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An intrinsic characterization is given of those finite-dimensional subspaces whose 
metric projections admit continuous selections. 0 1988 Academic Press, Inc 

1. INTRODUCTION 

In the abstract theory of best approximation, the metric projection is the 
fundamental object of study and it is the most important mapping arising 
from this area. Let M be a subspace of a normed linear space X. For each x 
in X, the set of best approximations to x from M is given by 

P(x)= {.YEM: Ilx-yll=44 Ml}, 

where d(x, M) = inf { )I x - y /I : y E M). The set-valued mapping thus defined 
is called the metric projection onto M. A selection for P or a metric 
selection for M is any single-valued function s from X to M such that 
S(X) E P(x) for all x E X. 

It is an easy consequence of the well-known Michael selection theorem 
(see [3]) that when M is completed, P has a continuous selection if P is 
lower semicontinuous; but we can give examples to show that the converse 
fails. In 1983, F. Deutsch and P. Kenderov posed a kind of continuity for 
set-valued mappings called “almost lower semicontinuity” and they proved 
that it is the necessary condition for P to admit a continuous selection. 
When M is one-dimensional, the condition is also sufficient. Furthermore, 
F. Deutsch posed in [I] the following open problem: 

A4 is an n-dimensional subspace (n > l), P is a metric projection onto M. 
If P is almost lower semicontinuous, must P have a continuous selection? 

In this paper, we study the concepts of almost lower semicontinuity and 
lower semicontinuity in depth and obtain some useful equivalent con- 
ditions; then we prove the main theorem which gives an affirmative answer 
to the above problem. 
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Throughout this paper, M will always denote some arbitrary but fixed 
finite-dimensional subspace of the normed linear space X, and P will 
denote the metric projection onto M. Note that a finite-dimensional sub- 
space is always proximinal, that is, P(x) # 4 for all x E X. Furthermore, 
P(x) is a compact convex subset of M. 

2. SOME DEFINITIONS AND THEIR EQUIVALENT CONDITIONS 

First of all we state the following basic definition. 

DEFINITION 2.1. The metric projection P is called: 

(1) almost lower semicontinuous also at x, if for each E > 0, there is a 
neighborhood V of x such that 

n vwy), E):y~ VI ~4, 

where @P(x), E) = {ZE M: d(z, P(y)) < E}. If P is alsc at all XE X, P is 
called alsc 

(2) lower semicontinuous (kc) at XE X, if for each open set W with 
Wn P(x) # 4, there is a neighborhood V of x such that 

P(y)n WZd for all y E V. 

If P is lsc at each x E X, P is called lsc. 

For any arbitrary set-valued mapping F: X -+ M, we can give a similar 
definition. 

PROPOSITION 2.2. P is lsc at x if and only iffor every E > 0, there exists a 
neighborhood V of x such that 

P(x) c B(P( y), E) for all y E V, 

Proof: Necessity. For each E > 0, since P(x) is compact and {B(g, 42): 
ge P(x)} covers P(x), there exists a subcover {B(gi, s/2): i= 1,2, . . . . k}. 
For every g,, since gjf P(x), there is a neighborhood Vi of x such that 

P(Y) n B(g,, E/2) + 4 for all ye Vi. 

Let V= n { Vi: i= 1, 2, . . . . k}. We have 

Hence 
P(Y)nB(gi9@)+4 for all y E V, i = 1, 2, . . . . k. 

B(g;, E/2) c WP(Y), 8) for all y E V, i = 1, 2, . . . . k. 
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Therefore, 

P(x)c U {B(gj, 42): i= 1,2, . . . . k} cB(P(y), E) for all y E V. 

Sufficiency. For every open subset W with Wn P(x) #q$ let 
ge Wn P(x). Since W is open, there is an E > 0, such that B(g, E) c W. By 
the assumption, there is a neighborhood V of x such that 

P(x) = W(Y), &I for all y E V. 

Hence 

This concludes the proof. 

PROPOSITION 2.3. Assume that P is alsc at x and that P(x) is a singleton 
at x. Then P is Isc at x. 

Proof: For each open set W with P(x) E W, there is an E > 0, such that 
B(P(x), E) c W. Since P is alsc at x, there is a neighborhood V of x such 
that 

Hence for all y E V, P(y) n B(P(x), E) # 4; that is, P(x) E B( P( y), E) and 
therefore P is lsc at x by Proposition 2.2. 

Now we give the following result which contains Michael’s selection 
theorem as its corollary. 

THEOREM 2.4. Let X be a paracompact space, Y a Banach space. Assume 
that a set-valued mapping F: X + Y has a closed convex image. Then F is Isc 
tf and only tf for each fixed XE X and gE F(x), there exists a continuous 
selection s for F, such that s(x) =g. 

Proof: Sufficiency. For every fixed x E X and every open set W c Y with 
F(x) n W#& there is a gE F(x) n W. By the assumption, there is a 
continuous selection s for F such that s(x) =g; hence, there is a 
neighborhood V of x with the property: 

S(Y) E w for all y E V. 

Hence 

s(Y)EF(Y)~ WZ4 for all y E V, 
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Necessity. For every fixed x E X, and every g E F(x), let 

when J’=x, 
when y=x. 

Since F is lsc, it is easy to verify that H is lsc. By Michael’s selection 
theorem, H admits a continuous selection s, and it is obvious that s(x) = g, 
s(y)~F(y) for all VEX. 

The proof is completed. 

DEFINITION 2.5. A continuous mapping f: X-+ M is called an 
a-apprioximate selection of P if for all XE X, f(x) E C(P(x), E), where 
C(P(X), E)= {zeM: d(z, P(X))<&}. 

In Ref. [a], F. Deutsch and P. Kenderov give a clever result which 
characterizes mappings which have continuous a-approximate selections for 
every s>O. 

THEOREM 2.6. The metric projection P has a cotinuous E-approximate 
selection for each E > 0 if and only if P is alsc. 

3. THE MAIN THEOREM AND ITS PROOF 

MAIN THEOREM. Assume that A4 is a finite-dimensional s&space of a 
normed linear space X. Then P is alsc tf and only if there exists a cntinuous 
metric selection for M. 

Before proving the main theorem, we set up several lemmas. Let 

G,,(x) = { g E C( P(x), E) : there is a continuous &-approximate 

selection s for P such that s(x) = g.) 

LEMMA 3.1. For every XE X, G,(x) is a non-empty compact convex 
subset of M; moreover, G, is lsc. 

Proof It is an easy consequence of Theorem 2.6 that G,(x) # 4, for all 
XE X. Let g, h E G,(x). For every t E [0, 11, there are two continuous 
s-approximate selections s, f for P such that s(x) =g, f(x) = h. Let 
s’ = ts + (1 - t)f: Then s’ is continuous, since C(P(x), E) is convex for all 
x E X and we have s’(x) E C(P(x), E) for all x E X. Hence s’ is a continuous 
s-approximate selection for P and tg + (1 - t) h = s’(x) E C(P(x), E). 

Therefore G,(x) is convex for all x E X. 
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It is easy to verify that G, is lsc. Let cl G,(x) be the closure of G,(x). 
Then cl G, is also Isc, and for every g E cl G,(x), denote 

when y =x, 
when y #x. 

It is obvious that H is lsc therefore H has a continuous selection s with 
s(x) = g, s(y) E cl G,(y) c C(P( y), E) for all y E X. Hence g E G,(x), that is, 
G,(x) = cl G,(x) for all x E X. The proof is completed. 

LEMMA 3.2. For r > 0, x E A’, C(G,(x), r) = G, + r(x). 

Proof: For each ge C(G,(x), r), there is a z E G,(x), such that g = 
z + (g - z) with I( g - z II < r. Let s be a continuous s-approximate selection 
for P with s(x) = z, then denote s’ = s + (g -z). s’ is a continuous E + r- 
approximate selection for P such that s’(x) =g, and hence 
C(G,(x), r) c G,+,(x) for all x E A’. 

Denote 

C~‘(G,+.bh r)= {gEGE+AX): 4g, ~G,+.(x))2r). 

Here aGE+,(x) denotes the set of all boundary points of GET. We have 

G&x)c Cp’(G,+,(x), r) forall xEX. 

For every g E C-‘(G,+.(x), r), since GEfr is Isc by Lemma 3.1, for each 
q > 0, there is a neighborhood V of x, such that 

G,+r(x)cB(G,+r(~), v) for all y E V. 

Therefore for all y E I’, 

C~‘(G,+,(~),~)~C-‘(B(G,+.(Y),~),~)~B(C~’(G,+,(Y),~),~). 

By Proposition 2.2, C~‘(G,+,(x), r) is kc; hence there is a continuous 
mapping s, such that 

s(x)= g, .HY)EC-‘(G,+,(Y), r)=C(P(y), 6) for all y E X. 

Hence ge G,(x); therefore G,(x) 1 C’(G,+,(x), r). 
Combining the above proofs, we see that G,(x) = C-‘(G,+,(x), r) which 

concludes the proof. 

Let 
G(x) = n (G,(x): E > 0). 

It is easy to show that G(x) # q5 for all x E X, by the compactness of G,(x) 
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and the property that G,(x) c G,(x) when E < q. We can also state that 
G(x) is a compact convex subset of A4 for all x E X. 

LEMMA 3.3. For every XE X, E >O, there exists an r > 0, such that 
C,(x) = NC(x), ~1. 

Proof. If the result were false, there would exist a sequence r,, r,, + 0. 
But G,“(x) d @G(x), E). Hence there exists a sequence g,, g, E G,“(x). But 
g, k B(G(x), E). Since g, is bounded, we assume that g, + g when n -+ co. It 
is easy to verify that g E P(x). Since Grn(x) is compact and g, E G,,(X) for 
n > m, we get g E G,,(X), for all m > 1. By the definition of G(x), we have 
g E G(x). This fact contradicts the assumption. The proof is ended. 

Now we can prove the main theorem. 

Proof of Main Theorem. The sufficiency is obvious (see [2]). 
Necessity. Suppose that P is alsc. For every E > 0, we get G(x) c G,,(x) 

for all x E X. Since G,, is lsc, there exists a neighborhood I’ of x such that 

G,,(x) = B(Ge,(y), 46) for all y E V. 

By Lemma 3.3, there exists an r > 0, such that 

Hence 
G,(x) = B(G(x), 42). 

G,,,(x) = &G,(x), 42) = B(G(x)> E) for all XEX. 

Therefore for all YE V, we have 

G(x) = G,,,(x) = B(G,,,(y), 46) = G,,,(Y) = @G(Y), E); 

hence G is lsc. By Michael’s selection theorem, G admits a continuous 
selection, and it is obvious that this selection is also a continuous selection 
for P. The proof is ended. 
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