces the size of the

restricted problem to be solved during phase II, and conse-

quently the computational time required to solve it. 
• Rather than solving the restricted problem using an exact

method, we use an efficient heuristic; namely, a sliding time

window heuristic (STWH) based on a fix-and-optimize scheme.

Numerical results are provided to evaluate the efficiency of

he proposed solution approach as well as an analysis that shows

he advantages and disadvantages of increasing the size of the

roups of the scenarios during the first phase of the algorithm. The

roposed solution approach is then compared to the sequential

euristic proposed in Lamghari et al. (2013) , which is based on a

ime-decomposition strategy rather than a scenario-decomposition

trategy, to a solution approach where STWH is used alone, and to

 branch-and-cut approach. The results of these tests indicate the

uperiority of the proposed solution approach over the other ap-

roaches and show that combining PH and STWH leads to an ef-

cient algorithmic framework that offers an excellent trade-off be-

ween solution quality and solution time (near-optimal solutions,

ithin less than 1 percent of optimality on average, are obtained

n a few minutes up to a few hours). Finally, we demonstrate on

enchmark instances the benefits of solving a stochastic model

ather than its deterministic counterpart. In this comparison, it
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s found that the objective function value is 1–27 percent higher

hen the stochastic approach is used. 

Throughout the paper, we consider the “classical” and basic

ariant of the MPSP, where the cut-off grade determining whether

n extracted block is to be processed or sent to the waste dump is

xed, and only reserve, slope, mining, and processing requirements

re taken into account. Additional requirements may be added via

onstraints or as penalties in the objective function to reflect other

oncerns such as variable cut-off grade, grade blending, or stock-

iling. This leads to different variants of the stochastic MPSP; how-

ver, the algorithm proposed in this paper is a general-purpose al-

orithm and should be applicable to any of these variants. 

In the next section, a mathematical formulation of the stochas-

ic MPSP considered in this paper is given. The solution proce-

ure based on the progressive hedging strategy is described in

ection 3 . Numerical results are reported in Section 4 . The paper

oncludes with Section 5 , where directions for future research are

ummarized. 

. Mathematical formulation 

The stochastic MPSP described in the previous section is for-

ulated as a two-stage stochastic programming model ( Birge &

ouveaux, 2011 ). This model is described in detail in Lamghari and

imitrakopoulos (2012) , and we only briefly recall it here. The fol-

owing notation is used: 

ets and indices: 

T : Set of time periods over which blocks are being scheduled,

indexed by t = 1 , . . . , h . 

N : Set of blocks considered for scheduling, indexed by i =
1 , . . . , n . 

P i : Set of predecessors of block i ; i.e., blocks that have to be

mined to have access to block i , indexed by p . 

�: Set of scenarios used to model metal uncertainty, indexed

by s = 1 , . . . , S. 

ariables: 

x t 
i 

= 

{
1 if i is mined during period t , 

0 otherwise. 

d t s : Surplus in ore production during period t under scenario s . 

arameters: 

W 

t : Maximum amount of rock (ore and waste) that can be

mined during period t (mining capacity in tonnes). 

�t : Maximum amount of ore that can be processed during pe-

riod t (processing capacity in tonnes). 

w i : Weight of block i in tonnes (tonnage). 

θ is = 

{
1 if i is ore under scenario s , 

0 otherwise; i.e., if i is waste under scenario s . 

v t 
is 

= 

v is 
( 1+ d 1 ) t 

: Discounted economic value of block i if mined and

processed during period t , and if scenario s occurs ( v is being

the undiscounted economic value and d 1 the discount rate

per period). 

c t = 

c 

( 1+ d 2 ) t 
: Unit surplus cost incurred if the total ore mined

during period t exceeds the processing capacity �t ( c is the

undiscounted surplus cost and d 2 represents the risk dis-

count rate). 

The two-stage stochastic programming model SMPSP can be

ummarized as follows: 

ax 
1 

S 

{ ∑ 

s ∈ �

∑ 

t∈ T 

∑ 

i ∈ N 
v t is x 

t 
i −

∑ 

s ∈ �

∑ 

t∈ T 
c t d t s 

} 

(1) 

.t. 
∑ 

t∈ T 
x t i ≤ 1 ∀ i ∈ N (2) 
x  
 

t 
i −

t ∑ 

τ=1 

x τp ≤ 0 ∀ i ∈ N, p ∈ P i , t ∈ T (3) 

 

i ∈ N 
w i x 

t 
i ≤ W 

t ∀ t ∈ T (4) 

 

i ∈ N 
θis w i x 

t 
i − d t s ≤ �t ∀ t ∈ T , s ∈ � (5) 

 

t 
i ∈ { 0 , 1 } ∀ i ∈ N, t ∈ T (6) 

 

t 
s ≥ 0 ∀ t ∈ T , s ∈ �. (7) 

The objective function includes two terms to maximize the ex-

ected net present value of the mining operation and to minimize

he expected recourse cost incurred whenever the processing con-

traints are violated due to metal uncertainty. In this paper, the

cenarios used are realizations of a spatial random field with an

qual probability of occurrence and hence the coefficient 1 
S repre-

ents the probability that scenario s occurs ( Goovaerts, 1997 ). 

Constraints (2) guarantee that each block can be mined at most

nce during the horizon (reserve constraints). The mining prece-

ence (slope constraints) is enforced by constraints (3) . Constraints

4) impose an upper bound W 

t on the amount of rock (waste

nd ore) mined during each period t (mining constraints). Con-

traints (5) are related to the requirements on the processing levels

processing constraints). The target is to have the total amount of

re mined during any period t and under any scenario s be less

han or equal to �t ; otherwise, the surplus penalty cost is equal

o c t d t s . Constraints (6) –(7) enforce integrality and non-negativity

onditions on the variables. Note that the variables x t 
i 

specify-

ng the mining sequence are the first-stage decision variables, and

he variables d t s measuring the surplus in ore production are the

econd-stage decision variables. 

The two-stage stochastic model (1) –(7) is NP-hard since it con-

ains the constrained maximum closure problem as a special case

 Bienstock & Zuckerberg, 2010; Hochbaum & Chen, 20 0 0 ). If the

nstance size is not large, it can be solved exactly, but this is not

ypically the case in real-world applications, justifying the use of

euristic-based methods. The next section presents a heuristic so-

ution method based on the progressive hedging strategy. 

. Solution method based on the progressive hedging strategy 

The proposed solution method consists of two main phases. In

he first phase, a modified version of the baseline PH algorithm

s used. It iteratively generates and solves an optimization sub-

roblem for each group of scenarios until a stopping criterion is

et. In phase II, information obtained during the PH iterations is

sed to identify the earliest time and the latest time in which each

lock can be extracted. This allows us to fix many variables in the

riginal problem SMPSP. The resulting restricted problem is solved

o obtain an implementable solution. 

In what follows, a step-by-step description of our adaptation of

H is first provided. The method used to solve the restricted prob-

em is then described. 

.1. Scenario decomposition 

The scenarios modeling metal uncertainty are partitioned into

roups, which are then used to define the sub-problems. The sce-

arios within each group are chosen randomly. 

Let G be the set of groups, indexed by g . Denote the partition

y � = (�1 , . . . , �| G | ) , where �g ⊆ � ∀ g ∈ G , ∪ g∈ G �g = �, and

g ∩ �g ′ = ∅ ∀ g , g ′ ∈ G and g � = g ′ . The first stage variables x t 
i 

are

ubscripted with a group index. This can be seen as creating a copy

 

t 
ig 

∈ { 0 , 1 } of each x t 
i 

for each group g in order to allow the mining
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decisions to depend on the group, and yields the following model:

max 
1 

S 

{ ∑ 

g∈ G 

∑ 

s ∈ �g 

∑ 

t∈ T 

∑ 

i ∈ N 
v t is x 

t 
ig −

∑ 

g∈ G 

∑ 

s ∈ �g 

∑ 

t∈ T 
c t d t s 

} 

(8)

s.t. 
∑ 

t∈ T 
x t ig ≤ 1 ∀ i ∈ N, g ∈ G (9)

x t ig −
t ∑ 

τ=1 

x τpg ≤ 0 ∀ i ∈ N, p ∈ P i , t ∈ T , g ∈ G (10)

∑ 

i ∈ N 
w i x 

t 
ig ≤ W 

t ∀ t ∈ T , g ∈ G (11)

∑ 

i ∈ N 
θis w i x 

t 
ig − d t s ≤ �t ∀ t ∈ T , g ∈ G, s ∈ �g (12)

x t ig = x t ig ′ ∀ i ∈ N, t ∈ T , g, g ′ ∈ G, g � = g ′ (13)

x t ig ∈ { 0 , 1 } ∀ i ∈ N, t ∈ T , g ∈ G (14)

d t s ≥ 0 ∀ t ∈ T , g ∈ G, s ∈ �g . (15)

Whereas the objective function (8) as well as constraints (9) –

(12) and (14) –(15) are self-explanatory given the previous discus-

sion in Section 2 , constraints (13) deserve some explanation. They

are the so-called implementability constraints , and are used to guar-

antee an implementable solution; that is, a solution that will be fea-

sible and can be implemented regardless of which scenario is real-

ized. Denote this solution by x = ( x t i ) . Constraints (13) can then be

rewritten as follows: 

x t ig = x 
t 
i ∀ i ∈ N, t ∈ T , g ∈ G (16)

x 
t 
i ∈ { 0 , 1 } ∀ i ∈ N, t ∈ T . (17)

Following the decomposition scheme proposed in Rockafellar

and Wets (1991) , constraints (16) are relaxed using an augmented

Lagrangian strategy ( Bertsekas, 1982 ), which yields the following

objective function: 

max 
∑ 

g∈ G 

| �g | 
S 

{
1 

| �g | 
∑ 

s ∈ �g 

∑ 

t∈ T 

∑ 

i ∈ N 
v t is x 

t 
ig −

1 

| �g | 
∑ 

s ∈ �g 

∑ 

t∈ T 
c t d t s 

−
∑ 

t∈ T 

∑ 

i ∈ N 
λt 

ig (x 
t 

ig 
−x 

t 
i ) −

1 

2 

ρ
∑ 

t∈ T 

∑ 

i ∈ N 
(x t ig − x 

t 
i ) 

2 

}
. (18)

The Lagrangian multipliers λt 
ig 

are associated with the relaxed

constraints (16) , ρ is a penalty ratio, and 

| �g | 
S is the probability

associated with group g (recall that we consider that the scenar-

ios are equiprobable, and group g is composed of | �g | scenarios).

Given that constraints (17) require that variables x t i are binary, the

objective function (18) becomes, after rearranging the terms: 

max 
∑ 

g∈ G 

| �g | 
S 

{∑ 

t∈ T 

∑ 

i ∈ N 

(
1 

| �g | 
∑ 

s ∈ �g 

v t is − λt 
ig −

1 

2 

ρ + ρx 
t 
i 

)
x t ig 

− 1 

| �g | 
∑ 

s ∈ �g 

∑ 

t∈ T 
c t d t s + 

∑ 

t∈ T 

∑ 

i ∈ N 
λt 

ig x 
t 
i −

1 

2 

ρ
∑ 

t∈ T 

∑ 

i ∈ N 
x 

t 
i 

}
. (19)

If x = ( x t i ) is fixed to a given value, then the model is decom-

posable according to the groups. Denote ˜ v t 
ig 

= 

1 
| �g | 

∑ 

s ∈ �g 
v t 

is 
− λt 

ig 
−

1 
2 ρ + ρx t i . The sub-problem SP g associated with group g can be ex-

pressed as follows: 

t  
ax 
∑ 

t∈ T 

∑ 

i ∈ N 

˜ v t 
ig 

x t ig −
1 

| �g | 
∑ 

s ∈ �g 

∑ 

t∈ T 
c t d t s 

s.t. (9) − (12) and (14) − (15) . (20)

n this paper, x = ( x t i ) , henceforth referred to as the inclusive sched-

le , is fixed as in Rockafellar and Wets (1991) ; that is, the average

unction given the group probabilities is used. Because the scenar-

os are equiprobable, and the probability associated with group g

s 
| �g | 

S , this means that: 

 

t 
i = 

| �g | 
S 

∑ 

g∈ G 
x t ig ∀ i ∈ N, t ∈ T . (21)

The penalties, λt 
ig 

and ρ , are also adjusted as in Rockafellar and

ets (1991) . The strategy used is inspired by the augmented La-

rangian method ( Bertsekas, 1982 ) and is as follows: 

t 
ig := λt 

ig + ρ( x t ig − x 
t 

i 
) ∀ i ∈ N, t ∈ T , s ∈ � (22)

:= αρ (23)

here α is a constant greater than or equal to 1 ( α ≥ 1) to guaran-

ee a slow increase in the penalty term. Sensitivity of the algorithm

o parameter α is explored in Section 4 . 

.2. Sub-problem solution method 

Each iteration of PH requires solving G sub-problems, each as-

ociated with a group of scenarios (problems SP g described in the

revious section). This is done using the sequential heuristic pro-

osed in Lamghari et al. (2013) . In brief, the heuristic separates the

roblem into smaller sub-problems, each associated with a period

 ∈ T . The sub-problems are solved sequentially in increasing order

f t , and their solutions are combined to generate a solution for

he original problem. Moreover, logical implications of the reserve,

lope and mining constraints are used to reduce the number of

ecision variables in the formulation of the sub-problems to make

hem easier to solve. The need to resort to a sequential approach

s a consequence of the large number of binary variables in the

riginal formulation. 

.3. Phase II solution method 

As indicated in the introduction, PH might not converge, and

hus a second phase is required to generate a solution for the

riginal problem SMPSP ( (1) –(7) ) described in Section 2 . This sec-

nd phase consists of solving a restricted problem obtained from

MPSP by considering only a subset of variables; the other vari-

bles being fixed using a strategy that exploits the information ob-

ained during the PH iterations and the structure of the problem.

n what follows, we explain which variables are fixed and to which

alues they are fixed. 

Recall that at each iteration of PH, the inclusive schedule x = 

(
x t i 

)
s computed using the following formula, where 

(
x t 

ig 

)
represents

he solution of the sub-problem SP g associated with group g ob-

ained at the current iteration: 

 

t 
i = 

∑ 

g∈ G 

| �g | 
S 

x t ig ∀ i ∈ N, t ∈ T . 

It is clear that any x t i can only take values in the interval [0, 1]

ince x t 
ig 

are binaries and 

∑ 

g∈ G 
| �g | 

S = 1 . Furthermore, the larger

he number of fractional components x t i is, the less consensus there

s among the scenarios. 

Once PH terminates, let bestx be the best inclusive schedule ob-

ained so far. By best it is meant the inclusive schedule with the



A. Lamghari, R. Dimitrakopoulos / European Journal of Operational Research 253 (2016) 843–855 847 

m  

f

 

 

 

 

 

 

u

 

o  

w  

u  

a

 

m  

h  

n  

t  

t  

o  

u  

l

 

o

i  

o  

e  

I  

t  

u  

a  

t  

s  

w  

T  

T

 

 

i  

t  

v  

a  

(  

T  

N  

w  

l  

a  

i  

n  

c  

o  

i

3

 

s  

t  

A

I

 

 

 

 

 

S

 

 

 

m  

o  

b  

fi  

s

4

 

s  

a  

s  

p  

a  
ost consensus among the scenarios (or in other words, with the

ewest components having fractional values). 

Partition the set of blocks into two disjoint subsets: 

• N 1 = { i ∈ N : bestx 
t 

i ∈ { 0 , 1 } for all t ∈ T }: the set of blocks for

which a consensus has been obtained among the scenarios, or

in other words, all scenarios agree that these blocks have to be

mined in a specific period. 

• N 2 = { i ∈ N : there exists a period t ∈ T such that 0 < bestx 
t 

i <

1 } : the set of the remaining blocks or those for which a con-

sensus has not been obtained. 

All variables associated with blocks in N 1 are fixed to their val-

es in bestx . 

Now consider a block i ∈ N 2 . Even if the scenarios do not agree

n which period block i should be mined in, they might agree on

hich periods block i should not be mined in. This observation is

sed to specify a “time window” for each block i ∈ N 2 . This is done

s follows. 

Let E i = min 

{ 

t ∈ T : bestx 
t 

i > 0 

} 

and L i =

ax 

{ 

t ∈ T : bestx 
t 

i > 0 

} 

. Variables x t 
i 

such that t ∈ [1, E i [ ∪ ] L i ,

 ] are fixed to the value 0, while those such that t ∈ [ E i , L i ] are

ot fixed. This means that block i can be scheduled no earlier

han E i nor later than L i . Preliminary experiments indicate that

his strategy gives better results than the alternative that consists

f fixing only variables associated with blocks in N 1 . In addition,

sing bestx 
t 

i instead of the inclusive schedule obtained during the

ast iteration of PH improves the results. 

Although the restricted problem is somewhat smaller than the

riginal problem, it can be very large when the size of the set N 2 

s large (i.e., when, after the iterations of PH, consensus has been

btained for only a few blocks). Consequently, solving it using an

xact method might be time consuming (c.f. results in Section 4.3 ).

nstead, we propose using a sliding time window heuristic (STWH)

hat divides the set of time periods into three disjoint but consec-

tive subsets ( T 1 , T 2 and T 3 ). When solving the restricted problem,

ll variables associated with periods in the first subset, T 1 , are fixed

o feasible values; those associated with periods in the second sub-

et, T 2 , are restricted to be binary; and finally, those associated

ith periods in the last subset, T 3 , are relaxed to be continuous.

he algorithm proceeds in a sequential manner, where the subsets

 1 , T 2 , and T 3 are updated as follows: 

1. Set τ := 1, T 1 := ∅ , T 2 := { τ }, and T 3 := { τ + 1 , . . . , h } 
2. Solve the resulting problem 

3. Fix all variables associated with period τ to the optimal values

just found 

4. Set T 1 := T 1 ∪ { τ } 

5. If T 1 = T , stop. Otherwise, set τ := τ + 1 , T 2 := { τ }, T 3 := T −
{ T 1 ∪ T 2 } and go to step 2. 

The approach used to solve the restricted problem is based on

nteger linear programming techniques. Approaches based on such

echniques have been used in the past to solve the deterministic

ersion of the open-pit mine production scheduling problem and

re also used in mine planning software (see Caccetta and Hill

2003) and Bley, Boland, Fricke, and Froyland (2010) , for instance).

he closest approach to ours is the one in Cullenbine, Wood, and

ewman (2011) . The authors also use a STWH, but in combination

ith Lagrangian relaxation. For periods in T 3 , not only do they re-

ax the integrality constraints as it is done in this paper, but they

lso relax all the other constraints (i.e., slope, mining and process-

ng constraints) to reduce computational effort. Such a strategy is

ot used here because the restricted problem is of small size and

an be solved in a reasonable amount of time without relaxing the
ther constraints of the problem, as can be seen from the results

n Section 4 . 

.4. The algorithm 

A template for the algorithm based on the progressive hedging

trategy and integrating the elements that have been presented in

he previous sections is given below ( Algorithm 1 ). In our imple-

lgorithm 1 based on the progressive hedging strategy. 

nitialization 

n and h , the number of blocks and the number of periods, re-

spectively 

countIter := 0 , the number of iterations of PH performed so far 

nIter, the maximum number of iterations of PH allowed 

bestx := ∅ , the best inclusive schedule obtained so far 

C := 0 , the number of variables that have converged so far 

λt 
ig 

:= 0 , the initial value of the Lagrangian multipliers 

α ≥ 1 , a parameter of the algorithm used to adjust the value of

the penalty ratio ρ
Partition the scenarios into groups 

for each group g do 

Solve the sub-problem SP g described in Section 3.1 using

the method summarized in Section 3.2 and the original

economic values 

end for 

Compute the values of the components of the inclusive schedule

x = 

(
x t i 

)
using equation (21) 

Update bestx and C

Initialize the value of the penalty ratio, ρ

earch 

Phase I: Looking for similarities among the scenario groups 

while (C � = nh and countI ter < nI ter) do 

countIter := countIter+1 

for each group g do 

Adjust the Lagrangian multipliers according to 

equation (22) 

Update the modified economic values ( ̃  v t 
ig 

=
1 | �g | 

∑ 

s ∈ �g 
v t 

is 
− λt 

ig 
− 1 

2 ρ + ρx t i ) 

Solve the sub-problem SP g 
end for 

Update x , bestx , and C

Adjust the penalty ratio ρ according to equation (23) 

end while 

Phase II: Getting an implementable schedule 

Solve the restricted problem (the SMPSP in Section 2 , but where

some variables are fixed according to the strategy described in

Section 3.3 ). 

entation, phase I terminates when full convergence is obtained

r when a fixed number of iterations ( nIter ) have been performed,

ut one can consider any other stopping criterion; for example, a

xed amount of CPU time or when the convergence reaches a pre-

pecified threshold value. 

. Numerical results 

The solution method proposed in this paper is tested on the in-

tances introduced in Lamghari and Dimitrakopoulos (2012) . There

re two datasets, D1 and D2, each consisting of 5 different in-

tances from actual copper and gold deposits, respectively. Table 1

rovides details about the instances. While the number of blocks

nd the number of periods differ from one instance to another,
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Table 1 

Characteristics of the instances in the two datasets. 

Dataset Instance Number of Number of Number of 

blocks ( N ) periods ( T ) scenarios ( S ) 

D1 C1 4273 3 20 

Metal type: copper C2 7141 4 20 

Block size: 20 × 20 × 10 meters C3 12,627 7 20 

Block weight: 10, 800 tons C4 20,626 10 20 

C5 26,021 13 20 

D2 G1 18,821 5 20 

Metal type: gold G2 23,901 7 20 

Block size: 15 × 15 × 10 meters G3 30,013 8 20 

Block weight: 5, 625 tons G4 34,981 9 20 

G5 40,762 11 20 

Table 2 

Economic parameters used to compute the objective function coeffi- 

cients. 

Parameters D1 D2 

Mining cost $1/t $1/t 

Processing cost $9/t $15/t 

Metal price $2/lb $29/g 

Selling cost $0.3/lb $0.2/g 

Undiscounted surplus cost for ore ( c ) $15/t $17/t 

Discount rate ( d 1 ) 10 percent 10 percent 

Risk discount rate ( d 2 ) 10 percent 10 percent 
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the number of scenarios used to model metal uncertainty is sim-

ilar in all instances. More specifically, 20 equiprobable scenarios

representing the mineral deposits were generated from a limited

amount of drilling information using the geostatistical techniques

of conditional simulation, which can be seen as a complex Monte

Carlo simulation framework able to reproduce all available data

and information as well as spatial statistics of the data. Further

details about these techniques can be found in Boucher and Dim-

itrakopoulos (2009) ; Chiles and Delfiner (2012) ; Goovaerts (1997) ;

Horta and Soares (2010) ; Maleki and Emery (2015) ; Rossi and

Deutsch (2014) . Twenty scenarios are sufficient to capture metal

uncertainty, as previous work, such as that of Albor and Dimi-

trakopoulos (2009) , indicates that after about 15 simulated rep-

resentations of an orebody, stochastic schedules converge to both

a stable final physical schedule and stable production forecasts.

The reason for this is that while simulated scenarios represent a

mineral deposit at the support-scale of mining blocks with a vol-

ume of a few cubic meters, the production schedule of a mine

groups several thousand of these blocks in a single time period,

subject to certain constraints. Therefore, since the support-scale of

a mine’s schedule is orders of magnitude larger than that of the

simulated representations of the mineral deposit being scheduled,

the stochastic schedule becomes insensitive to additional scenarios

after a relatively small number of scenarios. Note that some papers

addressing the same problem considered in this paper use only 5–

10 scenarios ( Boland et al., 2008; Menabde et al., 2007 ). 

Table 2 reports the economic parameters used to compute the

blocks’ economic values and the recourse costs, which are based

on real-life data provided by our industrial partners. 

The algorithm outlined in Section 3.4 ( Algorithm 1 ) is imple-

mented in C++ and run on an Intel(R) Xeon(R) CPU E7-8837 com-

puter (2.67 GHz) with 1 TB of RAM running under Linux. To speed

up the algorithm, an OpenMP parallel implementation of the ini-

tialization phase and the first phase is used. It is based on a simple

master-worker strategy. The master operates as a central memory,

which manages the search. Each worker processor deals with one

sub-problem. It updates the associated penalties (Lagrangian mul-

tipliers), computes the modified economic values, solves the sub-
roblem, and communicates the solution to the master. When all

ub-problems are solved, the master computes the inclusive sched-

le and sends it to the worker processors to update the penalties. 

Version 12.2 of CPLEX is used to solve the sub-problems asso-

iated with the periods within the sequential heuristic described

n Section 3.2 , and to solve the restricted problem of the second

hase introduced in Section 3.3 . CPLEX is also used to solve the

inear relaxation of the two-stage stochastic problem (1) –(7) pre-

ented in Section 2 to obtain an upper bound on the optimal value,

hich is used to assess the quality of the solutions produced by

he proposed algorithm. In all numerical experiments, the predual

arameter of CPLEX is set to 1; that is, the dual linear program-

ing problem is passed to the optimizer. This is a useful technique

or problems with more constraints than variables, such as the one

onsidered in this paper. To reduce the time required to complete

hase I, the optimality tolerance parameter of CPLEX is set to 1

ercent when solving the sub-problems associated with the peri-

ds. This parameter is set to its default value when solving the re-

tricted problem of the second phase. Unless otherwise specified,

ll other CPLEX parameters are set to their default values since

reliminary experiments indicated that these settings yield better

esults. 

In what follows, the results of the experiments conducted to

etermine appropriate parameter values for the first phase of the

lgorithm are first discussed. This is followed by a comparison of

he performance of the algorithm considering the different alter-

atives for each of the two phases (i.e., in phase I, varying the

ize of the groups, and in phase II, using the sliding time window

euristic versus using an exact method, namely the Branch-and-

ut algorithm implemented in CPLEX). Finally, results showing the

xpected gain from solving the proposed stochastic model rather

han its deterministic counterpart are presented. Note that when

alibrating parameters, only the 5 instances in the dataset D1 are

sed. All 10 instances summarized in Table 1 are used in the re-

aining tests. 

.1. Parameter calibration 

As indicated earlier, at each iteration of PH, the value of the

enalty ratio ρ used to compute the modified economic values is

djusted by multiplying it by a parameter α ≥ 1. As in Crainic

t al. (2011) , the initial value of ρ is set to 1 + log (1 + D ) , D be-

ng the inconsistency level; i.e., the number of variables that have

ot converged after the initialization phase. To identify an appro-

riate value for the parameter α, we considered the case where

he groups are comprised of 1 scenario (the case where conver-

ence is the most difficult to obtain), we fixed the number of it-

rations of PH to 30, and we ran tests using 4 different values for

: 1, 1.1, 1.2, and 1.3. The sliding time window heuristic (STWH)

as used to solve the restricted problem of phase II. The results of



A. Lamghari, R. Dimitrakopoulos / European Journal of Operational Research 253 (2016) 843–855 849 

t  

fi

 

 

 

 

 

 

 

 

 

n  

P  

g  

(  

s  

w  

r  

p  

r  

i  

d  

i  

t  

r  

p  

a  

m

 

r  

p  

2  

m  

p  

n  

a  

h  

i  

s  

p

 

c  

s  

i  

d  

t  

N  

o  

c  

i  

%  

t  

t  

i  

v  

n  

f  

o  

t  

f

4

 

s  

t  

t  

t  

s  

o  

s  

s  

w  

l  

p  

p  

c  

r  

i

 

T  

r  

s  

t  

o  

c  

(  

l

 

c  

2  

c  

f  

g  

p  

n  

c  

a  

a  

a  

a  

d  

v  

n  

p  

i  

i  

f  

w  

d  

t  

o  

v  

e  

i

 

(  

3  

q  

g  

0  

w  

s  

t  
hese tests are reported in Table 3 . The column headings are de-

ned as follows: 

• Instance , the name of the instance. 
• α, the value used for the parameter α. 

• % Con v ergence = 

|{ ( i,t ) : bestx 
t 
i ∈{ 0 , 1 }| 

nh 
× 100 , the percentage of binary

variables that have converged after the first phase of the algo-

rithm. 
• Z ∗, the value of the solution found by the proposed algorithm

in dollars. 
• % Gap = 

Z LR −Z ∗
Z LR 

× 100 , the gap between z LR , the linear relaxation

optimal value of the two-stage stochastic problem (1) –(7) pre-

sented in Section 2 , and Z ∗ as defined above. The smaller the

value of % Gap is, the better the solution is. 
• Time , the solution time in minutes. Note that the time reported

for phase I includes the time needed to initialize PH with the

procedure described in Section 3.4 . 

As one can expect, the value of the parameter α has almost

o effect on the computational time required for the iterations of

H (phase I), but it does have a significant effect on the conver-

ence rate and the time required to solve the restricted problem

phase II). By using a large value for α, a higher penalty is as-

ociated with violation of the implementability constraints (16) ,

hich accelerates convergence. The advantage of having a large

ate of convergence is that a large number of variables are fixed in

hase II. The restricted problem is thus considerably smaller, which

esults in a significant reduction of the time needed to solve it. It

s worth mentioning, however, that when variables converge, they

o not necessarily converge to optimal values, since we are deal-

ng with a mixed-integer stochastic problem. This explains why, in

erms of solution quality, smaller values of α yield in general better

esults. The results indicate that the value 1.2 is the most appro-

riate value if one is looking for a trade-off between solution time

nd solution quality. Thus this value is used in all further experi-

ents. 

The number of iterations of PH performed before solving the

estricted problem (i.e., before phase II) is another parameter of

hase I. We considered 4 values for this parameter ( nIter ): 0, 10,

0, 30. The value 0 means that the algorithm skips phase I and

oves directly to phase II once the initialization phase is com-

leted (i.e., once the sub-problems are solved using the origi-

al economic values). Results obtained when considering the four

forementioned values for nIter are summarized in Table 4 , which

as the same structure as Table 3 , except that the second column

ndicates the number of iterations of PH performed. Again, the re-

tricted problem is solved using STWH and the time reported for

hase I includes the time needed for the initialization phase. 

From these results, one can see that the total solution time de-

reases as nIter increases. This is explained by the fact that the

econd phase requires less time because more variables are fixed

n the restricted problem (c.f. column “%Convergence ”), and this

ecrease outweighs the increase in the time needed to complete

he first phase (increase due to performing more iterations of PH).

ote also that there is no guarantee that a better solution will be

btained by waiting for a higher rate of convergence (i.e., by in-

reasing the number of PH iterations). Actually, quite the opposite

s more likely to happen, as can be observed from the values of

Gap . Thus, in all further experiments, nIter is fixed to 10. Note

hat with this value, the total solution time is larger as compared

o nIter = 30 , but it is acceptable, considering that the solution

s better. On average, the gap is 0 . 1392 percent when nIter = 10

ersus 0 . 1401 percent , 0 . 1420 percent , and 0 . 1949 percent when

I ter = 0 , nI ter = 20 and nI ter = 30 , respectively. Note that the dif-

erence in gap does not appear significant, but given the scale

f the problem it represents a difference in value of hundreds of
housands of dollars, as can be seen from the values of Z ∗ in the

ourth column of the table. 

.2. Effect of grouping scenarios 

In this section, the effects on convergence, solution time, and

olution quality of grouping scenarios are analyzed. Five sizes for

he groups are considered: 3, 5, 7, 10, and 20. For each size,

he scenarios within the groups are chosen randomly. Recall that

he instances considered in this paper contain 20 scenarios. Thus,

ize 3 signifies that 7 sub-problems are solved at each iteration

f the initialization phase and of the first phase. The number of

ub-problems reduces to 4, 3 and 2 for sizes 5, 7 and 10, re-

pectively. Finally, with size 20, there is only one sub-problem,

hich is equivalent to the original two-stage stochastic prob-

em in Section 2 . Consequently, for this size, neither phase I nor

hase II will be necessary since the algorithm will provide an im-

lementable solution at the initialization phase. The interest of

onsidering size 20 is that this will allow us to compare the algo-

ithm proposed in this paper to the sequential heuristic proposed

n Lamghari et al. (2013) and briefly described in Section 3.2 . 

For each group size, we ran tests using α = 1 . 2 and nIter = 10 .

he restricted problem of phase II was solved using STWH. The

esults for the copper instances (dataset D1) and for the gold in-

tances (dataset D2) are summarized in Tables 5 and 6 , respec-

ively. As in Tables 3 and 4 , we report the values of %Convergence ,

f Z ∗, and of %Gap , as defined previously. The time required to

omplete phase I, the time spent solving the restricted problem

phase II), and the total solution time are given in minutes in the

ast three columns. 

As expected, increasing the size of the groups results in a faster

onvergence and is computationally more efficient. Considering the

0 scenarios at once is the fastest (only 18 minutes on average,

onsidering the 10 instances in the two datasets). This good per-

ormance is, as explained earlier, due to the fact that full conver-

ence (an implementable solution) is obtained at the initialization

hase and thus neither phase I nor phase II are necessary (they are

ot completed). When considering groups of 10 scenarios each, full

onvergence is not achieved after 10 iterations of PH, but on aver-

ge, a rate of convergence of 91.40 percent is obtained, requiring

 total of 166 minutes. Then in phase II, most variables are fixed,

nd consequently, solving the restricted problem is straightforward

nd required on average less than 8 minutes. It can be seen that

ecreasing the size of the groups leads to a smaller rate of con-

ergence, and consequently longer total solution times. It is worth

oting that the size of the groups does not have a significant im-

act on the time required to solve the sub-problems (Phase I). This

s in part explained by the fact that the size of the sub-problems

s not really affected by the introduction of additional scenarios. In

act, the number of variables and constraints increases very slightly

hen the number of scenarios is increased ( T continuous variables

 

t 
s and the associated constraints (12) are added for every addi-

ional scenario s ). The results in Tables 4 and 5 also reinforce the

bservations made in Sections 4.1 and 4.2 : when the rate of con-

ergence is small, solving the restricted problem requires a bit of

xtra time because it is of larger size, but this extra time allows an

ncrease in solution quality. 

Now, if we compare the sequential heuristic in Lamghari et al.

2013) (size 20) to the algorithm proposed in this paper (sizes

, 5, 7, and 10), we can see that the latter outperforms the se-

uential heuristic in terms of solution quality (on average, the

ap is 1 . 547 percent when the sequential heuristic is used versus

 . 538 percent , 0 . 566 percent , 0 . 656 percent , and 0 . 812 percent

hen the algorithm proposed in this paper is used with group

izes 3, 5, 7, and 10, respectively). It should be noted that, al-

hough the differences in the gap appear small, for the context
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Table 3 

Sensitivity of the solution method to the parameter α. 

Time (minutes) 

Instance α %Convergence Z ∗($) %Gap Phase I Phase II Total 

C1 1 39 .35 165,523,0 0 0 0 .010 3 .07 0 .10 3 .17 

1 .1 43 .29 165,526,0 0 0 0 .008 3 .24 0 .08 3 .31 

1 .2 49 .56 165,515,0 0 0 0 .014 3 .18 0 .04 3 .22 

1 .3 61 .25 165,497,0 0 0 0 .025 2 .86 0 .01 2 .87 

C2 1 48 .60 199,137,0 0 0 0 .024 15 .44 0 .61 16 .05 

1 .1 52 .18 199,136,0 0 0 0 .025 14 .55 0 .40 14 .95 

1 .2 57 .31 199,141,0 0 0 0 .022 13 .71 0 .20 13 .91 

1 .3 69 .89 198,949,0 0 0 0 .119 11 .22 0 .03 11 .25 

C3 1 61 .16 229,066,0 0 0 0 .087 45 .79 30 .13 75 .92 

1 .1 63 .48 229,067,0 0 0 0 .087 52 .10 18 .26 70 .36 

1 .2 68 .44 229,0 62,0 0 0 0 .089 45 .73 5 .29 51 .02 

1 .3 79 .92 228,789,0 0 0 0 .208 39 .92 0 .44 40 .36 

C4 1 69 .16 252,418,0 0 0 0 .315 162 .19 282 .31 4 4 4 .50 

1 .1 70 .96 252,359,0 0 0 0 .338 165 .05 235 .00 400 .05 

1 .2 78 .65 252,036,0 0 0 0 .466 158 .99 26 .72 185 .71 

1 .3 86 .80 251,295,0 0 0 0 .758 126 .19 1 .09 127 .28 

C5 1 74 .42 244,933,0 0 0 0 .266 238 .25 751 .53 989 .78 

1 .1 75 .83 244,969,0 0 0 0 .251 229 .51 422 .29 651 .79 

1 .2 83 .88 244,645,0 0 0 0 .383 203 .65 42 .27 245 .91 

1 .3 90 .11 244,281,0 0 0 0 .531 172 .22 2 .39 174 .61 

Table 4 

Sensitivity of the solution method to the parameter nIter . 

Time (minutes) 

Instance nIter %Convergence Z ∗($) %Gap Phase I Phase II Total 

C1 0 39 .02 165 ,522,0 0 0 0 .010 0 .16 0 .12 0 .28 

10 39 .44 165 ,527,0 0 0 0 .007 1 .17 0 .10 1 .27 

20 43 .34 165 ,524,0 0 0 0 .009 2 .25 0 .07 2 .32 

30 49 .56 165 ,515,0 0 0 0 .014 3 .18 0 .04 3 .22 

C2 0 46 .70 199 ,129,0 0 0 0 .029 0 .60 0 .89 1 .49 

10 48 .19 199 ,139,0 0 0 0 .024 5 .07 0 .60 5 .67 

20 52 .83 199 ,128,0 0 0 0 .029 9 .83 0 .40 10 .23 

30 57 .31 199 ,141,0 0 0 0 .022 13 .71 0 .20 13 .91 

C3 0 59 .51 229 ,075,0 0 0 0 .083 1 .70 26 .64 28 .34 

10 60 .81 229 ,059,0 0 0 0 .090 16 .91 27 .65 44 .56 

20 63 .32 229 ,082,0 0 0 0 .080 37 .20 19 .24 56 .44 

30 68 .44 229 ,062,0 0 0 0 .089 45 .73 5 .29 51 .02 

C4 0 67 .43 252 ,424,0 0 0 0 .312 4 .55 384 .27 352 .83 

10 68 .74 252 ,417,0 0 0 0 .315 49 .34 338 .92 388 .26 

20 72 .08 252 ,297,0 0 0 0 .363 103 .86 174 .37 278 .23 

30 78 .65 252 ,036,0 0 0 0 .466 158 .99 26 .72 185 .71 

C5 0 72 .88 244 ,933,0 0 0 0 .266 8 .16 864 .29 872 .44 

10 73 .79 244 ,947,0 0 0 0 .260 73 .76 764 .80 838 .56 

20 75 .84 245 ,023,0 0 0 0 .229 177 .57 446 .31 623 .88 

30 83 .88 244 ,645,0 0 0 0 .383 203 .65 42 .27 245 .91 
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of the problem studied in this paper, they are meaningful because

they represent millions of dollars, as can be seen from the values

of Z ∗ in Tables 5 and 6 . Considerable economic gains ranging be-

tween 2 and 6 million dollars are achieved if the proposed algo-

rithm is used instead of the sequential heuristic. In terms of solu-

tion time, although the solution times of the proposed algorithm

are somewhat long compared to those of the sequential heuristic

(on average, the proposed algorithm runs 9–18 times longer than

does the sequential heuristic), they are reasonable and still consid-

erably smaller than those required by the commercial solver CPLEX

to solve the stochastic integer program, as can be seen from the

numerical results presented next. 

Instead of solving the two-stage stochastic formulation (1) –(7) ,

we solved a slightly different but equivalent formulation where the

binary decision variables are defined as follows: 

x t i = 

{
1 if i is mined by period t, 
0 otherwise 
hat is, it is (x t 
i 
− x t−1 

i 
) that specifies whether block i is mined

n period t or not. This way of defining the variables has been

roposed by Caccetta and Hill (2003) and has been shown to be

omputationally more efficient if one has to solve the problem us-

ng branch-and-cut methods, which is the case in the next experi-

ents. With this definition of the variables, the two-stage stochas-

ic model becomes: 

ax 
1 

S 

{ ∑ 

s ∈ �

∑ 

t∈ T 

∑ 

i ∈ N 
v t is (x t i − x t−1 

i 
) −

∑ 

s ∈ �

∑ 

t∈ T 
c t d t s 

} 

(24)

.t. x t−1 
i 

≤ x t i ∀ i ∈ N, t ∈ T (25)

 

t 
i ≤ x t p ∀ i ∈ N, p ∈ P i , t ∈ T (26)

 

i ∈ N 
w i (x t i − x t−1 

i 
) ≤ W 

t ∀ t ∈ T (27)
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Table 5 

Effect of grouping scenarios during Phase I - Copper instances (dataset D1). 

Time (minutes) 

Instance Group size %Convergence Z ∗($) %Gap Phase I Phase II Total 

C1 3 71 .04 165 ,523,0 0 0 0 .010 0 .81 0 .03 0 .85 

5 82 .82 165 ,516,0 0 0 0 .014 0 .71 0 .02 0 .72 

7 85 .26 165 ,496,0 0 0 0 .026 0 .77 0 .02 0 .78 

10 96 .54 165 ,147,0 0 0 0 .237 0 .76 0 .01 0 .77 

20 100 .00 164 ,079,0 0 0 0 .882 0 .07 0 .00 0 .07 

C2 3 72 .93 199 ,135,0 0 0 0 .026 3 .11 0 .18 3 .29 

5 83 .16 199 ,133,0 0 0 0 .027 3 .30 0 .07 3 .37 

7 90 .03 199 ,038,0 0 0 0 .074 2 .96 0 .04 3 .00 

10 94 .36 198 ,521,0 0 0 0 .334 2 .39 0 .03 2 .42 

20 100 .00 196 ,189,0 0 0 1 .504 0 .30 0 .00 0 .30 

C3 3 75 .79 229 ,0 01,0 0 0 0 .116 14 .93 3 .75 18 .68 

5 84 .74 228 ,932,0 0 0 0 .145 15 .83 1 .54 17 .36 

7 87 .82 228 ,899,0 0 0 0 .160 14 .72 0 .66 15 .38 

10 94 .09 228 ,330,0 0 0 0 .408 12 .55 0 .27 12 .81 

20 100 .00 227 ,279,0 0 0 0 .867 1 .18 0 .00 1 .18 

C4 3 82 .77 252 ,033,0 0 0 0 .467 44 .58 36 .46 81 .04 

5 89 .00 251 ,672,0 0 0 0 .609 52 .59 5 .37 57 .97 

7 93 .28 251 ,240,0 0 0 0 .780 45 .82 1 .13 46 .94 

10 96 .80 250 ,886,0 0 0 0 .920 30 .93 0 .64 31 .57 

20 100 .00 249 ,596,0 0 0 1 .429 2 .93 0 .00 2 .93 

C5 3 86 .31 244 ,860,0 0 0 0 .296 70 .52 57 .74 128 .26 

5 91 .13 244 ,784,0 0 0 0 .327 80 .41 12 .52 92 .93 

7 93 .63 244 ,528,0 0 0 0 .431 67 .70 3 .29 70 .99 

10 96 .40 244 ,117,0 0 0 0 .598 51 .51 1 .31 52 .82 

20 100 .00 242 ,818,0 0 0 1 .127 5 .49 0 .00 5 .49 

Table 6 

Effect of grouping scenarios during Phase I - Gold instances (dataset D2). 

Time (minutes) 

Instance Group size %Convergence Z ∗($) %Gap Phase I Phase II Total 

G1 3 58 .88 409 ,094,0 0 0 0 .528 64 .60 17 .18 81 .78 

5 66 .98 409 ,050,0 0 0 0 .539 107 .01 9 .29 116 .29 

7 73 .63 409 ,173,0 0 0 0 .509 131 .99 2 .17 134 .16 

10 84 .57 408 ,941,0 0 0 0 .565 102 .67 0 .95 103 .63 

20 100 .00 406 ,236,0 0 0 1 .223 15 .09 0 .00 15 .09 

G2 3 63 .02 440 ,556,0 0 0 0 .777 139 .68 133 .23 272 .91 

5 72 .02 440 ,586,0 0 0 0 .770 190 .05 76 .62 266 .66 

7 76 .87 440 ,737,0 0 0 0 .736 210 .56 38 .40 248 .96 

10 85 .72 440 ,072,0 0 0 0 .886 182 .37 3 .24 185 .61 

20 100 .00 434 ,445,0 0 0 2 .154 30 .54 0 .00 30 .54 

G3 3 68 .28 475 ,829,0 0 0 0 .876 233 .36 220 .37 453 .73 

5 75 .98 475 ,819,0 0 0 0 .878 339 .46 81 .19 420 .64 

7 79 .39 474 ,915,0 0 0 1 .066 371 .71 60 .20 431 .91 

10 85 .75 474 ,842,0 0 0 1 .082 382 .16 20 .73 402 .89 

20 100 .00 470 ,706,0 0 0 1 .943 39 .64 0 .00 39 .64 

G4 3 71 .44 483 ,017,0 0 0 1 .026 304 .21 474 .77 778 .97 

5 78 .79 482 ,942,0 0 0 1 .042 413 .44 172 .43 585 .87 

7 83 .40 481 ,973,0 0 0 1 .240 546 .31 95 .57 641 .89 

10 87 .95 480 ,782,0 0 0 1 .484 482 .82 16 .32 499 .14 

20 100 .00 477 ,333,0 0 0 2 .191 52 .79 0 .00 52 .79 

G5 3 76 .52 461 ,840,0 0 0 1 .262 285 .84 981 .08 1266 .92 

5 83 .48 461 ,614,0 0 0 1 .310 379 .46 185 .70 565 .15 

7 87 .89 460 ,563,0 0 0 1 .535 407 .17 73 .99 481 .16 

10 91 .87 460 ,223,0 0 0 1 .607 413 .03 29 .65 442 .69 

20 100 .00 457 ,702,0 0 0 2 .146 34 .29 0 .00 34 .29 

∑
x

x

d

C  

t  

p  

a  

a  

(  

Z  

l  

r  

b  

s  

W  

g  

r  
 

i ∈ N 
θis w i (x t i − x t−1 

i 
) − d t s ≤ �t ∀ t ∈ T , s ∈ � (28) 

 

0 
i = 0 ∀ i ∈ N (29) 

 

t 
i ∈ { 0 , 1 } ∀ i ∈ N, t ∈ T (30) 

 

t 
s ≥ 0 ∀ t ∈ T , s ∈ �. (31) 

PLEX 12.2 was used to solve the formulation (24) –(31) with a

ime limit of 26 hours, which is larger than the largest com-

utational time required by the proposed algorithm considering
ll tested instances and group sizes. The results of these tests

re summarized in Table 7 . For each instance, we recall its size

columns N and T ) and then we give the value of the gap between

 LR , the linear relaxation optimal value, and the value of the so-

ution found by CPLEX within the time limit, as well as the time

equired to find this solution. A dash (“-”) indicates that no feasi-

le solution was obtained within the 26-hour time limit, while the

ymbol “∗” indicates that the solution found by CPLEX is optimal.

e also give in this table the results obtained by the proposed al-

orithm when group sizes 3, 5, 7, and 10 are considered, which we

efer to as PA-G3, PA-G5, PA-G7, and PA-G10, respectively. Table 8



852 A. Lamghari, R. Dimitrakopoulos / European Journal of Operational Research 253 (2016) 843–855 

Table 7 

Comparing the proposed algorithm to the branch-and-cut algorithm implemented in CPLEX. 

%Gap Time (minutes) 

N T CPLEX PA-G3 PA-G5 PA-G7 PA-G10 CPLEX PA-G3 PA-G5 PA-G7 PA-G10 

C1 4273 3 0.005 ∗ 0.010 0.014 0.026 0.237 0.91 0 .85 0 .72 0 .78 0 .77 

C2 7141 4 0.011 ∗ 0.026 0.027 0.074 0.334 30.67 3 .29 3 .37 3 .00 2 .42 

C3 12,627 7 0.074 0.116 0.145 0.160 0.408 1560.00 18 .68 17 .36 15 .38 12 .81 

C4 20,626 10 – 0.467 0.609 0.780 0.920 – 81 .04 57 .97 46 .94 31 .57 

C5 26,021 13 – 0.296 0.327 0.431 0.598 – 128 .26 92 .93 70 .99 52 .82 

G1 18,821 5 0.376 0.528 0.539 0.509 0.565 1560.00 81 .78 116 .29 134 .16 103 .63 

G2 23,901 7 – 0.777 0.770 0.736 0.886 – 272 .91 266 .66 248 .96 185 .61 

G3 30,013 8 — 0.876 0.878 1.066 1.082 – 453 .73 420 .64 431 .91 402 .89 

G4 34,981 9 – 1.026 1.042 1.240 1.484 – 778 .97 585 .87 641 .89 499 .14 

G5 40,762 11 – 1.262 1.310 1.535 1.607 – 1266 .92 565 .15 481 .16 442 .69 

Table 8 

Comparing the computational times of the proposed algorithm and the time re- 

quired by CPLEX to solve the linear relaxation (LR). 

Time (minutes) 

N T LR PA-G3 PA-G5 PA-G7 PA-G10 

C1 4273 3 0 .27 0 .85 0 .72 0 .78 0 .77 

C2 7141 4 6 .40 3 .29 3 .37 3 .00 2 .42 

C3 12,627 7 137 .67 18 .68 17 .36 15 .38 12 .81 

C4 20,626 10 1102 .61 81 .04 57 .97 46 .94 31 .57 

C5 26,021 13 2015 .51 128 .26 92 .93 70 .99 52 .82 

G1 18,821 5 175 .79 81 .78 116 .29 134 .16 103 .63 

G2 23,901 7 1351 .41 272 .91 266 .66 248 .96 185 .61 

G3 30,013 8 3051 .09 453 .73 420 .64 431 .91 402 .89 

G4 34,981 9 3843 .19 778 .97 585 .87 641 .89 499 .14 

G5 40,762 11 10560 .22 1266 .92 565 .15 481 .16 442 .69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

a  

u  

i  

u  

p  

b  

a

 

i  

a  

s  

r  

S  

f  

B  

u  

g  

2  

i  

q  

s

 

s  

i  

P  

h  

h  

c

 

i  

G  

w  

s  

w  

s  

a  

a  

d  

r  

p  

e

4

 

o  

t  

S  

s  

t  
provides a comparison of solution times between the proposed al-

gorithm and the linear relaxation. 

Results presented in Table 7 clearly show the limitations of ex-

act methods and the need for heuristic approaches, such as the one

proposed in this paper, to deal with instances of realistic size. For

the smallest instance, C1, the solution times of the proposed al-

gorithm and CPLEX are comparable. For the other 9 instances, the

proposed algorithm is clearly faster and its running time has a sig-

nificantly smaller growth rate. CPLEX was able to solve the small

instances C1 and C2 to optimality, while it could not find the op-

timal solution for the larger instances C3 and G1 within the 26-

hour time limit. CPLEX could not even find a feasible solution for

instances with more than 20,0 0 0 blocks (the largest instances C4,

C5, G2, G3, G4, and G5). A near-optimal solution was obtained by

the proposed algorithm for all tested instances, within significantly

less time than the time required by CPLEX to solve the linear re-

laxation of the problems (cf. Table 8 ). 

4.3. Effect of combining PH with STWH 

In this section, we first evaluate whether using the sliding time

window heuristic (STWH) instead of an exact method in phase II

improves the performance of the proposed algorithm. We then ex-

amine the value-added of PH; that is, whether STWH is efficient if

it is not combined with PH. 

STWH is compared to the Branch-and-Cut algorithm imple-

mented in CPLEX, henceforth identified as BCA, and the results are

given in Table 9 . For each instance, the 4 alternatives described

in the previous section for grouping scenarios in the first phase

are considered (i.e., sizes 3, 5, 7, and 10). The values of %Conver-

gence obtained for each group are reported in the second column,

while the next four columns give the objective function values ob-

tained by each method ( Z ∗) and the %Gap with respect to the upper

bound provided by CPLEX. The last two columns report CPU times,

in minutes, spent by STWH and BCA solving the restricted problem
i.e., to complete phase II). The times required to complete phase I

re not reported because they are similar whether STWH or BCA is

sed, and have already been reported in Tables 5 and 6 . The max-

mum run time for BCA and STWH is set to 10 hours (600 min-

tes), except for the instance G5 when the group size 3 is used in

hase I, which is allowed 20 hours (1200 minutes) as it seems to

e the hardest to solve. The best results obtained for each instance

nd each group size are indicated in bold. 

Within the time limit, the results in Table 9 indicate that us-

ng STWH improves the performance of the algorithm consider-

bly. More specifically, there are three cases that depend on the

ize of the restricted problem to be solved. When the size of the

estricted problem is small (c.f. results for C1 and C2), BCA and

TWH are comparable. However, when the size is large (c.f. results

or G4 group size 3 and G5 group sizes 3 and 5), STWH dominates

CA both in terms of solution time and solution quality. In partic-

lar, for the largest instance G5, when group size 3 is used, the

ap is reduced to 1.262 percent when STWH is used compared to

5.516 percent when BCA is used. For the remaining cases, STWH

s 6 to 47 times faster, and any slight improvements in solution

uality derived from using BCA are outweighed by the increase in

olution time. 

Finally, to examine the value-added of PH, the 10 instances con-

idered in this paper were solved with STWH without combining

t with PH. In what follows, we refer to this solution approach as

STWH (Pure STWH). The time limit for PSTWH was set to 26

ours, and the results obtained are summarized in Table 10 , which

as the same structure as Table 7 . As in Table 7 , a dash (“-”) indi-

ates that no feasible solution was obtained within the time limit. 

As one would expect, PSTWH is computationally expensive. For

nstances with more than 20,0 0 0 blocks (C4, C5, G2, G3, G4, and

5), its performance is quite similar to the performance of CPLEX

hen solving the two-stage stochastic formulation (24) –(31) , in the

ense that both methods were not able to find a feasible solution

ithin the 26-hour time limit. PSTWH also failed to solve the in-

tance G1 within the time limit. For the smaller instances (C1, C2,

nd C3), PSTWH requires in general more time than the proposed

lgorithm. Although PSTWH obtains slightly better solutions, the

ifference in gap is not significant, especially if the proposed algo-

ithm is used with group size 3 (on average, % Gap is 0.033 com-

ared to 0.051). These results clearly highlight the significant ben-

fit of the proposed algorithm combining PH with STWH. 

.4. Effect of accounting for metal uncertainty 

The last part of the numerical tests addresses the question

f the value of including metal uncertainty in the optimisa-

ion process. To this end, we use the so-called Value of the

tochastic Solution (VSS), which measures the expected gain from

olving a stochastic model rather than its deterministic coun-

erpart ( Birge & Louveaux, 2011 ). More specifically, the problem
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Table 9 

Effect of using STWH in phase II instead of BCA implemented in CPLEX. 

Z ∗($) %Gap Time phase II (minutes) 

Group size %Convergence STWH BCA STWH BCA STWH BCA 

C1 3 71.04 165,523,0 0 0 165,530,0 0 0 0.010 0.005 0.03 0.04 

5 82.82 165,516,0 0 0 165,518,0 0 0 0.014 0.013 0.02 0.01 

7 85.26 165,496,0 0 0 165,505,0 0 0 0.026 0.020 0.02 0.01 

10 96.54 165,147,0 0 0 165,151,0 0 0 0.237 0.234 0.01 0.005 

C2 3 72.93 199,135,0 0 0 199,157,0 0 0 0.026 0.015 0.18 0.10 

5 83.16 199,133,0 0 0 199,145,0 0 0 0.027 0.020 0.07 0.05 

7 90.03 199,038,0 0 0 199,059,0 0 0 0.074 0.064 0.04 0.02 

10 94.36 198,521,0 0 0 198,521,0 0 0 0.334 0.334 0.03 0.01 

C3 3 75.79 229,0 01,0 0 0 229,046,0 0 0 0.116 0.096 3.75 50.65 

5 84.74 228,932,0 0 0 228,980,0 0 0 0.145 0.125 1.54 8.21 

7 87.82 228,899,0 0 0 228,923,0 0 0 0.160 0.150 0.66 4.27 

10 94.09 228,330,0 0 0 228,448,0 0 0 0.408 0.357 0.27 0.11 

C4 3 82.77 252,033,0 0 0 252,134,0 0 0 0.467 0.427 36.46 60 0.0 0 

5 89.00 251,672,0 0 0 251,785,0 0 0 0.609 0.565 5.37 146.01 

7 93.28 251,240,0 0 0 251,312,0 0 0 0.780 0.751 1.13 7.21 

10 96.80 250,886,0 0 0 250,989,0 0 0 0.920 0.879 0.64 1.34 

C5 3 86.31 244,860,0 0 0 244,938,0 0 0 0.296 0.264 57.74 60 0.0 0 

5 91.13 244,784,0 0 0 244,895,0 0 0 0.327 0.281 12.52 579.88 

7 93.63 244,528,0 0 0 244,657,0 0 0 0.431 0.379 3.29 70.02 

10 96.40 244,117,0 0 0 244,185,0 0 0 0.598 0.571 1.31 2.17 

G1 3 58.88 409,094,0 0 0 409,719,0 0 0 0.528 0.376 17.18 292.94 

5 66.98 409,050,0 0 0 409,694,0 0 0 0.539 0.382 9.29 51.74 

7 73.63 409,173,0 0 0 409,488,0 0 0 0.509 0.432 2.17 4.98 

10 84.57 408,941,0 0 0 409,473,0 0 0 0.565 0.436 0.95 1.01 

G2 3 63.02 440,556,0 0 0 441,241,0 0 0 0.777 0.623 133.23 60 0.0 0 

5 72.02 440,586,0 0 0 441,180,0 0 0 0.770 0.637 76.62 60 0.0 0 

7 76.87 440,737,0 0 0 441,138,0 0 0 0.736 0.646 38.40 60 0.0 0 

10 85.72 440,072,0 0 0 440,726,0 0 0 0.886 0.739 3.24 86.00 

G3 3 68.28 475,829,0 0 0 476,235,0 0 0 0.876 0.791 220.37 60 0.0 0 

5 75.98 475,819,0 0 0 476,479,0 0 0 0.878 0.741 81.19 60 0.0 0 

7 79.39 474,915,0 0 0 476,223,0 0 0 1.066 0.794 60.20 60 0.0 0 

10 85.75 474,842,0 0 0 476,154,0 0 0 1.082 0.808 20.73 60 0.0 0 

G4 3 71.44 483,017,0 0 0 46 8,44 9,0 0 0 1.026 4.011 474.77 60 0.0 0 

5 78.79 482,942,0 0 0 483,462,0 0 0 1.042 0.935 172.43 60 0.0 0 

7 83.40 481,973,0 0 0 483,112,0 0 0 1.240 1.007 95.57 60 0.0 0 

10 87.95 480,782,0 0 0 481,794,0 0 0 1.484 1.277 16.32 60 0.0 0 

G5 3 76.52 461,840,0 0 0 348,393,0 0 0 1.262 25.516 981.08 120 0.0 0 

5 83.48 461,614,0 0 0 432,246,0 0 0 1.310 7.589 185.70 60 0.0 0 

7 87.89 460,563,0 0 0 461,197,0 0 0 1.535 1.399 73.99 60 0.0 0 

10 91.87 460,223,0 0 0 461,313,0 0 0 1.607 1.374 29.65 60 0.0 0 

Table 10 

Comparing the proposed algorithm to PSTWH. 

%Gap Time (minutes) 

N T PSTWH PA-G3 PA-G5 PA-G7 PA-G10 PSTWH PA-G3 PA-G5 PA-G7 PA-G10 

C1 4273 3 0.008 0.010 0.014 0.026 0.237 0.56 0 .85 0 .72 0 .78 0 .77 

C2 7141 4 0.015 0.026 0.027 0.074 0.334 7.85 3 .29 3 .37 3 .00 2 .42 

C3 12,627 7 0.077 0.116 0.145 0.160 0.408 370.82 18 .68 17 .36 15 .38 12 .81 

C4 20,626 10 – 0.467 0.609 0.780 0.920 – 81 .04 57 .97 46 .94 31 .57 

C5 26,021 13 – 0.296 0.327 0.431 0.598 – 128 .26 92 .93 70 .99 52 .82 

G1 18,821 5 – 0.528 0.539 0.509 0.565 – 81 .78 116 .29 134 .16 103 .63 

G2 23,901 7 – 0.777 0.770 0.736 0.886 – 272 .91 266 .66 248 .96 185 .61 

G3 30,013 8 – 0.876 0.878 1.066 1.082 – 453 .73 420 .64 431 .91 402 .89 

G4 34,981 9 – 1.026 1.042 1.240 1.484 – 778 .97 585 .87 641 .89 499 .14 

G5 40,762 11 – 1.262 1.310 1.535 1.607 — 1266 .92 565 .15 481 .16 442 .69 
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s first solved by replacing the random parameters (the metal

ontent) by their means to get a first-stage solution (a mining

equence, defined by the x t 
i 
). Then, the first-stage solution is

xed at that value, and the problem is solved for each scenario

 to get the value of the objective function under each scenario

 Z s = 

∑ 

t∈ T 
∑ 

i ∈ N v t is x 
t 
i 
− ∑ 

t∈ T c t d t s ). Finally, the expected value of

he so-obtained objective values Z s is computed ( E[ Z] = 

1 
S 

∑ 

s ∈ � Z s ).

he Value of the Stochastic Solution is defined as the difference

etween the value of the two-stage stochastic problem solution,

enoted by Z ∗ in the previous sections, and this expected value,

 [ Z ] ( V SS = Z ∗ − E[ Z] ). It is well-known that VSS ≥ 0 (see Birge
nd Louveaux (2011) , for example). The objective of the numerical

ests presented below is to confirm, as shown in all related studies

entioned in the introduction, that it is worthwhile to account for

etal uncertainty when scheduling production of open-pit mines

espite the additional complexity this approach might entail. 

Table 11 shows results obtained for the 10 instances considered

n this paper when the two-stage stochastic model is solved

sing PA-G3, PA-G5, PA-G7, and PA-G10; that is, the proposed

lgorithm combining PH and STWH with group sizes 3, 5, 7,

nd 10, respectively. In addition to the VSS values, Table 11 also

rovides the values of % Gain , indicating the relative percentage
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Table 11 

Value of the stochastic solution. 

VSS ($) %Gain 

N T PA-G3 PA-G5 PA-G7 PA-G10 PA-G3 PA-G5 PA-G7 PA-G10 

C1 4273 3 1 ,641,0 0 0 1 ,634,0 0 0 1 ,614,0 0 0 1 ,265,0 0 0 1 .00 1 .00 0 .98 0 .77 

C2 7141 4 2 ,416,0 0 0 2 ,414,0 0 0 2 ,319,0 0 0 1 ,802,0 0 0 1 .23 1 .23 1 .18 0 .92 

C3 12,627 7 5 ,404,0 0 0 5 ,335,0 0 0 5 ,302,0 0 0 4 ,733,0 0 0 2 .42 2 .39 2 .37 2 .12 

C4 20,626 10 6 ,162,0 0 0 5 ,801,0 0 0 5 ,369,0 0 0 5 ,015,0 0 0 2 .51 2 .36 2 .18 2 .04 

C5 26,021 13 4 ,106,0 0 0 4 ,030,0 0 0 3 ,774,0 0 0 3 ,363,0 0 0 1 .71 1 .67 1 .57 1 .40 

G1 18,821 5 87 ,417,0 0 0 87 ,373,0 0 0 87 ,496,0 0 0 87 ,264,0 0 0 27 .18 27 .16 27 .20 27 .13 

G2 23,901 7 93 ,923,0 0 0 93 ,953,0 0 0 94 ,104,0 0 0 93 ,439,0 0 0 27 .10 27 .10 27 .15 26 .96 

G3 30,013 8 97 ,272,0 0 0 97 ,262,0 0 0 96 ,358,0 0 0 96 ,285,0 0 0 25 .70 25 .69 25 .45 25 .43 

G4 34,981 9 92 ,834,0 0 0 92 ,759,0 0 0 91 ,790,0 0 0 90 ,599,0 0 0 23 .79 23 .77 23 .52 23 .22 

G5 40,762 11 83 ,102,0 0 0 82 ,876,0 0 0 81 ,825,0 0 0 81 ,485,0 0 0 21 .94 21 .88 21 .60 21 .51 
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increase in the objective function value resulting from solving the

stochastic model rather than its deterministic counterpart. % Gain

is calculated as follows: 

% Gain = 

Z ∗ − E[ Z] 

E[ Z] 
× 100 . 

Clearly, it pays off to use the stochastic solution rather than the

mean value solution. The objective function value is 1–27 percent

higher, and the average % Gain , over all instances, is around

13 percent no matter which group size is used when solving

the stochastic model. The increase of 1 percent may not be seen

as very substantial, but it should be noted that it represents

significant benefits in the order of millions of dollars (c.f. columns

VSS ). The largest increases are found for the gold instances, G1-G5,

and this is partly explained by the fact that these instances have a

higher variability compared to the copper instances, C1-C5. 

5. Conclusions 

This paper explores the development of an efficient optimiza-

tion approach to address the large and complex problems faced

by the mining industry when scheduling production in open-pit

mines under metal uncertainty. We have proposed a two-phase so-

lution approach based on the progressive hedging strategy (PH).

PH is used in phase I where the problem is first decomposed by

partitioning the set of scenarios modeling metal uncertainty into

groups, and then the sub-problems associated with each group are

solved iteratively to drive their solutions to a common solution. In

phase II, a strategy exploiting information obtained during the PH

iterations and the structure of the problem under study is used to

reduce the size of the original problem, and the resulting smaller

problem is solved to generate an implementable solution. 

Through computational experiments, we have shown that the

proposed algorithm performs very well in terms of solution qual-

ity. We have provided an analysis that shows the advantages and

disadvantages of increasing the size of the groups of the scenar-

ios during the first phase of the algorithm. This analysis indicates

that increasing the size of the groups has a positive impact on the

solution time, but it negatively impacts the solution quality. For

the second phase, we have compared two alternate solution meth-

ods: a sliding time window heuristic (STWH) and the branch-and-

cut algorithm implemented in the commercial solver CPLEX (BCA).

The results indicate that, with respect to solution quality, the two

methods are comparable with a slightly better performance for

BCA, but STWH has a significant superior performance to that of

BCA in terms of solution time. The results also indicate that STWH

is efficient only if combined with the progressive hedging algo-

rithm (PH); i.e., only if used within the algorithm proposed in this

paper. With respect to the sequential heuristic previously proposed

by the authors, the algorithm proposed here dominates in terms
f solution quality. Its weakness is that it requires longer solu-

ion times; however, these solution times are considerably smaller

ompared to those required by the commercial solver CPLEX to

olve the problem directly; i.e., to solve the two-stage stochastic

odel in Section 2 . The potential benefits of solving the stochastic

odel over solving the deterministic model in which the random

arameters are replaced by their expected values have also been

ighlighted. The results of the tests indicate that it would pay off

y millions of dollars (1–27 percent increase in the value of the

bjective function) to use the stochastic solution rather the mean

alue solution. 

As mentioned earlier, this paper represents ongoing efforts to

fficiently address the stochastic MPSP. Future work may consider

nvestigating whether the algorithm would be as successful or not

n solving variants of the MPSP that include more operational con-

traints, such as variable cut-off grade, grade blending, and stock-

iling, as it is in solving the “classical” variant considered in this

aper. Indeed, it is a general-purpose algorithm and should be ap-

licable to any of these variants. Other research avenues include

onsidering other strategies for updating the penalties within PH

nd other methods for solving the sub-problems. Finally, another

mportant research direction is the development of other efficient

olution approaches. Since it has been observed empirically that

he problem formulation often achieves small integrality gaps, one

pproach could be to solve the linear relaxation of the problem

sing an efficient algorithm and then to use an LP-rounding proce-

ure to get an integer solution. 
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