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Abstract

This paper gives the sufficient conditions of the existence of at least three symmetric positive
solutions for one type of higher order autonomous Lidstone problem by applying the five functionals
fixed point theorem. The analogous result for higher order nonautonomous singular Lidstone problem
is also proved here.
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1. Introduction

There has recently been an increased interest in studying the existence of positive solu-
tions for the boundary value problems (BVPs) of differential equations; for example, see
[1-4,6,8]. Avery [2], Henderson and Thompson [5], and Avery and Henderson [4] estab-
lished the existence of at least three symmetric solutions for second order Lidstone BVPs
by, respectively, applying Leggett—Williams fixed point theorem and the five functionals
fixed point theorem (which is a generalization of the former). Davis et al. [6] and Davis
et al. [1] studied the2th Lidstone BVP as follows, which has allowed the nonlinear func-
tion f to depend on all even order derivativesyof
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(%)

Y@ = F @), Y1), ..., y2m=D(1), y@m=Dr)) 1 e[0,1],
y@(0)=y@(1)=0, 0<i<m—1,

where(—1)" f: R™ — [0, 00) is continuous. They obtained the existence of three sym-
metric positive solutions of the BV&) by, respectively, applying the above two theorems.
Davis et al. [1] indicated that no results have been obtained on the corresponding problems
with f depending on all order derivatives—both even and odd. This present paper aims at
solving this open problem.

In Section 3, we are concerned with the followingth order Lidstone BVP:

: Y@y = fy @),y @), ..., y@"=2(1), y@ D@y, 1el0,1],

. - 1
y@(0)=y@)(1)=0, 0<i<m-—1, =

where(—1)" f : R?" — [0, 00) is continuous(—1)" £ (0) > 0, and even with respect to
the terms of the odd order derivatives of In Section 4, we treat the nonautonomous
singular Lidstone BVP

: Y@ = ft,y@), Y @), ..., y?" D), y @ V@)), 1e(0,1),

Y@(0) = y@)(1)=0, 0<i<m—1, ?

where (—=1)” f:(0,1) x R¥" — [0, 00) is continuous,f is even with respect to the
terms of the odd order derivatives of and f satisfies condition (H)(—1)" f(z, 0) > 0,
1€(0,1), f(r,w)= f(1—1t,w) for (r,w) € (0,1) x R?", and(—1)" f (¢, w) has inte-
grable functions defined o0, 1) as its upper bounds, whan € R?" is bounded. We
impose growth conditions oy which, respectively, yield the existence of at least three
symmetric positive solutions of problems (1) and (2).

2. Preliminaries

Definition 1. A nonnegative continuous function C2"[0, 1] — [0, o) is called a sym-
metric positive solution of problem (1), if(¢) is symmetric about = 1/2, y(¢) > 0 for
0 <t <1, andy satisfies (1).

Definition 2. A nonnegative continuous function C2"~1[0, 11N €2"(0, 1) — [0, 00) is
called a symmetric positive solution of problem (2)yifr) is symmetric about = 1/2,
y(@) > 0for0<t <1, andy satisfies (2).

Lemma 1. If a functionu : [0, 1] — R is a solution to the problem

{u(Zn)(t)>O, 0<r<1l(or0<t<1l),

’ | 3
w0 =u®@)=0 0<i<n-1, ¥

then we haveé—1)"u(r) >0 for0<r < 1.

Proof. If n is even, it suffices to prove thatr) > 0 for 0< ¢ < 1. Assume for the sake of
contradiction that there exists € (0, 1) such thatu(71) < 0; then it follows fromu (0) =
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u(1) =0 and Lagrange mean value theorem that there e%‘i%t (0, 11) andéél) e, 1)
such that
1/(5{1)) <0, u’(éél)) > 0.
Thus we use Lagrange mean value theorem again and then Qb&dlf{l), 52(1)) such that
u’ () > 0.

From the conditionu®(0) = u@(1) = 0, the same reasoning gives that there exist
19 € (0, 12) andes? e (12, 1) such that

u///(§{2)) . O, M///@.éZ)) <0,
and thenrz € (5{2), sf)) such that
u®(13) < 0.

Inductively, it follows that there ig, 1 € (0, 1) such thau®”(z,.,1) < 0. This contradicts
the known differential inequality in problem (3).
If n is odd, the analogous reasoning giug¢s) < O forr < [0, 1].

Lemma 2. If a functionu : [0, 1] — R is a solution to the problem

u@ () <0, 0<r<l(orO<rt<1),
u@0)=u@1)=0, 0<i<n-—1,

then we havé—1)"u(r) <0 for0<r < 1.

Lemma 3. If a functionx : [0, 1] — R is continuous, and symmetric abaut 1/2, then
the following equality is valid

1 1

1
/sx(s)ds—/(l—s)x(s)ds: / sx(s)ds.
0 '

1—¢

Definition 3. The mapa is a nonnegative continuous concave functional on a d@ne
defined in a real Banach space, provided — [0, co) is continuous and

a(tx +(1- t)y) >ta(x)+ 1 —ta(y)
forall x,y e Pand 0< ¢ < 1.

Definition 4. The mapg is a nonnegative continuous convex functional on a cBrae-
fined in a real Banach space, providggdP — [0, oo) is continuous and

Btx + (1 —1y) <1Bx)+ 1 —0)B(y)

forallx,yePand 0<r < 1.
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Let y, 8, 6 be nonnegative continuous convex functionals on a d@red letw, ¢ be
nonnegative continuous concave functionalsoirhen for nonnegative numbeéisa, b,
d, andc, we define the following convex sets:

P(y.o)={xeP|yx) <c}

P(y,a,a,c)= {x ePla<alx), y(x) < c},

Oy, B.d,c)={xeP|Bx)<d, y(x) <cl,

P(y.0,a,a,c)={xePla<alx), 0(x)<b, y(x)<c},

Q(y.B. v hd,c)={x eP|h<y(x), B(x)<d, y(x) <c}.
Lemma 4 [9] (The five functionals fixed point theorent)et P be a cone in a real Banach
spacef. Supposer and iy are nonnegative continuous concave functionalsfand

y, B, 6 are nonnegative continuous convex functionalsfosuch that, for some positive
numbers andm,

a(x) < BX), xl<myk), forallxe P(y,c).

Suppose further thatl: P(y, ¢) — P(y, c¢) is completely continuous and there exist con-
stantsh, d, a, b > 0 with 0 < d < a such that each of the following is satisfied

(Al) (xe P(y,0,a,a,b,c) | a(x) >a}#¥ anda(Ax) >aforx e P(y,0,a,a,b,c);
(A2) {x € Q(y, B, ¥, h,d,c)| B(x) <d} #PandB(Ax) <d forx € Q(y, B, ¥, h,d, c);
(A3) a(Ax) > a providedx € P(y, «, a, ¢) with 6(Ax) > b;

(A4) B(Ax) < d providedx € Q(y, B, d, ¢) with ¥ (Ax) < h.

ThenA has at least three fixed pointg, x2, x3 € P(y, ¢) such that

B(x1) <d, a<a(x2), and d<pB(x3) witha(x3) <a.

3. The autonomous case

We letG(t, s) be the Green’s function for the second order BVP

u = 0’
u(0)=u(l)=0,
and then

s S,
LetG1(z,s) = G(t,s), and for 2< j < m we can recursively define
1
Gj(t,s):/Gl(t,r)ijl(r,s)dr.
0
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As aresultG;(z, ) is the Green'’s function for thej2h order BVP
y@)(1)=0, 0<r<1,
y@O)=y@1)=0, 0<i<j-1,

foreach 1< j <m — 1. One can see [7, p. 192] and [8,11] for details.
For each K j <m — 1, we define an operatey; : C[0, 1] — C[0, 1] by

1

Aju(r) =/Gj(t,s)u(s)ds.
0
It follows from the definition of4 ; that, foreach K j <m —1,

APty =u(), 0<r<1,
: ]u u (4)

(Ajuw)@0)=(A;w)@(1)=0, 0<i<j—1
Define a functiorGo: [0, 1] x [0, 1] — R by

GO([ S): S, 0<S<[§1, or s, Ogsgtgl’
) s—1, 0<r<s<], s—1, 0<r<s<l

Therefore, in the case of every solutigtio the following problems, from

Y/ =y"@1), 0<r<1,
y(0) =y =0,

we get
y() =[5y (s)ds, 0<1<1,
Jay(s)ds =0,

and
1
y(t)=/Gl(t,S)y”(S)ds,
0
and so
1
y’(t)=/Go(t,S)y”(S)ds;
0

and, inductively, for i j <m — 1, from

y@D (1) =y@D(r), 0<r<1,
y@)(0)=y@)(1)=0, 0<i<j—1,

we have
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Y@ = [y @ D(s)ds, 0<r<l,
Joy@D(s)ds =0,
1

y(2j*2)(t)=/G1(t,s)y(2j)(s)d5’
0

and
1

YE D) = / Go(t, )y (s)ds.
0
We define an operatd® : C[0, 1] — C[0, 1] by
1
Bu(t) = / Go(t,s)u(s)ds, ueC[0,1],
0
and then, from Lemma 3, whenis symmetric about=1/2, we can denot® by
t
Bu(t) = / su(s)ds, ueCl[0,1].
1-t
If we define an integral operator. C[0, 1] — C[0, 1] by
t
cv(t) = / v(s)ds, veC[0,1],
0
and letv(r) = y@"=D () for r € [0, 1], then, together with (4), for problem (1), we have
V(1) = f(Am-1(cv(1)), B(Ap—2(cv(1))), Am—2(cv(t)), B(Ap—3(cv(1))), ...,
B(A1(cv(1))), A1(cv(1)), B(cv(t)), cv(®),v(r)), 0<t<1, (5)
Jv(s)ds =0.

Therefore, we can define an operaforC1[0, 1] — C[0, 1] by

1
Tv(t) =/ Go(t, ) f(Am—1(cv(s)), B(Am—2(cv(s))),
0 Am_z(cv(s)), B(Am_g(cv(s))) .....
B(Al(cv(s))), Al(cv(s)), B(cv(s)), cv(s), v(s)) ds,
o<l (6)

Then, it is obvious that problem (1) has a solutica A,,_1(cv) if and only if the operator
T has a fixed point = y?"—D,

Assumey is a symmetric solution of problem (1). Fromir) = y(1—1),0<7 <1, we
have

Y@ @)y =y@ @ —1), 0<i<m, 0<r<1, @)
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and
y@ V) +y@Da-1=0 1<i<m, 0<r<1 (8)

Hence, the operatdf has an inverse symmetric fixed point= y?"~1. On the other
hand, letv be an inverse symmetric fixed point of the operdtoFrom

v()+v(l—-1 =0, 0<r<]1], 9)
we have

cv@®)=cv(l—1), 0<r<], (20)
and from the symmetry of the Green’s functiaiig(z, s) aboutr = 1/2 ands = 1/2,

Gj(t,s)=G;j(1—1,1—s), 0<r<1,0<s<1 1< j<m—1, (11)

we have that ; (cv), for each 1< j <m — 1, is still symmetric
Aj(cv@®)=Aj(cv@l—1), 0<r<l. (12)

So, correspondingly, problem (1) has a symmetric solutiea A,,—1(cv). In addition,

the assumption that problem (1) has a symmetric solution is rational due to equalities (7)
and (8) and the even property ¢f The assumption that the operabrhas an inverse
symmetric fixed points is also reasonable because, for any inverse symmetric functions
v € C[0, 1], from equalities (9) and (10), the even propertyfofind the inverse symmetry

of Go(t, s) aboutr =1/2 ands =1/2,

Go(t,s) +Go(l—1,1—5)=0, (t,5)€{[0,1] x [0, 1]}\{t=s;£ %} (13)

it follows that Tv is also inverse symmetric. Hence, the above discussion implies that
problem (1) has a symmetric solution= A,,_1(cv) if and only if the operatof” has an
inverse symmetric fixed point= y@"—1,

Let us consider a symmetric positive solutiprof problem (1). Sinc&€—1)" f > 0 on
R?", then(—1)"y™ s positive and symmetric. Hence the sign of Green’s funct@ns
implies that the symmetric functior(s-1)2"~/ y@/) = (=1)2"~/ A,,_; (y®) andy are
positive and concave ford j < m — 1. And from equality (13), we have that inverse sym-
metric functiong —1)2"~/y@/i=Y = (~1)2"=I B(A,,,— ; (y®")) and(-1)" y@*~Dare in-
creasing for I j < m — 1. Therefore, the operat@rhas an inverse symmetric fixed point
v=y@"=D and(—1)"v is increasing.

On the other hand, ifv is an inverse symmetric fixed point of the operat®r
and (—1)"v is increasing, then from Eq. (5) and1)" f > 0 on R?", we have that
(=D)™cv is symmetric negative convex. The sign of the Green’s functiGrsmplies
that (—1)2’”*/'Am,j (cv) is negative convex, for eachd j < m — 1, and according to
equality (13), the inverse symmetric functiois1)™ B(cv) and(—l)z’”*/'B(Am,j (cv))
are decreasing for2 j <m — 1. So(—1)2"14,,_1(cv) is negative concave. Therefore,
problem (1) has a symmetric positive solutipa= A,,_1(cv). In a word, problem (1) has
a symmetric positive solution = A,,_1(cv) if and only if the operatof” has an inverse
symmetric fixed point = y@"=D and(—1)"v is increasing.

All the above analysis suggests that in order to find at least three symmetric positive
solutionsy; = A,,,—1(cv;), i =1, 2,3, of problem (1), it suffices to prove that the operator
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T has at least three inverse symmetric fixed points y,.(zm’l), i =1,2,3, wherev;
satisfies(—1)"v; > 0 for eachi =1, 2, 3.
We are now in a position to prove the main results.
Let X be the real Banach spacé[o, 1] with the max norm, and define the cofein

X by
P={veX|v@®)+v(l—1)=0, (-1)"'() >0, 1 €[0,1]}.

In order to contain the results in [1] as much as possible, we similarly define the nonnega-
tive continuous concave functionalsys, and nonnegative continuous convex functionals
B,6 onP by

t

1
B) = max /v(s)ds = cv(—) ,
re[1/r,1-1/r] 2
0
t
¥ (v) min / (s)d !
V) = Vs S| = |cv| — N
re[1/r,1-1/r] N
0
t
a(v) = min /v(s)ds = ‘cv(tl) ,
te[tr,t2]U[1—12,1—11]
0
t
6(v) = max /v(s) ds| = |cv(t2) ,
te[tr,t2]U[1—12,1—11]
0
wherer, t2, and ¥/ r are nonnegative numbers such that
1 1
0<t1<t2<§, O0<—-<1. (14)
r

We also define the nonnegative continuous convex functignals? by
y (@) =llvll = [pD)] = [v(0)].

LetD=[r1,]U[l—r,1—n]andU =[1/r,1—1/r].
Itis clear that for every € P,
1= )
cv > = B(v).

We will make use of some of the following properties®f(t, s):

vl =y®.  a@® =|cv@)|<

1
t(l—t
/\G(r,s)\ds=( ) o<i<y,

2
0
1/r
Tl
2"
0

2<r, (15)
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1/2 1-1/r
/Gl d /Gl PR (16)
— = — = —F <r
21 s s 27 N N 16}"2 ’ ’
1/r 1/2
tr 1-n 1
/|G(t1,s)|ds+ / |G(t1,5)|ds = t1(t2 — 11), 0<t1<t2<§. (17)
41 1-1p

The following theorem is the main result in this section.

Theorem 1. Assume there exigt, t2, 1/r which satisfy(14), and real number < i =
2d/r <d <a <b=(t2/t1)a < ¢ such thatf satisfies all the following conditions

(B1) | f (Um=1(), vm—2(0), Um—2(t), vm-3(0), ..., uz(t), vo(t), uo (1), v(1)) |
82 d c
<71<_ﬁ)
for all
(v ], [vo@®|, [vi @], [wo@®)], |uj@)])

c1-2/r e\11-2/r
cto.erx 0.5 |0 (44 5) g5 |

x [h, d] x [h/|G,-(t,s)|ds,d/|G,-(t,s)\ds
U U

c
+ > / |Gj(t,s)|ds:|,

[0,AN\U
wherel<i<m—-2,1<j<m-—1andt e U;
(B2) |f(1/tm_1(t), Un—2(1), um—2(8), vy —3(1), ..., u1(t), vo(t), uo(r), v(t))|

S a

> 5
(2 —n)

for all

(v

vo(?)

’ 3 ’ 3

uo®)|, [vi ()|, |u; @)
1-21 31—2t21|

2 2 2

€ [0, c] x |:a

1-1

1-21 cl1l1-21
x [a,b] x | a 5 |G,~(t2,s)|ds,§§ >

41

x [a/|G,-(t,s)|ds,b/\Gj(t,s)\ds+% / |Gj(t,s)\dsj|

D D [0.IND
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1-2t ¢c1-21
- - b
C[O,L]X[a > '3 3 }X[a, ]

c11-2n c\ 1
ose o lrs)e)
wherel<i<m—2,1<j<m-—1,andt € D;

(B3) |f(um—1(t)a Un—2(8), um—2(8), Uy —3(1), U —3(1), . . .,
u1(t), vo(1), uo(1), v(1))| < 2¢

for all

(o)

v; (1)

uj()])

1
C & &
E[O,C] X |:O, §:| X |:O, m:| X |:0,§/|G](t,s)|ds
0
C

C C
c [0, c] x I:O,Ei| X |:0’4x8"i| X [0’2x8/:|’
where0<i <m—2,1<j<m-—1,andr €0, 1].

, |UO], ’

|

Then the Lidstone BVRL) has at least three symmetric positive solutignsy», y3, such
that

b V<e =123

(2m—2) . (2m—2)
ma 1) <d, min | >a,
teUXiyl ( )| teD|y2 ( )|

(2m—2) iy, (2m=2)
ma )| >d, and min 1| <a.
teUXiy3 ( )| teD‘y3 ( )|

Proof. Under the prior analysis, we recall the continuous operatar[0, 1] — C[0, 1]
defined as (6),

1
7o) = [ Golt.5) (An-1(cv). B(An-2(cv(s)).
0

Am,g(cv(s)), B(Amfg(cv(s))), cen,

B(Al(cv(s))), Al(cv(s)), B(cv(s)), cv(s), v(s)) ds,
0<r<L

Itis clear thatT : P — P, so it suffices to prove that the operafohas at least three fixed
points inP.

The continuity off and that of the integrals with variable limits, and the Ascoli—-Arzela
theorem suggest the completely continuityfof

Next, we showr : P(y,c) — P(y,c).

If ve P(y,c), theny(v) =|v|| < cand so for € [0, 1],
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1/2
1
lcv]l = CU(E)‘ =‘/v(s)ds <
0
1

C
21

cl ¢
| B(cv)|| = |B(cv(0))| = /scv(s)ds <33=7
0
1 1 L
c C
|A1(cv®)|= /Gl(t,s)cv(s)ds < E/|Gl(t,s)|ds < 55
0 0
Inductively (compare with [6,10]), if € [0, 1], thenfor2< j <m —1and 2<i <m — 2,
1 1 L
C C
‘Aj(cv(t))‘ = /Gj(t,s)cv(s)ds < E/‘Gj(t,s)‘dsg >80
0 0

1

/ Go(t,s)Ajcv(s)ds
0

|B(Ai(cv®))| =

1
< cl ds — cl
S28 ) YT 4y
0
From condition(B3), it implies that forv € P(y, ¢),
| f(Am—1(cv), B(Am—2(cv)), Ap—2(cv), ...,

B(Al(cv)), A1(cv), B(cv), cv, v)| < Zc,
and so
1

/ Go(0, s)f(Am_l(cv(s)), B(Am_z(cv(s))), Am_z(cv(s)), A
0

y() = vl =

B(Al(cv(s))), Al(cv(s)), B(cv(s)), cv(s), v(s)) ds

1
<26/sds=c,
0

namely,T : P(y,c) = P(y,c).
Next we show conditions (A1)—(A4) in Lemma 4 are satisfiedffor
Itis easytoseethatfor@h=2d/r <d <a <b=(t2/t1)a <c,

{v e P(y,0,a,a,b,c) | a(v) > a} 40,
{veQ.B. ¥, hd,c)|B(v) <d}#0

are valid. To prove that the second part of (A1) holdsyletP(y, 0, «, a, b, ¢), and then
a(v) = [cv(n)| > a, 6(v) = |cv(t2)| <b, y() =lvll <c.

It implies thata < |cv(t)| < b for t € D and|cv(t)| < ¢/2 fort € [0, 1], and so for € D,
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1
|A1(cv®)| = /Gl(t,s)cv(s)ds >a/|01(r,s)|ds,
0 D

|A1(cv®)| <b/\G1(t,s)\ds+% / |G, 5)|ds,
D

[0,2\D
11 2
|B(cv(t))‘ < ‘B(Cv(fl))| = / scu(s)ds| < %1—2 tl,
l—tl
7]
|B(CU(I))‘ > ‘B(cv(tz))| = / scv(s)ds| > a 1_2212_

1-1

Inductively, ift € D, thenfor2< j<m—1land 1I<i <m — 2,

|Aj(cv®)| € [a/\cj(t,s)\ds,b/\cj(t,s)\ds+% / |Gj(t,s)|ds:|,
D D [0, 1\D

41

|B(Ai(cv())| < |B(Ai(cv(rD))] = /sA,-(cv(s))ds <

1-11

=
|
N
~
[y

NI o
®| =
N

7]

|B(Ai(cv())| = |B(Ai(cv(12))| = / sAi(cv(s))ds

1-1
to 1-1 1-n
1-2n
> / sa / |G,-(s,w)|dwds >a / |G,-(t2,s)|ds >
1-1 5% 1
From condition (B2), it implies that fov € P(y, 0, «, a, b, ¢),
| f(Am—1(cv(®)), B(Am—2(cv(®))). ..., B(cv(®)), cv(®), v(®))| > T
fort e D,
and so
1 1
a(Tv) = //Go(t, s)f(Am_l(cv(s)), B(Am_z(cv(s))), A
0 0

B(cv(s)), cv(s), v(s)) ds dt

1

/Gl(tl, s)f(Amfl(cv(s)), B(Amfz(cv(s))), R

0

683
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B(cv(s)), cv(s), v(s)) ds

> /Gl(tl, s)f(Amfl(cv(s)), B(Amfz(cv(s))), R

D

B(cv(s)), cv(s), v(s)) ds

a
=d.

/Gl(t, s)ds

2 -
f1(t2 — 11)
D

To show that the second part @2) holds, letv € P(y, ¥, B8, h,d, ¢) and then
h<|cv(®)|<d forteU and |cv()| < % for s € [0, 1],

and so forr € U,

|A1(cv®))] [ /\Gl(t s)|ds, d/\cl(t s)|ds+— / |Gl(t,s)|dsj|,

[0,1N\U
1-1/r
|B(cv(t))|< Bcv1 < /tcv(t)dt cl- 2/r
= r)| 2 2
1/r

Inductively, ift e U, thenfor2< j<m—21land 1<i <m — 2,

|4 (cv(®)| [ /|G (t,s)|ds, d/|G (t, s)|ds+— / |Gj(t,s)|ds],

[0,1\U
1/r
|B( (cv(t)))| ‘B(A,-(cv(%)))‘:‘ /tAi(cv(t))dt
-1/r
1/r
< / </|G(t s)|ds+E / \G,»(t,s)\ds)dt
1-1/r U [0,1\U
é(d+£)il_2/r.
2)8 2

From condition(B1), it implies that forv € P(y, ¥, 8, h,d, ¢),

8 2
|f(Am_1(cv(t)), B(Am_z(cv(t))), e, B(cv(t)), cvu(t), v(t))| < rzr_ <d - —
fort e U,

and so
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,B(TU) =

1
1
/Gl(i’ s>f(Am—l(Cv(S))’ B(A’"_Z(CU(S)))’ Y
0

B(cv(s)), cv(s), v(s)) ds

X

1/r
1
<2 / Gl(i,s> F(Am1(cv()). B(An—2(cv())). .. .
0

B(cv(s)), cv(s), v(s)) ds

1/2

2/ Gl(%, s)f(Aml(cv(s)), B(Amfz(cv(s))), R

1/r

+

B(cv(s)), cv(s), v(s)) ds

1 r2—4 8? c
2.20-—+2~ " (a-5) =a.
DR AT . r2—4< r2>

We show next that for alb € P with 6 (v) > (t2/t1)a or ¥ (v) < (2/r)d, the inequality
a(v) > a or B(v) < d always holds.

Forv € P, we have(—1)"v" > 0, that is,((—=1)™cv)” > 0. Therefore|cv| is a concave
function, and so

vl _ Jev()

141 2

that is,a(v) > (11/12)0 (v) > a. By the same reasoning, ife P, andy (v) < 2d/r, we
have
lcv(1/r)] . lcv(1/2)]
1r = 12
thatis,B(v) < (r/2)y¥ (v) < d. The above arguments suggest that conditions (A3)—(A4) in
Lemma 4 also hold.
Therefore, the hypotheses of Lemma 4 are satisfied and then the ogefaerat least

three fixed points1, v2, v3 € P(r, ¢), Which, respectively, correspond to three symmetric
positive solutiongs, y2, y3 of problem (1) by

1
yi(t) = Am_l(cv,-(t)) = / Gu-1(t,8)cvi(s)ds, te€]0,1],i=1,2,3.
0

Sincev;, i = 1,2, 3, satisfyB(v1) < d, a < a(v2), andd < B(v3), a(v3) < a, theny;,
i =1, 2,3, respectively, satisfy
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@ <e. =123

(2m—2) ), (2m=2)
ma | <d, min Nl >a,
teUXiyl ( )| teD|y2 ( )| “
(2m—2) i (2m—2)
ma | >d, and mi Nl <a.
teUXiy3 ( )| teDdy3 ( )‘

The proofis complete. O

4. Thenonautonomoussingular case

Theorem 2. Assume there exist, t2, 1/r such that(14) holds, and real numbei@ < h =
2d/r <d <a <b=(t2/t1)a < ¢ such thatf satisfies all the following conditions

(C1) 341 €C((0,1),[0, c0)) such that
‘f(ta ”m—l(t)’ Um—2(t), Mm—Z(I), Um—3(t)’ MERR] I/ll([), Uo(t), Mo(t), U(t))|
8r2 c
< r2 — 4<d - ﬁ)‘I1(I)
and [, sq1(s) ds < 1/2 for all
(lv@], [vo@®|, [vi @], [wo@®)], |uj@)])

c1-2/r e\11-2/r
cto.erx 0.5 o (44 5) g5 |

x [h,d] x |:h/|Gj(t,s)|ds,d/|Gj(t,s)|ds
U U

C
+3 / ‘Gj(t,s)|dsj|,

[0,AN\U
wherel<i<m—2,1<j<m-1andr e U;
(C2) 342 €C((0,1),[0, o)) such that

’ ’ ’ ’

| £ (2, um—1(t), vm—2(t), m—2(1), vu—3(1), ..., us(t), vo(t), uo(t), v(1))|

> -
f(t2 — tl)qZ(t)

and [, sq2(s)ds > 1/2 for all

(Jv®]. [vo®)|, [wo®], [vi ()], |uj @)])
[0, ¢] x |:a1_22t2, %1—22t2:|

1-n
1-21 cl1-21
x [a,b] x |:a 5 /|G,-(t2,s)|ds,§§ > ]
41
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x [a/\Gj(t,s)\ds,b/\Gj(t,s)\der% / |Gj(t,s)|dsj|

D D [0,1\D

1-2 1-2
C [0, c] x [a f2 ¢ t2:| x [a, b]

2 2 2

cl1-2r c\ 1
X[O,Eg 5 :|X|:O,<b+§)§:|,

wherel<i<m—2, 1<j<m-—1,andt € D;
(C3) 3¢3 € C((0, 1), [0, o0)) such that

| £t ttm=1(t), Vm—2(t), um—2(1), \m—3(1), Uum—3(t), ...,
u1(t), vo(1), uo(t), v(1)) | < 2cq3(1)
andfolsqg(s) ds <1/2 for all
(lv vi (0], |uj@®)))

1
C & &
E[O,C] X |:O, §:| X |:O, m:| X |:0,§/|G](t,s)|dsj|
0
Cc C c
C [0, c] x I:Oéi| X |:0’4x8"i| X [0’2x8j:|’

whereO<i<m—2,1<j<m-—1,andr € (0,1).

, |[uo(®)

9 ’

Then the Lidstone BVR) has at least three symmetric positive solutignsy,, y3, such
that

e V<e =123

(2m—2) . (2m—2)
ma Nl <d, min Hl >a,
teUXiyl ( )| teD‘y2 ( )‘

(2m—2) L, (2m=2)
ma )| >d, and min 1| <a.
teUXiy3 ( )| teD‘y3 ( )|

Proof. We prove the theorem by using the similar reasoning with the autonomous case.
Letv(r) = y@"=D(r) for ¢ € [0, 1], then problem (2) becomes the following problem:

V(1) = f(t, Am—1(cv(t)), B(Ap—2(cv(1)), ...,
A1(cv(1)), B(cv(t)), cv(t),v(t)), O<t <1,
J3v(s)ds =0.
Define a completely continuous operatarC[0, 1] — C[0, 1] by
1

Sv(t) = / Go(t, s)f(s, Am_l(cv(s)), B(Am_z(cv(s))), A
0

Al(cv(s)), B(cv(s)), cv(s), v(s)) ds, 0<tr<1l
Condition (H) suggests the significanceSf
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Let X denote the Banach spac¢g0, 1] with the max norm, and define a coffeC X
by
P=lvexnc0,1)|v(t)+v(l—1) =0,
te [07 1]1 (_1)mv/(t) 2 Os te (Os 1)}

Obviously, it suffices to prove that the operasonas at least three fixed pointsih
The rest of the proof is similar with the Theorem 1, so we omit it

Remark. Since problentx) is a special case of problem (1), the growth conditiongon

(B1) and (B2), which we have obtained in Theorem 1, are better than the corresponding
conditions (G1) and (G2) in Theorem 2 performed in [1], and in the case of (B3), there is
only a difference of a constant from (G3) in [1].

We now give a simple example to show that there exist functions which satisfy the
growth conditions imposed in Theorem 1.

Example. Considering the following BVP:

") = 1,y (), tel0,1],
Y@ = fy@),y (@) €[0,1] 18)
y(0)=y(1) =0,
where
6(1—VuZ+v2), u?+v?><1,
_ _ ) 92(jul - 1), 1< |ul <2,
S, v)= 92(3 — |ul), 2< |ul <3,
0, elsewhere.

It is obvious thatf € C(R?, (—oo, 0]) and f is even about. We letr; = 1/4, 1, = 40/81,
1/r = 0.1, a = 184/151, ¢ = 46, d = 1.053, which satisfy O< (2/r)d <d < a <
(tz/t1)a<cand O< 11 <t2 <1/2,0< 1/r < 1o.

(1) When 0< |v] < ¢, (2/r)d < |u| < d, we show that

8r2 c

In fact,

8r2 c 25
| fu,v)| <92(d — 1) =4.876< d——= | ==(d—0.46) =4.94.
r2—4 r2 3

(2) When 0< |v] < ¢, a < |u| < (t2/t1)a, we show that
a

u,v)| > ————.
| ) t1(t2 — 11)
In fact, since|f(a,v)| =|f(4 —a,v)| and(t2/t1)a = 160x 184/(81x 15) <4 —a =
420/151, we have

92x 33 239844 a 238464
= > = .
151 151x 79 tn(t2—1t1) 151x79

| f(u,v)| >92(a—1) =
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(B)When 0< v <, 0< Jul < ¢/2,| f(u, v)| < 92=2c is obvious.

Hence, according to Theorem 1, BVP (18) has at least three symmetric positive so-
lutions y1, y2, y3, and |ly;|l < ¢, i =1,2,3, [y1(®)| <d, t € U, |y20t)] > a, t € D,
lys3(®)| <a,t € D,and|y3(t)| >d,t € U.
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