A generalization of the formulas for intersection numbers of dual polar association schemes and their applications

Jianmin Maa, Jun Guob,\ast, Fenggao Lic, Kaishun Wangd

a Oxford College of Emory University, Oxford, GA 30054, USA
b Math. and Inf. College, Langfang Teachers’ College, Langfang 065000, China
c Dept. of Math., Hunan Institute of Science and Technology, Yueyang 414006, China
d Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China

A R T I C L E I N F O

Article history:
Received 18 March 2010
Accepted 4 November 2010
Available online 4 December 2010
Submitted by R.A. Brualdi

AMS classification:
20G40
05E30
20B25
94A62
05C25

Keywords:
Dual polar scheme
Totally isotropic subspace
Pooling design
Cartesian authentication code
Vertex transitive graph

A B S T R A C T

Dual polar association schemes form an important family of association schemes, whose intersection numbers were computed in [Wan et al., Studies in Finite Geometry and the Construction of Incomplete Block Designs, Science Press, Beijing, 1966 (in Chinese)]. In this paper, we generalize the formulas for the intersection numbers, and introduce their applications to pooling designs, Cartesian authentication codes and vertex-transitive graphs.

© 2010 Published by Elsevier Inc.

1. Introduction

In this section we shall introduce the classical spaces, following notation and terminology from Wan’s book [19]. The classical spaces associated with the three types of forms (alternating bilinear, hermitian, and quadratic) are referred to by the same names as the groups associated with them:
symplectic, unitary, and orthogonal respectively. In this paper, we are concerned with those whose underlying vector spaces are of even dimension over a finite field.

Throughout this paper, we denote by \mathbb{F}_q a finite field with q elements and by $\mathbb{F}_q^{2\nu}$ the 2ν-dimensional row vector over \mathbb{F}_q for a fixed a positive integer ν. For an m-dimensional subspace P in $\mathbb{F}_q^{2\nu}$, we mean by a matrix representation of P an $m \times 2\nu$ matrix whose rows form a basis of P, denoted by the same symbol P. We shall work with partitioned matrices whose entries are themselves submatrices. For typographical convenience, we sometimes leave blank the zero submatrices. We write $I^{(r)}$ for the identity matrix of size r, and we omit r if it is clear from the context. Let

$$K = \begin{pmatrix} 0 & I^{(\nu)} \\ -I^{(\nu)} & 0 \end{pmatrix}.$$

The symplectic group of degree 2ν over \mathbb{F}_q with respect to K, denoted by $\text{Sp}_{2\nu}(\mathbb{F}_q)$, consists of all $2\nu \times 2\nu$ matrices T over \mathbb{F}_q satisfying $TKT^t = K$, where T^t denotes the transpose of T. The space $\mathbb{F}_q^{2\nu}$ together with the right multiplication action of $\text{Sp}_{2\nu}(\mathbb{F}_q)$ is called the 2ν-dimensional symplectic space over \mathbb{F}_q. An m-dimensional subspace P in $\mathbb{F}_q^{2\nu}$ is said to be of type (m, s) if PKP^t is of rank $2s$. In particular, subspaces of type $(m, 0)$ are called m-dimensional totally isotropic subspaces and ν-dimensional totally isotropic subspaces are called maximal totally isotropic subspaces.

Let $q = p^2$, where p is a prime power. Then \mathbb{F}_q has an involutive automorphism $a \mapsto \overline{a} = a^p$. Let

$$H = \begin{pmatrix} 0 & I^{(\nu)} \\ I^{(\nu)} & 0 \end{pmatrix}.$$

The unitary group of degree 2ν over \mathbb{F}_q, denoted by $\text{U}_{2\nu}(\mathbb{F}_q)$, consists of all $2\nu \times 2\nu$ matrices T over \mathbb{F}_q satisfying $HTH^t = H$. The vector space $\mathbb{F}_q^{2\nu}$ together with the right multiplication action of $\text{U}_{2\nu}(\mathbb{F}_q)$ is called the 2ν-dimensional unitary space over \mathbb{F}_q. An m-dimensional subspace P in $\mathbb{F}_q^{2\nu}$ is said to be of type (m, r) if PKP^t is of rank r. Similarly, subspaces of type $(m, 0)$ are called m-dimensional totally isotropic subspaces and ν-dimensional totally isotropic subspaces are called maximal totally isotropic subspaces.

It is more involved to define orthogonal spaces. Denote by $\mathcal{K}_{2\nu}$ the set of all $2\nu \times 2\nu$ alternate matrices over \mathbb{F}_q. Two $2\nu \times 2\nu$ matrices A and B over \mathbb{F}_q are said to be congruent mod $\mathcal{K}_{2\nu}$, denoted by $A \equiv B \pmod{\mathcal{K}_{2\nu}}$, if $A - B \in \mathcal{K}_{2\nu}$. Clearly, \equiv is an equivalence relation on the set of all $2\nu \times 2\nu$ matrices. Let $[A]$ denote the equivalence class containing A. Two matrix classes $[A]$ and $[B]$ are said to be coprime if there is a nonsingular $2\nu \times 2\nu$ matrix Q over \mathbb{F}_q such that $[QAQ^t] \equiv [B]$. Let

$$S_{2\nu} = \begin{pmatrix} 0 & I^{(\nu)} \\ -I^{(\nu)} & 0 \end{pmatrix}$$

according the q being odd or even, respectively. The orthogonal group of degree 2ν over \mathbb{F}_q with respect to $S_{2\nu}$, denoted by $\text{O}_{2\nu}(\mathbb{F}_q)$, consists of all $2\nu \times 2\nu$ matrices T over \mathbb{F}_q satisfying $[TS_{2\nu}T^t] \equiv [S_{2\nu}]$. The space $\mathbb{F}_q^{2\nu}$ together with the right multiplication action of $\text{O}_{2\nu}(\mathbb{F}_q)$ is called the 2ν-dimensional orthogonal space over \mathbb{F}_q. For q being odd, let

$$S_{2\nu+\gamma} = \begin{pmatrix} 0 & I^{(\nu)} \\ -I^{(\nu)} & 0 \end{pmatrix}, \quad \Gamma = \begin{cases} \emptyset, & \text{if } \gamma = 0, \\
(1) \text{ or } (z), & \text{if } \gamma = 1, \\
\text{diag}(1, -z), & \text{if } \gamma = 2, \end{cases}$$
where z is a fixed non-square element of \mathbb{F}_q. For q being even, let

$$S_{2s+\gamma}, \Gamma = \begin{pmatrix} 0 & 1^{(s)} \\ 0 & \Gamma \end{pmatrix}, \quad \Gamma = \begin{cases} \emptyset, & \text{if } \gamma = 0, \\
(1), & \text{if } \gamma = 1, \\
(\alpha, 1), & \text{if } \gamma = 2, \end{cases}$$

where α is a fixed element of \mathbb{F}_q such that $\alpha \notin \{x^2 + x \mid x \in \mathbb{F}_q\}$. An m-dimensional subspace P is a subspace of type $(m, 2s + \gamma, \alpha, \Gamma)$ if $PS_{2s+\gamma}, P^\Gamma$ is cogredient to $S_{2s+\gamma}$, G, $\alpha^{\dim(m-2s-\gamma)}$. If Γ is the empty set, we omit the symbol. In particular, subspaces of type $(m, 0, 0)$ are called m-dimensional totally isotropic subspaces and ν-dimensional totally isotropic subspaces are called maximal totally isotropic subspaces.

Let G_2, be one of the three classical groups acting on $\mathbb{P}^{2\nu}_q$. By [19, Theorems 3.7, 5.8, 6.4 and 7.6], the set of subspaces of the same type in $\mathbb{P}^{2\nu}_q$ forms an orbit under G_2. Denote by $\mathcal{M}(m, 0; 2\nu)$ the set of all m-dimensional totally isotropic subspaces of $\mathbb{P}^{2\nu}_q$. The action of G_2, on $\mathcal{M}(\nu, 0; 2\nu)$ gives rise to a dual polar association scheme (see [1]). Wan et al. [20] computed all intersection numbers of these dual polar schemes. As a generalization of dual polar schemes, we constructed association schemes from singular classical spaces (see [6–9]).

For $1 \leq m \leq \nu$, suppose $P, Q \in \mathcal{M}(\nu, 0; 2\nu)$, $U \in \mathcal{M}(m, 0; 2\nu)$ satisfying $\dim(P \cap Q) = \dim(P \cap U) = i$. Let

$$P^i_j(v, \nu; m) = \{R \in \mathcal{M}(m, 0; 2\nu) \mid \dim(P \cap R) = j, \dim(Q \cap R) = k\},
$$

$$P^i_j(v, m; \nu) = \{R \in \mathcal{M}(\nu, 0; 2\nu) \mid \dim(P \cap R) = j, \dim(U \cap R) = k\}.
$$

Note that the size of $P^i_j(v, \nu; m)$ is an intersection numbers of the dual polar scheme based on $\mathcal{M}(\nu, 0; 2\nu)$.

In this paper, we focus on the sizes of $P^i_j(v, \nu; m)$ and $P^i_j(v, m; \nu)$, and discuss their applications. In Section 2 we calculate the sizes of these two sets. In Section 3 we construct a family of error-correcting pooling designs, and exhibit its disjunct property. We construct a family of Cartesian authentication codes and vertex transitive graphs in Sections 4 or 5, respectively.

2. The cardinalities of $P^i_j(v, \nu; m)$ and $P^i_j(v, m; \nu)$

In this section we shall compute the sizes of $P^i_j(v, \nu; m)$ and $P^i_j(v, m; \nu)$. We begin with some useful lemmas.

Lemma 2.1 [19, Theorems 3.30, 4.9, 5.31 and 6.37]. Let $S(t, m)$, $\mathcal{H}(t, m)$ and $\mathcal{K}(t, m)$ be the sets of all $m \times m$ symmetric, hermitian and alternate matrices of rank t over \mathbb{F}_q, respectively. Then

$$|S(t, m)| = q^{t/2}(t/2 + 1) \prod_{l=t/2+1}^m (q^l - 1)/\left(\prod_{l=1}^{t/2} (q^{l} + 1) \prod_{l=1}^{m-t} (q^{l} - 1)\right),$$

$$|\mathcal{H}(t, m)| = q^{t(t+1)/4} \prod_{i=m-t+1}^m (q^i - 1)/\prod_{i=1}^t (q^{i/2} - (-1)^i),$$

$$|\mathcal{K}(t, m)| = q^{t/2(t-2) - 1} \prod_{l=m-t+1}^m (q^l - 1)/\prod_{l=1}^{t/2} (q^{2l} - 1).$$
Lemma 2.2 [20, Chapter 1, Theorem 5]. The number of \(m \times n \) matrices with rank \(i \) over \(\mathbb{F}_q \) is

\[
N(i; m \times n) = q^{(i-1)/2} \prod_{t=n-i+1}^{n} (q^t - 1),
\]

where \(\left[\begin{array}{c} m \\ i \end{array} \right]_q = \prod_{t=m-i+1}^{m} (q^t - 1) / \prod_{t=1}^{i} (q^t - 1). \)

Lemma 2.3. Let \(1 \leq m \leq n \). Then the number of all \(m \times n \) matrices \((A \ B) \) of rank \(r \) over \(\mathbb{F}_q \), with \(A \) respectively symmetric, hermitian and alternate, is given by

\[
N^s(r; m \times n) = \sum_{t=r - \min(n-m, r)}^{r} q^{(n-m)} N(r-t; (m-t) \times (n-m)) \begin{cases} |S(t, m)|, & \text{in the symmetric case,} \\ |H(t, m)|, & \text{in the hermitian case,} \\ |K(t, m)|, & \text{in the alternate case.} \end{cases}
\]

Proof. For any \(m \times m \) matrix \(A \) of rank \(t \), let \(\mathcal{M}(A) \) denote the set of all \(m \times n \) matrices \((A \ B) \) of rank \(r \) over \(\mathbb{F}_q \). For each \((A \ B) \in \mathcal{M}(A) \), there exists a nonsingular \(m \times m \) matrix \(T \) such that

\[
T(A \ B) = (TA \ TB) = \begin{pmatrix} A_1 & B_1 \\ 0 & B_2 \end{pmatrix}^t_{m-t},
\]

and thus we have

\[
\text{rank } B_2 = r - t, \quad |\mathcal{M}(A)| = |\mathcal{M}(TA)|.
\]

By Lemma 2.2,

\[
|\mathcal{M}(A)| = |\mathcal{M}(TA)| = q^{(n-m)} N(r-t; (m-t) \times (n-m)).
\]

Since \(r - \min(n-m, r) \leq r \leq r \), the desired formula follows from Lemma 2.1.

Lemma 2.4. Let \(1 \leq m \leq v, P_1, P_2 \in A(m, 0; 2v) \) and \(Q_1, Q_2 \in A(m, 0; 2v) \). Then \(\dim(P_1 \cap Q_1) = \dim(P_2 \cap Q_2) \) if and only if there exists a \(T \in G_{2v} \) such that \(P_1 T = P_2, Q_1 T = Q_2 \).

Proof. We illustrate with the symplectic case here. Suppose that \(P_1 \cap Q_1 = D_1, P_2 \cap Q_2 = D_2 \) and \(\dim(P_1 \cap Q_1) = \dim(P_2 \cap Q_2) = i \). Then \(P_1, Q_1, P_2, Q_2 \) have matrix representations of the forms

\[
P_1 = \begin{pmatrix} P_{11} \\ D_1 \end{pmatrix}, \quad Q_1 = \begin{pmatrix} D_1 \\ Q_{11} \end{pmatrix}, \quad P_2 = \begin{pmatrix} P_{21} \\ D_2 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} D_2 \\ Q_{21} \end{pmatrix},
\]

respectively. Since \(\dim(P_1 + Q_1) = v + m - i \), by [19, Theorem 3.6], \(\text{rank } (P_{11}Q_{11}^t) \geq m - i \), which implies that \(\text{rank } (P_{11}Q_{11}^t) = m - i \). Similarly, \(\text{rank } (P_{21}Q_{21}^t) = m - i \). Hence, there exist two \((v - i) \times (v - i) \) nonsingular matrices \(A_1, A_2 \) and two \((m - i) \times (m - i) \) nonsingular matrices \(B_1, B_2 \).
such that

\[
\begin{pmatrix}
A_1 P_{11} \\
D_1 \\
B_1 Q_{11}
\end{pmatrix}
K
\begin{pmatrix}
A_1 P_{11} \\
D_1 \\
B_1 Q_{11}
\end{pmatrix}^t
=
\begin{pmatrix}
A_2 P_{21} \\
D_2 \\
B_2 Q_{21}
\end{pmatrix}
K
\begin{pmatrix}
A_2 P_{21} \\
D_2 \\
B_2 Q_{21}
\end{pmatrix}^t
= \begin{pmatrix}
0 & 0 \\
0 & 0 \\
-(I^{(m-i)} & 0)
\end{pmatrix}.
\]

By [19, Theorem 3.11], there exists a \(T \in \text{Sp}_{2v}(\mathbb{F}_q) \) such that \(P_1 T = P_2, Q_1 T = Q_2 \). The converse is obvious. \(\square \)

For \(1 \leq m \leq v \), suppose that \(P, Q \in \mathcal{M}(v, 0; 2v) \) with \(\dim(P \cap Q) = i \). Recall that \(P_{jk}^i(v, v; m) \) is the set of all \(R \in \mathcal{M}(m, 0; 2v) \) satisfying \(\dim(P \cap R) = j \) and \(\dim(R \cap Q) = k \). By Lemma 2.4, \(P_{jk}^i(v, v; m) = |P_{jk}^i(v, v; m)| \) is independent of any particular choices of \(P \) and \(Q \) with \(\dim(P \cap Q) = i \).

Theorem 2.5. Let \(1 \leq m \leq v \). Then \(P_{jk}^i(v, v; m) = \)

\[
\sum_{\alpha+\gamma \leq v-i, \beta+\rho \leq i, \beta+\gamma = k, \beta \leq \alpha+\gamma, \alpha+\beta = m} q^{(\alpha+\gamma)(i-\beta-\rho)+\rho(2v-i-m)} \begin{pmatrix} v-i & i \\ \alpha & \beta \end{pmatrix}^t \begin{pmatrix} v-i-\alpha & i-\beta \\ \rho & q \end{pmatrix}^t \times N_q^i(\alpha+\beta-j; \alpha \times (v-i-\gamma))
\]

\[
\begin{cases}
q^{\rho(\rho+1)/2}, & \text{the symplectic case}, \\
q^{\rho^2/2}, & \text{the unitary case}, \\
q^{\rho(\rho-1)/2}, & \text{the orthogonal case}.
\end{cases}
\]

Proof. By Lemma 2.4, we may take

\[
P = (I^{(v)} 0^{(v)}), \quad Q = (0^{(0,v-i)} I^{(v)} 0^{(v,i)}).
\]

For any \(R \in P_{jk}^i(v, v; m) \), write \(R \) in block form

\[
R = \begin{pmatrix}
R_1 & R_2 & R_3 & R_4
\end{pmatrix}.
\]

Suppose that \(\text{rank } R_4 = \rho, \text{rank } (R_1 R_4) = \rho + \alpha, \text{rank } (R_1 R_3 R_4) = \rho + \alpha + \gamma \) and \(\beta = m - (\rho + \alpha + \gamma) \). By suitable row elementary transformations, \(R \) may be reduced to the form

\[
\begin{pmatrix}
v-i & i & v-i & i \\
R_{11} & R_{12} & R_{13} & 0 \\
0 & R_{22} & 0 & 0 \\
0 & R_{32} & R_{33} & 0 \\
R_{41} & R_{42} & R_{43} & R_{44}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\alpha \\
\beta \\
\gamma \\
\rho
\end{pmatrix},
\]

where \(\text{rank } R_{44} = \rho, \text{rank } R_{11} = \alpha, \text{rank } R_{33} = \gamma \) and \(\text{rank } R_{22} = \beta \). Note that there are \(\begin{pmatrix} v-i \\ \alpha \end{pmatrix} \) choices for subspace \(R_{11} \) and \(\begin{pmatrix} i \\ \beta \end{pmatrix} \) choices for \(R_{22} \). By the transitivity of \(G_{2v} \) on the set of subspaces with
the same type, the number of \(R \) does not depend on any particular choices for \(R_{11} \) and \(R_{22} \). Without loss of generality we may take

\[
R_{11} = (I^{(\alpha)} 0), \quad R_{22} = (I^{(\beta)} 0).
\]

Then \(R \) has a matrix representation of the form

\[
\begin{pmatrix}
\alpha & v-\alpha & \beta & i-\beta \\
\beta & i-\alpha & \alpha & v-\alpha \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

(1)

Since \(R \) is totally isotropic, we have \(R_{331} = 0 \) and \(R_{441} = 0 \). So rank \(R_{332} = \gamma \), rank \(R_{442} = \rho \) and \(\gamma \leq v-\alpha, \rho \leq i-\beta \). Note that there are \([v-\alpha-\gamma \gamma \rho q] \) choices for subspace \(R_{332} \) and \([i-\beta \rho q] \) choices for \(R_{442} \). Similarly, the number of \(R \) does not depend on any particular choices for \(R_{332} \) and \(R_{442} \). Without loss of generality we may take

\[
R_{332} = (I^{(\gamma)} 0), \quad R_{442} = (I^{(\rho)} 0).
\]

Then \(R \) must have the following unique matrix representation

\[
\begin{pmatrix}
\alpha & \gamma & v-\alpha-\gamma & \beta & i-\beta & \alpha & v-\alpha-\gamma & \beta & i-\beta-
ho \\
\beta & \gamma & i-\alpha & \alpha & v-\alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

(2)

For the symplectic case,

\[
R_{131}^{t} = R_{131}, \quad R_{132}^{t} R_{412}^{t} = R_{431}^{t} + R_{1221}
\]

(3)

for the unitary case,

\[
R_{131} + \tilde{R}_{131}^{t} = 0, \quad R_{132}^{t} \tilde{R}_{4122}^{t} + \tilde{R}_{431}^{t} + R_{1221} = 0,
\]

(4)

for the odd orthogonal case (i.e., the base field \(\mathbb{F}_q \) is of odd characteristic),

\[
R_{131} + R_{131}^{t} = 0, \quad R_{132}^{t} \tilde{R}_{4122}^{t} + R_{431}^{t} + R_{1221} = 0.
\]

(5)

for the even orthogonal case,

\[
R_{131} = 0, \quad R_{132} \tilde{R}_{4122}^{t} + \tilde{R}_{431} + R_{1221} = 0,
\]

(6)

From \(\dim(P \cap R) = j \) and \(\dim(Q \cap R) = k \) we deduce that \(j \leq \alpha + \beta, \beta + \gamma = k \) and rank \((R_{131} R_{1322}) = \alpha + \beta - j \). By Lemma 2.3 and (3)–(6), the number of matrices \((R_{131} R_{1322}) \) of rank \(\alpha + \beta - j \) is
\[N_\alpha^*(\alpha + \beta - j; \alpha \times (v - i - \gamma)). \]

Once \(R_{131}, R_{1322}, R_{4121}, R_{431} \) and \(R_{4121} \) are fixed, the matrices \(R_{1221} \) and \(R_{3221} \) are uniquely determined; and there are

\[q^{(\rho+1)/2}, q^{\rho^2/2}, q^{\rho(\rho-1)/2}, q^{\rho(\rho-1)/2} \]

choices for \(R_{4221} \) such that (3), (4), (5) and (6) hold, respectively. Since \(R_{1222}, R_{3222} \) and \(R_{4222} \) may be any \(\alpha \times (i - \beta - \rho), \gamma \times (i - \beta - \rho) \) and \(\rho \times (i - \beta - \rho) \) matrices over \(\mathbb{F}_q \), respectively, there are \(q^{(i-\beta-\rho)(\alpha+\gamma+\rho)} \) choices for \(R_{1222}, R_{3222} \) and \(R_{4222} \). Therefore, the number of subspaces of the form (2) is

\[q^{(\alpha+\gamma)(i-\beta-\rho)+\rho(2v-i-m)} N_\alpha^*(\alpha + \beta - j; \alpha \times (v - i - \gamma)) \]

\[\begin{cases} q^{\rho(\rho+1)/2}, & \text{the symplectic case,} \\ q^{\rho^2/2}, & \text{the unitary case,} \\ q^{\rho(\rho-1)/2}, & \text{the orthogonal case.} \end{cases} \]

Hence the desired assertion follows. \(\square \)

Corollary 2.6. Let \(1 \leq m \leq v \). Then

\[p_{i j}^v(v, v; m) = q^{(m-j)(v-m)} \begin{bmatrix} v \\ j \end{bmatrix}_q \begin{bmatrix} v - j \\ m - j \end{bmatrix}_q \begin{cases} q^{(m-j)(m-j+1)/2}, & \text{the symplectic case,} \\ q^{(m-j)^2/2}, & \text{the unitary case,} \\ q^{(m-j)(m-j-1)/2}, & \text{the orthogonal case.} \end{cases} \]

For \(1 \leq m \leq v \), let \(P \in \mathcal{M}(v, 0; 2v), U \in \mathcal{M}(m, 0; 2v) \) with \(\dim(P \cup U) = i \). Recall that \(p_{i j}^v(v, m; v) \) consists of \(R \in \mathcal{M}(v, 0; 2v) \) with \(\dim(P \cap R) = j \) and \(\dim(U \cap R) = k \). By Lemma 2.4, \(p_{i j}^v(v, m; v) = |p_{i j}^v(v, m; v)| \) is independent of any particular choice for \(P \) and \(U \) with \(\dim(P \cap U) = i \).

Corollary 2.7. We have \(p_{i j}^v(v, m; v) = p_{i k}^v(v, v; m) \cdot p_{i j}^v(v, v; v) / p_{i j}^v(v, v; m) \).

Proof. Let

\[M = \{(P, Q, R) \mid P, R \in \mathcal{M}(v, 0; 2v), Q \in \mathcal{M}(m, 0; 2v), \dim(P \cap Q) = i, \dim(P \cap R) = j, \dim(Q \cap R) = k \} \].

We count \(M \) in two different ways. For a fixed subspace \(P \in \mathcal{M}(v, 0; 2v) \), by Corollary 2.6, there are \(p_{i j}^v(v, v; m) \) subspaces \(Q \in \mathcal{M}(m, 0; 2v) \) satisfying \(\dim(P \cap Q) = i \). For two fixed subspaces \(P \in \mathcal{M}(v, 0; 2v), Q \in \mathcal{M}(m, 0; 2v) \) with \(\dim(P \cap Q) = i \), there are \(p_{i j}^v(v, m; v) \) subspaces \(R \in \mathcal{M}(v, 0; 2v) \) satisfying \(\dim(P \cap R) = j \) and \(\dim(Q \cap R) = k \). It follows that

\[|M| = p_{i j}^v(v, m; v) \cdot p_{i j}^v(v, v; m) \cdot N(v, 0; 2v). \]

For a fixed subspace \(P \in \mathcal{M}(v, 0; 2v) \), by Corollary 2.6 again, there are \(p_{i j}^v(v, v; v) \) subspaces \(R \in \mathcal{M}(v, 0; 2v) \) satisfying \(\dim(P \cap R) = j \). For two fixed maximal totally isotropic subspaces \(P, R \) with \(\dim(P \cap R) = j \), there are \(p_{i k}^v(v, m; m) \) subspaces \(Q \in \mathcal{M}(m, 0; 2v) \) satisfying \(\dim(P \cap Q) = i \) and \(\dim(R \cap Q) = k \). By Theorem 2.5,

\[|M| = p_{i j}^v(v, v; v) \cdot p_{i j}^v(v, v; v) \cdot N(v, 0; 2v). \]

Hence the desired assertion follows. \(\square \)
Remark. The action of G_{2r} on $\mathcal{M}(m, 0; 2v) \cup \mathcal{M}(v, 0; 2v)$ defines a coherent configuration (see [10] for coherent configurations). The parameters $p_{jk}^v(v, v; m)$ and $p_{jj}^v(v, m; v)$ are intersection numbers of this configuration.

3. Pooling designs

A binary matrix is d^e-disjunct if for any column C and any d others columns, there exist at least e rows such that each of them has value 1 at column C and value 0 at all the other d columns. A d^1-disjunct matrix is also called d-disjunct. d^e-disjunct matrices form the basis for error-tolerant nonadaptive group testing algorithms. These algorithms have applications in many areas such as DNA library screening [2]. There are several constructions of d^e-disjunct matrices in the literatures [3,5,12,14–16].

In this section, as an application of the theorems in Section 2, we shall construct a family of d^e-disjunct matrices and discuss their disjunct property.

For $1 \leq m < v$ and $0 \leq j \leq m$, let M be the matrix with rows and columns respectively indexed by $\mathcal{M}(m, 0; 2v)$ and $\mathcal{M}(v, 0; 2v)$ in which $M(P, Q) = 1$ if $\dim(P \cap Q) = j$ and 0 otherwise.

Lemma 3.1 [19, Corollaries 3.19, 5.20, 6.23 and 7.25]. Let $1 \leq m \leq v$. Then the number of m-dimensional totally isotropic subspaces in \mathbb{F}_q^{2v} is

$$N(m, 0; 2v) = \begin{cases} \prod_{i=v-m+1}^{v} (q^{2i} - 1) / \prod_{i=1}^{m} (q^i - 1), & \text{the symplectic case,} \\ \prod_{i=v-m+1}^{v} (q^{i-1} - 1)(q^{i-1/2} + 1) / \prod_{i=1}^{m} (q^i - 1), & \text{the unitary case,} \\ \prod_{i=v-m+1}^{v} (q^{i-1} - 1)(q^{i-1} + 1) / \prod_{i=1}^{m} (q^i - 1), & \text{the orthogonal case.} \end{cases}$$

Lemma 3.2. Let $1 \leq m \leq v$ and $P \in \mathcal{M}(m, 0; 2v)$. Then the number of subspaces $Q \in \mathcal{M}(v, 0; 2v)$ with $\dim(P \cap Q) = j$ is $N(v, 0; 2v)p_{jj}^v(v, v; m)/N(m, 0; 2v)$.

Proof. Let \[\mathcal{M} = \{(P, Q) \mid P \in \mathcal{M}(m, 0; 2v), Q \in \mathcal{M}(v, 0; 2v), \dim(P \cap Q) = j\}. \]

Now we count \mathcal{M} in two different ways. For a fixed subspace P of type $(m, 0)$, suppose that there are α maximal totally isotropic subspaces Q satisfying $\dim(P \cap Q) = j$. By Lemma 3.1

$$|\mathcal{M}| = \alpha \cdot N(m, 0; 2v).$$

For a fixed maximal totally isotropic subspace Q, there are $p_{jj}^v(v, v; m)$ subspaces P satisfying $\dim(P \cap Q) = j$. By Lemma 3.1 and Corollary 2.6,

$$|\mathcal{M}| = p_{jj}^v(v, v; m)N(v, 0; 2v).$$

Hence $\alpha = N(v, 0; 2v)p_{jj}^v(v, v; m)/N(m, 0; 2v)$, as desired. \(\square \)

By Lemmas 3.1, 3.2 and Corollary 2.6, M is an $N(m, 0; 2v) \times N(v, 0; 2v)$ matrix, which has constant row weight $N(v, 0; 2v)p_{jj}^v(v, v; m)/N(m, 0; 2v)$ and constant column weight $p_{jj}^v(v, v; m)$.

Theorem 3.3. Let $1 \leq m < v$ and $0 \leq j \leq m$. If $1 \leq d \leq \lfloor p_{jj}^v(v, v; m)/\alpha \rfloor + 1$, then M is d^e-disjunct, where $e = p_{jj}^v(v, v; m) - d\alpha$, $\alpha = \max\{p_{jj}^v(v, v; m) \mid 0 \leq l \leq v - 1\}$.

Proof. Pick any \(d + 1 \) distinct columns \(C, C_1, C_2, \ldots, C_d \) of \(M \). By Theorem 2.5, we may assume that the number of subspaces \(P \in \mathcal{M}(m, 0; 2v) \) satisfying \(\dim(P \cap C) = j \) and \(\dim(P \cap C_i) = j \) is at most

\[
\alpha = \max\{p_{jj}(v, v; m) | 0 \leq l \leq v - 1\}.
\]

Hence the number of subspaces \(P \) of \(\mathcal{M}(m, 0; 2v) \) satisfying \(\dim(P \cap C) = j \) and \(\dim(P \cap C_1), \ldots, \dim(P \cap C_d) \neq j \) is at least

\[
e = p_{jj}(v, v; m) - d\alpha,
\]

from which follows that \(M \) is \(d^e \)-disjunct. Since \(e \geq 1 \), we obtain

\[
d \leq \left\lfloor \frac{p_{jj}(v, v; m)}{\alpha} \right\rfloor + 1,
\]

as desired. \(\Box \)

Remark. If \(j = m \), the disjunct matrices in Theorem 3.3 are the disjunct matrices based on pooling spaces in [11, Example 4.2].

4. Authentication codes

Authentication codes were invented in 1974 by Gilbert et al. [4] for protecting the integrity of information. For a survey of authentication codes, we recommend Simmons [17]. In 1992, Wan [18] constructed Cartesian authentication codes from the unitary space.

In this section we shall construct a family of authentication codes, following notation and terminology in [18]. As a by-product, we obtain some enumeration formulas in \(2v \)-dimensional classical spaces.

Theorem 4.1. Let \(\mathbb{P}^{2v} \) be a \(2v \)-dimensional classical spaces. Suppose that \(2 \leq i \leq v - 1 \) and \(P_0 = (I^{(v)} 0^{(v)}) \). Define the source states to be all subspaces of dimension \(i \) contained in \(P_0 \), the encoding rules to be the maximal totally isotropic subspaces intersecting \(P_0 \) at \(\{0\} \), and the messages to be the subspaces of type \(\vartheta \) intersecting \(P_0 \) at \(i \)-dimensional subspaces, where \(\vartheta = (v + i, i), (v + i, 2i) \) or \((v + i, 2i, i) \) according to the symplectic, unitary or orthogonal case, respectively. Denote the set of source states, the set of encoding rules, and the set of messages by \(S, E \) and \(\mathcal{M} \), respectively. Given any \(P \in S \) and any \(P_1 \in E \), \(P + P_1 \) is a message into which the source state \(P \) is encoded under the encoding rule \(P_1 \). The above construction yields a Cartesian authentication code, whose parameters are

\[
|S| = \begin{bmatrix} v \\ i \end{bmatrix}_q,
\]

\[
|E| = \begin{cases} q^{v(v+1)/2}, \text{ the symplectic case,} \\ q^{v^2/2}, \text{ the unitary case,} \\ q^{v(v-1)/2}, \text{ the orthogonal case,} \end{cases}
\]

\[
|M| = \begin{cases} q^{(v-i)(v+i+1)/2} \begin{bmatrix} v \\ i \end{bmatrix}_q, \text{ the symplectic case,} \\ q^{(v-i)(v+i)/2} \begin{bmatrix} v \\ i \end{bmatrix}_q, \text{ the unitary case,} \\ q^{(v-i)(v+i-1)/2} \begin{bmatrix} v \\ i \end{bmatrix}_q, \text{ the orthogonal case.} \end{cases}
\]
Suppose that the encoding rule is chosen according to a uniform probability distribution, and denote the probabilities of a successful impersonation attack and a successful substitution attack by P_I and P_S, respectively. Then

$$P_I = \begin{cases}
\frac{1}{q^{(\nu-i)(\nu+i+1)/2}}, & \text{the symplectic case,}
\frac{1}{q^{(\nu-i)(\nu+i)/2}}, & \text{the unitary case,}
\frac{1}{q^{(\nu-i)(\nu+i-1)/2}}, & \text{the orthogonal case,}
\end{cases}$$

and P_I is optimal.

Proof. Let P be a source state and P_1 be an encoding rule. Since $P \subseteq P_0$ and $P_0 \cap P_1 = \{0\}$, $P + P_1$ is of type ϑ. By

$$\dim((P + P_1) \cap P_0) = \dim(P + P_1) + \dim P_0 - \dim((P + P_1) + P_0) = i,$$

we have $(P + P_1) \cap P_0 = P$. It follows that $P + P_1$ is a message. So P_1 defines a map $f : S \mapsto \mathcal{M}$ by $f(P) = P + P_1$.

Next, let Q be a message such that $P = P_0 \cap Q$. Then P is a source state. We may take

$$Q = \begin{pmatrix} v & v \\ B & 0 \\ A & I \end{pmatrix}, \quad \text{where } P = (B \ 0).$$

Since rank $B = i$, that there exists a $v \times v$ nonsingular matrix T_1 such that $BT_1 = (I(I_0 \ 0^{(i,v-i)}))$. Let $T = \text{diag}(T_1, S_1^{-1}) \in G_{2v}$, where $S_1 = T_1^T, \overline{T}_1$ or T_1^T according to the symplectic, unitary or orthogonal case, respectively, such that $P_0T = P_0$ and

$$QT = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & A_1 & I & 0 \\ 0 & A_2 & 0 & I \end{pmatrix}_{v-i}.$$

Since QT is of type ϑ, we have $A_2 - A_2^T = 0, A_2 + \overline{A}_2 = 0$ or $A_2 + A_2^T = 0$ according to the symplectic, unitary or orthogonal case, respectively. Take

$$P_1T^{-1} = \begin{pmatrix} I & 0 & 0 \\ 0 & A_1 & I \\ B_1 & A_2 & 0 \end{pmatrix}_{v-i}.$$

where $B_1 = A_1^T, -A_1^T$ or $-A_1^T$ according to the symplectic, unitary or orthogonal case, respectively. Then $P_1 \in \mathcal{E}$ satisfying $P + P_1 = Q$. Therefore, f is a surjective map.
Suppose that there is another source state P' encoded into the message Q. Then $P' \subseteq P_0$ and $P' \subseteq Q$; and so $P' \subseteq P_0 \cap Q = P$, which implies that $P = P'$. Hence the source state P is uniquely determined by Q.

Clearly, $|S| = \begin{bmatrix} v \\ q \end{bmatrix}$. By Corollary 2.6, $|E| = p^{v_0}_0(v, v; v)$. Let Q be a message. Without loss of generality, we may take

$$Q = \begin{pmatrix} I^{(i)} & 0^{(i, v-i)} & Q^{(i, v)} \\ 0 & 0 & I^{(v)} \end{pmatrix}.$$

Then the encoding rules contained in Q have a matrix representations of the form

$$\begin{pmatrix} A_1 & 0^{(v, v-i)} & I^{(i)} \\ A_2 & 0 & I^{(v-i)} \end{pmatrix}. \tag{7}$$

The subspaces of the form (7) are totally isotropic, so $A_2 = 0$ and $A_1 - A_1' = 0, A_1 + A_1' = 0$ or $A_2 + A_2' = 0$ according to the symplectic, unitary or orthogonal case, respectively. Hence, the number of encoding rules contained in Q is $\alpha = q^{i+(i+1)/2}, q^{2i/2}$ or $q^{i-(i-1)/2}$ according to the symplectic, unitary or orthogonal case, respectively. So $|M| = |S| \cdot |E|/\alpha$.

Let Q, Q' be two distinct messages containing a common encoding rule P_1, and let P, P' be the unique source states contained in them, respectively. Then $P = Q \cap P_0$, $P' = Q' \cap P_0$ and

$$Q = P \oplus P_1, \quad Q' = P' \oplus P_1,$$

where $X \oplus Y$ denotes the direct sum of X and Y.

We claim that $Q \cap Q' = (P \cap P') \oplus P_1$. For any $w \in Q \cap Q'$, we have $w = w + z_1 = x' + z_2$, where $x \in P, x' \in P'$ and $z_1, z_2 \in P_1$. Since $P + P' \subseteq P_0$, $x - x' = z_2 - z_1 \in P_0 \cap P_1$, which implies $z_1 = z_2$ and $x = x'$. Then $w \in (P \cap P') \oplus P_1$, and we prove the claim.

Let $d(P \cap P') = r$. Since $Q \neq Q'$, we have $\max\{2i - m, 0\} \leq r \leq i - 1$. We assert that the set of encoding rules contained in both Q and Q' coincides with the set of maximal totally isotropic subspaces P_1 contained in $Q \cap Q'$ such that $P_1 \cap (P \cap P') = \{0\}$. Indeed, let P_1 be the maximal totally isotropic subspace contained in $Q \cap Q'$ such that $P_1 \cap (P \cap P') = \{0\}$. Then

$$P_1 \cap P_0 \subseteq Q \cap Q' \cap P_0 \subseteq Q \cap P_0, \quad Q' \cap P_0.$$

Therefore, $P_1 \cap P_0 \subseteq P_1 \cap (P \cap P') = \{0\}$, which implies that P_1 is an encoding rule contained in both Q and Q'. Conversely, let P_1 be an encoding rule contained in both Q and Q', that is, P_1 is a maximal totally isotropic subspace contained in both Q and Q' such that $P_1 \cap P = \{0\}$ and $P_1 \cap P' = \{0\}$. Then P_1 is a maximal totally isotropic subspace contained in $Q \cap Q'$ such that $P_1 \cap (P \cap P') = \{0\}$, and we prove the above assertion.

Hence the number of encoding rules contained in Q and Q' is $q^{r(r+1)/2}, q^{r/2}$ or $q^{r(r-1)/2}$ according to the symplectic, unitary or orthogonal case, respectively. Since $\max\{2i - m, 0\} \leq r \leq i - 1$, we obtain P_1 and P_3. It is obvious that P_1 is optimal. \(\square\)

Corollary 4.2. Let \mathbb{F}_q^{2v} be a $2v$-dimensional classical space. Let $0 \leq i \leq v$ and P_0 be a fixed maximal totally isotropic subspace of \mathbb{F}_q^{2v}. Then the number of subspaces Q of type \mathfrak{g} satisfying $\dim(P_0 \cap Q) = i$ is

$$n_i(v; \mathfrak{g}) = \begin{cases} q^{(v-i)(v+i+1)/2} \begin{bmatrix} v \\ i \end{bmatrix}_q, & \text{the symplectic case,} \\
q^{(v-i)(v+i)/2} \begin{bmatrix} v \\ i \end{bmatrix}_q, & \text{the unitary case,} \\
q^{(v-i)(v+i-1)/2} \begin{bmatrix} v \\ i \end{bmatrix}_q, & \text{the orthogonal case,} \end{cases}$$
where \(\vartheta = (v + i, i) \), \((v + i, 2i)\) or \((v + i, 2i, i)\) according to the symplectic, unitary or orthogonal case, respectively.

Corollary 4.3. For \(0 \leq i \leq v \), let \(Q_0 \) be a fixed subspace of type \(\vartheta \) in \(\mathbb{P}^2_{q,v} \), where \(\vartheta = (v + i, i) \), \((v + i, 2i)\) or \((v + i, 2i, i)\) according to the symplectic, unitary or orthogonal case, respectively. Then the number of maximal totally isotropic subspaces \(P \) satisfying \(\dim(P \cap Q_0) = i \) is

\[
N_i(v; \vartheta)N(v, 0; 2v) \frac{N(\vartheta; 2v)}{N(\vartheta; 2v)}
\]

where \(N(\vartheta; 2v) \) is the number of subspaces of \(\mathbb{P}^2_{q,v} \) of type \(\vartheta \) (see [19]).

Proof. The proof is similar to that of Lemma 3.2, and thus omitted. \(\square \)

5. Graphs

In this section we shall construct a family of vertex transitive graphs.

For \(0 \leq i \leq m \leq v \), suppose that \(W_0 \) is a fixed \(m \)-dimensional totally isotropic subspace in \(\mathbb{P}^2_{q,v} \). Let \(X^{(i)} \) be the set of all the maximal totally isotropic subspaces \(P \) of \(\mathbb{P}^2_{q,v} \) satisfying \(\dim(P \cap W_0) = i \).

Define a graph \(\Gamma \) whose vertex set is the set \(X^{(i)} \), and two vertices \(P \) and \(Q \) are adjacent if and only if \(\dim(P \cap Q) = v - 1 \). Then \(\Gamma \) is a subgraph of the dual polar graph \(\Delta \) based on \(M(v, 0; 2v) \). If \(m = v \), then \(\Gamma \) is the \((v - i)\)-th subconstituent of \(\Delta \) (see [13, 21, 22]).

The stabilizer \(G_{2v}(W_0) \) of \(W_0 \) in \(G_{2v} \) is an automorphism group of \(\Gamma \), by Lemma 2.4 and Corollary 2.7. \(\Gamma \) is a vertex transitive graph of degree \(p^{n}_{v - 1,i}(v, m; v) \). Lemma 3.2 implies that \(\Gamma \) has \(N(v, 0; 2v)p^{n}_{v - 1,i}(v, v; m)/N(m, 0; 2v) \) vertices.

Let \(G_{2v}(W_0) \) act on the set \(X^{(i)} \times X^{(i)} \) in a natural way as

\[
(P, Q)T = (PT, QT), \quad \forall P, Q \in X^{(i)}, \quad \forall T \in G_{2v}(W_0).
\]

Let \(A_0, A_1, \ldots, A_t \) be the orbits of this action. Since \(G_{2v}(W_0) \) acts transitively on \(X^{(i)} \), the configuration \((X^{(i)}, \{A_j\}_{0 \leq j \leq t}) \) forms a symmetric association scheme (see [1]). We will study these association schemes in a separate paper.

Acknowledgment

We would like thank the referees for their valuable suggestions. This research is supported by NCET-08-0052, NSF of China (10971052, 10871027), Hunan Provincial Natural Science Foundation of China (09JJ3006), and the Fundamental Research Funds for the Central Universities of China.

References