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Abstract

This paper gives the sufficient conditions of the existence of at least three symmetric p
solutions for one type of higher order autonomous Lidstone problem by applying the five funct
fixed point theorem. The analogous result for higher order nonautonomous singular Lidstone p
is also proved here.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

There has recently been an increased interest in studying the existence of positiv
tions for the boundary value problems (BVPs) of differential equations; for example
[1–4,6,8]. Avery [2], Henderson and Thompson [5], and Avery and Henderson [4] e
lished the existence of at least three symmetric solutions for second order Lidstone
by, respectively, applying Leggett–Williams fixed point theorem and the five functio
fixed point theorem (which is a generalization of the former). Davis et al. [6] and D
et al. [1] studied the 2mth Lidstone BVP as follows, which has allowed the nonlinear fu
tion f to depend on all even order derivatives ofy,
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{
y(2m)(t)= f (y(t), y ′′(t), . . . , y(2(m−2))(t), y(2(m−1))(t)), t ∈ [0,1],
y(2i)(0)= y(2i)(1)= 0, 0 � i �m− 1,

(∗)

where(−1)mf :Rm → [0,∞) is continuous. They obtained the existence of three s
metric positive solutions of the BVP(∗) by, respectively, applying the above two theorem
Davis et al. [1] indicated that no results have been obtained on the corresponding pr
with f depending on all order derivatives—both even and odd. This present paper a
solving this open problem.

In Section 3, we are concerned with the following 2mth order Lidstone BVP:{
y(2m)(t)= f (y(t), y ′(t), . . . , y(2m−2)(t), y(2m−1)(t)), t ∈ [0,1],
y(2i)(0)= y(2i)(1)= 0, 0 � i �m− 1,

(1)

where(−1)mf :R2m → [0,∞) is continuous,(−1)mf (0) > 0, and even with respect t
the terms of the odd order derivatives ofy. In Section 4, we treat the nonautonomo
singular Lidstone BVP{

y(2m)(t)= f (t, y(t), y ′(t), . . . , y(2m−2)(t), y(2m−1)(t)), t ∈ (0,1),
y(2i)(0)= y(2i)(1)= 0, 0 � i �m− 1,

(2)

where (−1)mf : (0,1) × R2m → [0,∞) is continuous,f is even with respect to th
terms of the odd order derivatives ofy, andf satisfies condition (H):(−1)mf (t,0) > 0,
t ∈ (0,1), f (t,w) = f (1 − t,w) for (t,w) ∈ (0,1) × R2m, and(−1)mf (t,w) has inte-
grable functions defined on(0,1) as its upper bounds, whenw ∈ R2m is bounded. We
impose growth conditions onf which, respectively, yield the existence of at least th
symmetric positive solutions of problems (1) and (2).

2. Preliminaries

Definition 1. A nonnegative continuous functiony :C2m[0,1] → [0,∞) is called a sym-
metric positive solution of problem (1), ify(t) is symmetric aboutt = 1/2, y(t) > 0 for
0< t < 1, andy satisfies (1).

Definition 2. A nonnegative continuous functiony :C2m−1[0,1] ∩C2m(0,1)→ [0,∞) is
called a symmetric positive solution of problem (2), ify(t) is symmetric aboutt = 1/2,
y(t) > 0 for 0< t < 1, andy satisfies (2).

Lemma 1. If a functionu : [0,1] →R is a solution to the problem{
u(2n)(t)� 0, 0 � t � 1 (or 0< t < 1),

u(2i)(0)= u(2i)(1)= 0, 0 � i � n− 1,
(3)

then we have(−1)nu(t)� 0 for 0� t � 1.

Proof. If n is even, it suffices to prove thatu(t)� 0 for 0� t � 1. Assume for the sake o
contradiction that there existst1 ∈ (0,1) such thatu(t1) < 0; then it follows fromu(0)=
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xist

e

u(1)= 0 and Lagrange mean value theorem that there existξ
(1)
1 ∈ (0, t1) andξ(1)2 ∈ (t1,1)

such that

u′(ξ(1)1

)
< 0, u′(ξ(1)2

)
> 0.

Thus we use Lagrange mean value theorem again and then obtaint2 ∈ (ξ (1)1 , ξ
(1)
2 ) such that

u′′(t2) > 0.

From the conditionu(2)(0) = u(2)(1) = 0, the same reasoning gives that there e
ξ
(2)
1 ∈ (0, t2) andξ(2)2 ∈ (t2,1) such that

u′′′(ξ(2)1

)
> 0, u′′′(ξ(2)2

)
< 0,

and thent3 ∈ (ξ (2)1 , ξ
(2)
2 ) such that

u(4)(t3) < 0.

Inductively, it follows that there istn+1 ∈ (0,1) such thatu(2n)(tn+1) < 0. This contradicts
the known differential inequality in problem (3).

If n is odd, the analogous reasoning givesu(t)� 0 for t ∈ [0,1].

Lemma 2. If a functionu : [0,1] →R is a solution to the problem{
u(2n)(t)� 0, 0 � t � 1 (or 0< t < 1),

u(2i)(0)= u(2i)(1)= 0, 0 � i � n− 1,

then we have(−1)nu(t)� 0 for 0� t � 1.

Lemma 3. If a functionx : [0,1] → R is continuous, and symmetric aboutt = 1/2, then
the following equality is valid:

t∫
0

sx(s) ds −
1∫
t

(1− s)x(s) ds =
t∫

1−t
sx(s) ds.

Definition 3. The mapα is a nonnegative continuous concave functional on a conP
defined in a real Banach space, providedα :P → [0,∞) is continuous and

α
(
tx + (1− t)y)� tα(x)+ (1− t)α(y)

for all x, y ∈ P and 0� t � 1.

Definition 4. The mapβ is a nonnegative continuous convex functional on a coneP de-
fined in a real Banach space, providedβ :P → [0,∞) is continuous and

β
(
tx + (1− t)y)� tβ(x)+ (1− t)β(y)

for all x, y ∈ P and 0� t � 1.



B. Zhang, X. Liu / J. Math. Anal. Appl. 284 (2003) 672–689 675

h

e

n-
Let γ,β, θ be nonnegative continuous convex functionals on a coneP and letα,ψ be
nonnegative continuous concave functionals onP . Then for nonnegative numbersh, a, b,
d , andc, we define the following convex sets:

P(γ, c)= {
x ∈ P | γ (x) < c},

P (γ,α, a, c)= {
x ∈ P | a � α(x), γ (x) < c

}
,

Q(γ,β, d, c)= {
x ∈ P | β(x)� d, γ (x) < c},

P (γ, θ,α, a, c)= {
x ∈P | a � α(x), θ(x)� b, γ (x) < c

}
,

Q(γ,β,ψ,h, d, c)= {
x ∈P | h�ψ(x), β(x)� d, γ (x) < c

}
.

Lemma 4 [9] (The five functionals fixed point theorem).LetP be a cone in a real Banac
spaceE . Supposeα andψ are nonnegative continuous concave functionals onP and
γ,β, θ are nonnegative continuous convex functionals onP such that, for some positiv
numbersc andm,

α(x)� β(x), ‖x‖ �mγ (x), for all x ∈ P(γ, c).
Suppose further thatA :P(γ, c)→ P(γ, c) is completely continuous and there exist co
stantsh,d, a, b� 0 with 0< d < a such that each of the following is satisfied:

(A1) {x ∈ P(γ, θ,α, a, b, c) | α(x) > a} �= ∅ andα(Ax) > a for x ∈ P(γ, θ,α, a, b, c);
(A2) {x ∈Q(γ,β,ψ,h, d, c) | β(x) < d} �= ∅ andβ(Ax) < d for x ∈Q(γ,β,ψ,h, d, c);
(A3) α(Ax) > a providedx ∈ P(γ,α, a, c) with θ(Ax) > b;
(A4) β(Ax) < d providedx ∈Q(γ,β, d, c) with ψ(Ax) < h.

ThenA has at least three fixed pointsx1, x2, x3 ∈ P(γ, c) such that

β(x1) < d, a < α(x2), and d < β(x3) with α(x3) < a.

3. The autonomous case

We letG(t, s) be the Green’s function for the second order BVP{
u′′ = 0,
u(0)= u(1)= 0,

and then

G(t, s)= −
{
t (1− s), 0 � t � s � 1,
s(1− t), 0 � s � t � 1.

LetG1(t, s)=G(t, s), and for 2� j �m we can recursively define

Gj(t, s)=
1∫
G1(t, r)Gj−1(r, s) dr.
0
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As a result,Gj(t, s) is the Green’s function for the 2j th order BVP{
y(2j)(t)= 0, 0 � t � 1,

y(2i)(0)= y(2i)(1)= 0, 0 � i � j − 1,

for each 1� j �m− 1. One can see [7, p. 192] and [8,11] for details.
For each 1� j �m− 1, we define an operatorAj :C[0,1] →C[0,1] by

Aju(t)=
1∫

0

Gj(t, s)u(s) ds.

It follows from the definition ofAj that, for each 1� j �m− 1,{
(Aju)

(2j)(t)= u(t), 0 � t � 1,

(Aju)
(2i)(0)= (Aju)(2i)(1)= 0, 0� i � j − 1.

(4)

Define a functionG0 : [0,1] × [0,1] → R by

G0(t, s)=
{
s, 0 � s < t � 1,
s − 1, 0 � t � s � 1,

or

{
s, 0 � s � t � 1,
s − 1, 0 � t < s � 1.

Therefore, in the case of every solutiony to the following problems, from{
y ′′(t)= y ′′(t), 0 � t � 1,
y(0)= y(1)= 0,

we get{
y(t)= ∫ t

0 y
′(s) ds, 0 � t � 1,∫ 1

0 y
′(s) ds = 0,

and

y(t)=
1∫

0

G1(t, s)y
′′(s) ds,

and so

y ′(t)=
1∫

0

G0(t, s)y
′′(s) ds;

and, inductively, for 1� j �m− 1, from{
y(2j)(t)= y(2j)(t), 0 � t � 1,

y(2i)(0)= y(2i)(1)= 0, 0 � i � j − 1,

we have
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{
y(2j−2)(t)= ∫ t

0 y
(2j−1)(s) ds, 0 � t � 1,∫ 1

0 y
(2j−1)(s) ds = 0,

y(2j−2)(t)=
1∫

0

G1(t, s)y
(2j)(s) ds,

and

y(2j−1)(t)=
1∫

0

G0(t, s)y
(2j)(s) ds.

We define an operatorB :C[0,1] →C[0,1] by

Bu(t)=
1∫

0

G0(t, s)u(s) ds, u ∈ C[0,1],

and then, from Lemma 3, whenu is symmetric aboutt = 1/2, we can denoteB by

Bu(t)=
t∫

1−t
su(s) ds, u ∈ C[0,1].

If we define an integral operatorc :C[0,1] → C[0,1] by

cv(t)=
t∫

0

v(s) ds, v ∈C[0,1],

and letv(t)= y(2m−1)(t) for t ∈ [0,1], then, together with (4), for problem (1), we have

v′(t)= f (Am−1(cv(t)),B(Am−2(cv(t))),Am−2(cv(t)),B(Am−3(cv(t))), . . . ,

B(A1(cv(t))),A1(cv(t)),B(cv(t)), cv(t), v(t)), 0 � t � 1,∫ 1
0 v(s) ds = 0.

(5)

Therefore, we can define an operatorT :C1[0,1] →C1[0,1] by

T v(t)=
1∫

0

G0(t, s)f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
,

Am−2
(
cv(s)

)
,B
(
Am−3

(
cv(s)

))
, . . . ,

B
(
A1
(
cv(s)

))
,A1

(
cv(s)

)
,B
(
cv(s)

)
, cv(s), v(s)

)
ds,

0 � t � 1. (6)

Then, it is obvious that problem (1) has a solutiony =Am−1(cv) if and only if the operato
T has a fixed pointv = y(2m−1).

Assumey is a symmetric solution of problem (1). Fromy(t)= y(1− t), 0� t � 1, we
have

y(2i)(t)= y(2i)(1− t), 0 � i �m, 0 � t � 1, (7)
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y(2i−1)(t)+ y(2i−1)(1− t)= 0, 1 � i �m, 0 � t � 1. (8)

Hence, the operatorT has an inverse symmetric fixed pointv = y(2m−1). On the other
hand, letv be an inverse symmetric fixed point of the operatorT . From

v(t)+ v(1 − t)= 0, 0 � t � 1, (9)

we have

cv(t)= cv(1− t), 0� t � 1, (10)

and from the symmetry of the Green’s functionsGj (t, s) aboutt = 1/2 ands = 1/2,

Gj(t, s)=Gj(1− t,1− s), 0 � t � 1, 0 � s � 1, 1 � j �m− 1, (11)

we have thatAj(cv), for each 1� j �m− 1, is still symmetric

Aj
(
cv(t)

)=Aj
(
cv(1− t)), 0 � t � 1. (12)

So, correspondingly, problem (1) has a symmetric solutiony = Am−1(cv). In addition,
the assumption that problem (1) has a symmetric solution is rational due to equalit
and (8) and the even property off . The assumption that the operatorT has an inverse
symmetric fixed points is also reasonable because, for any inverse symmetric fun
v ∈C[0,1], from equalities (9) and (10), the even property off , and the inverse symmetr
of G0(t, s) aboutt = 1/2 ands = 1/2,

G0(t, s)+G0(1− t,1− s)= 0, (t, s) ∈ {[0,1] × [0,1]}∖{t = s �= 1

2

}
, (13)

it follows that T v is also inverse symmetric. Hence, the above discussion implies
problem (1) has a symmetric solutiony = Am−1(cv) if and only if the operatorT has an
inverse symmetric fixed pointv = y(2m−1).

Let us consider a symmetric positive solutiony of problem (1). Since(−1)mf � 0 on
R2m, then(−1)my(2m) is positive and symmetric. Hence the sign of Green’s functionsGj
implies that the symmetric functions(−1)2m−jy(2j) = (−1)2m−jAm−j (y(2m)) andy are
positive and concave for 1� j �m−1. And from equality (13), we have that inverse sy
metric functions(−1)2m−j y(2j−1) = (−1)2m−jB(Am−j (y(2m))) and(−1)my(2m−1)are in-
creasing for 1� j �m−1. Therefore, the operatorT has an inverse symmetric fixed poi
v = y(2m−1) and(−1)mv is increasing.

On the other hand, ifv is an inverse symmetric fixed point of the operatorT
and (−1)mv is increasing, then from Eq. (5) and(−1)mf � 0 on R2m, we have tha
(−1)mcv is symmetric negative convex. The sign of the Green’s functionsGj implies
that (−1)2m−jAm−j (cv) is negative convex, for each 1� j � m − 1, and according to
equality (13), the inverse symmetric functions(−1)mB(cv) and(−1)2m−jB(Am−j (cv))
are decreasing for 2� j �m− 1. So(−1)2m−1Am−1(cv) is negative concave. Therefor
problem (1) has a symmetric positive solutiony = Am−1(cv). In a word, problem (1) ha
a symmetric positive solutiony = Am−1(cv) if and only if the operatorT has an inverse
symmetric fixed pointv = y(2m−1) and(−1)mv is increasing.

All the above analysis suggests that in order to find at least three symmetric po
solutionsyi =Am−1(cvi), i = 1,2,3, of problem (1), it suffices to prove that the opera
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nega-
als
T has at least three inverse symmetric fixed pointsvi = y(2m−1)
i , i = 1,2,3, wherevi

satisfies(−1)mv′i � 0 for eachi = 1,2,3.
We are now in a position to prove the main results.
LetX be the real Banach spaceC1[0,1] with the max norm, and define the coneP in

X by

P = {
v ∈X | v(t)+ v(1 − t)= 0, (−1)mv′(t)� 0, t ∈ [0,1]}.

In order to contain the results in [1] as much as possible, we similarly define the non
tive continuous concave functionalsα,ψ , and nonnegative continuous convex function
β, θ onP by

β(v)= max
t∈[1/r,1−1/r]

∣∣∣∣∣
t∫

0

v(s) ds

∣∣∣∣∣=
∣∣∣∣cv
(

1

2

)∣∣∣∣,

ψ(v)= min
t∈[1/r,1−1/r]

∣∣∣∣∣
t∫

0

v(s) ds

∣∣∣∣∣=
∣∣∣∣cv
(

1

r

)∣∣∣∣,

α(v)= min
t∈[t1,t2]∪[1−t2,1−t1]

∣∣∣∣∣
t∫

0

v(s) ds

∣∣∣∣∣= ∣∣cv(t1)∣∣,

θ(v)= max
t∈[t1,t2]∪[1−t2,1−t1]

∣∣∣∣∣
t∫

0

v(s) ds

∣∣∣∣∣=
∣∣cv(t2)∣∣,

wheret1, t2, and 1/r are nonnegative numbers such that

0< t1< t2<
1

2
, 0<

1

r
� t2. (14)

We also define the nonnegative continuous convex functionalsγ onP by

γ (v)= ‖v‖ = ∣∣v(1)∣∣= ∣∣v(0)∣∣.
LetD = [t1, t2] ∪ [1− t2,1− t1] andU = [1/r,1− 1/r].

It is clear that for everyv ∈P ,

‖v‖ = γ (v), α(v)= ∣∣cv(t1)∣∣�
∣∣∣∣cv
(

1

2

)∣∣∣∣= β(v).
We will make use of some of the following properties ofG(t, s):

1∫
0

∣∣G(t, s)∣∣ds = t (1− t)
2

, 0� t � 1,

1/r∫ ∣∣∣∣G
(

1

2
, s

)∣∣∣∣ds =
1∫ ∣∣∣∣G

(
1

2
, s

)∣∣∣∣ds = 1

4r2
, 2< r, (15)
0 1−1/r
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1/2∫
1/r

∣∣∣∣G
(

1

2
, s

)∣∣∣∣ds =
1−1/r∫
1/2

∣∣∣∣G
(

1

2
, s

)∣∣∣∣ds = r
2 − 4

16r2
, 2< r, (16)

t2∫
t1

∣∣G(t1, s)∣∣ds +
1−t1∫

1−t2

∣∣G(t1, s)∣∣ds = t1(t2 − t1), 0< t1< t2<
1

2
. (17)

The following theorem is the main result in this section.

Theorem 1. Assume there existt1, t2,1/r which satisfy(14), and real numbers0< h =
2d/r < d < a < b= (t2/t1)a � c such thatf satisfies all the following conditions:

(B1)
∣∣f (um−1(t), vm−2(t), um−2(t), vm−3(t), . . . , u1(t), v0(t), u0(t), v(t)

)∣∣
<

8r2

r2 − 4

(
d − c

r2

)
for all(∣∣v(t)∣∣, ∣∣v0(t)

∣∣, ∣∣vi(t)∣∣, ∣∣u0(t)
∣∣, ∣∣uj (t)∣∣)

∈ [0, c] ×
[
0,
c

2

1− 2/r

2

]
×
[
0,

(
d + c

2

)
1

8i
1− 2/r

2

]

× [h,d] ×
[
h

∫
U

∣∣Gj(t, s)∣∣ds, d
∫
U

∣∣Gj (t, s)∣∣ds

+ c

2

∫
[0,1]\U

∣∣Gj(t, s)∣∣ds
]
,

where1 � i �m− 2, 1 � j �m− 1, andt ∈ U ;

(B2)
∣∣f (um−1(t), vm−2(t), um−2(t), vm−3(t), . . . , u1(t), v0(t), u0(t), v(t)

)∣∣
� a

t1(t2 − t1)
for all(∣∣v(t)∣∣, ∣∣v0(t)

∣∣, ∣∣u0(t)
∣∣, ∣∣vi(t)∣∣, ∣∣uj (t)∣∣)

∈ [0, c] ×
[
a

1− 2t2
2

,
c

2

1− 2t2
2

]

× [a, b] ×
[
a

1− 2t2
2

1−t1∫
t1

∣∣Gi(t2, s)∣∣ds, c
2

1

8i
1− 2t2

2

]

×
[
a

∫ ∣∣Gj(t, s)∣∣ds, b
∫ ∣∣Gj(t, s)∣∣ds + c

2

∫ ∣∣Gj (t, s)∣∣ds
]

D D [0,1]\D
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d

ela
⊂ [0, c] ×
[
a

1− 2t2
2

,
c

2

1− 2t2
2

]
× [a, b]

×
[
0,
c

2

1

8i
1− 2t2

2

]
×
[
0,

(
b+ c

2

)
1

8j

]
,

where1 � i �m− 2, 1 � j �m− 1, andt ∈D;

(B3)
∣∣f (um−1(t), vm−2(t), um−2(t), vm−3(t), um−3(t), . . . ,

u1(t), v0(t), u0(t), v(t)
)∣∣� 2c

for all(∣∣v(t)∣∣, ∣∣u0
∣∣, ∣∣vi(t)∣∣, ∣∣uj (t)∣∣)

∈ [0, c] ×
[
0,
c

2

]
×
[
0,

c

4× 8i

]
×
[

0,
c

2

1∫
0

∣∣Gj(t, s)∣∣ds
]

⊂ [0, c] ×
[
0,
c

2

]
×
[
0,

c

4× 8i

]
×
[
0,

c

2× 8j

]
,

where0 � i �m− 2, 1 � j �m− 1, andt ∈ [0,1].

Then the Lidstone BVP(1) has at least three symmetric positive solutionsy1, y2, y3, such
that ∥∥y(2m−1)

i

∥∥� c, i = 1,2,3,

max
t∈U

∣∣y(2m−2)
1 (t)

∣∣< d, min
t∈D

∣∣y(2m−2)
2 (t)

∣∣> a,
max
t∈U

∣∣y(2m−2)
3 (t)

∣∣> d, and min
t∈D

∣∣y(2m−2)
3 (t)

∣∣< a.
Proof. Under the prior analysis, we recall the continuous operatorT :C1[0,1] →C1[0,1]
defined as (6),

T v(t)=
1∫

0

G0(t, s)f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
,

Am−2
(
cv(s)

)
,B
(
Am−3

(
cv(s)

))
, . . . ,

B
(
A1
(
cv(s)

))
,A1

(
cv(s)

)
,B
(
cv(s)

)
, cv(s), v(s)

)
ds,

0 � t � 1.

It is clear thatT :P →P , so it suffices to prove that the operatorT has at least three fixe
points inP .

The continuity off and that of the integrals with variable limits, and the Ascoli–Arz
theorem suggest the completely continuity ofT .

Next, we showT :P(γ, c)→ P(γ, c).
If v ∈ P(γ, c), thenγ (v)= ‖v‖ � c and so fort ∈ [0,1],
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‖cv‖ =
∣∣∣∣cv
(

1

2

)∣∣∣∣=
∣∣∣∣∣

1/2∫
0

v(s) ds

∣∣∣∣∣� c2,
∥∥B(cv)∥∥= ∣∣B(cv(0))∣∣=

∣∣∣∣∣
1∫

0

scv(s) ds

∣∣∣∣∣� c2 1

2
= c

4
,

∣∣A1
(
cv(t)

)∣∣=
∣∣∣∣∣

1∫
0

G1(t, s)cv(s) ds

∣∣∣∣∣� c2
1∫

0

∣∣G1(t, s)
∣∣ds � c

2

1

8
.

Inductively (compare with [6,10]), ift ∈ [0,1], then for 2� j �m− 1 and 2� i �m− 2,

∣∣Aj (cv(t))∣∣=
∣∣∣∣∣

1∫
0

Gj(t, s)cv(s) ds

∣∣∣∣∣� c2
1∫

0

∣∣Gj(t, s)∣∣ds � c
2

1

8j
,

∣∣B(Ai(cv(t)))∣∣=
∣∣∣∣∣

1∫
0

G0(t, s)Aicv(s) ds

∣∣∣∣∣� c2 1

8i

1∫
0

s ds = c
4

1

8i
.

From condition(B3), it implies that forv ∈ P(γ, c),∣∣f (Am−1(cv),B
(
Am−2(cv)

)
,Am−2(cv), . . . ,

B
(
A1(cv)

)
,A1(cv),B(cv), cv, v

)∣∣� 2c,

and so

γ (v)= ‖v‖ =
∣∣∣∣∣

1∫
0

G0(0, s)f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
,Am−2

(
cv(s)

)
, . . . ,

B
(
A1
(
cv(s)

))
,A1

(
cv(s)

)
,B
(
cv(s)

)
, cv(s), v(s)

)
ds

∣∣∣∣∣
� 2c

1∫
0

s ds = c,

namely,T :P(γ, c)→ P(γ, c).
Next we show conditions (A1)–(A4) in Lemma 4 are satisfied forT .
It is easy to see that for 0< h= 2d/r < d < a < b = (t2/t1)a � c,{
v ∈ P(γ, θ,α, a, b, c) | α(v) > a} �= ∅,{
v ∈Q(γ,β,ψ,h, d, c) | β(v) < d} �= ∅

are valid. To prove that the second part of (A1) holds, letv ∈ P(γ, θ,α, a, b, c), and then

α(v)= ∣∣cv(t1)∣∣� a, θ(v)= ∣∣cv(t2)∣∣� b, γ (v)= ‖v‖< c.
It implies thata � |cv(t)| � b for t ∈D and|cv(t)|< c/2 for t ∈ [0,1], and so fort ∈D,
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∣∣A1
(
cv(t)

)∣∣=
∣∣∣∣∣

1∫
0

G1(t, s)cv(s) ds

∣∣∣∣∣� a
∫
D

∣∣G1(t, s)
∣∣ds,

∣∣A1
(
cv(t)

)∣∣� b ∫
D

∣∣G1(t, s)
∣∣ds + c

2

∫
[0,1]\D

∣∣G1(t, s)
∣∣ds,

∣∣B(cv(t))∣∣� ∣∣B(cv(t1))∣∣=
∣∣∣∣∣

t1∫
1−t1

scv(s) ds

∣∣∣∣∣� c2 1− 2t1
2

,

∣∣B(cv(t))∣∣� ∣∣B(cv(t2))∣∣=
∣∣∣∣∣

t2∫
1−t2

scv(s) ds

∣∣∣∣∣� a 1− 2t2
2

.

Inductively, if t ∈D, then for 2� j �m− 1 and 1� i �m− 2,

∣∣Aj (cv(t))∣∣ ∈
[
a

∫
D

∣∣Gj(t, s)∣∣ds, b
∫
D

∣∣Gj(t, s)∣∣ds + c
2

∫
[0,1]\D

∣∣Gj(t, s)∣∣ds
]
,

∣∣B(Ai(cv(t)))∣∣� ∣∣B(Ai(cv(t1)))∣∣=
∣∣∣∣∣

t1∫
1−t1

sAi
(
cv(s)

)
ds

∣∣∣∣∣� c2 1

8i
1− 2t1

2
,

∣∣B(Ai(cv(t)))∣∣� ∣∣B(Ai(cv(t2)))∣∣=
∣∣∣∣∣

t2∫
1−t2

sAi
(
cv(s)

)
ds

∣∣∣∣∣

�
∣∣∣∣∣

t2∫
1−t2

sa

1−t1∫
t1

∣∣Gi(s,w)∣∣ dw ds
∣∣∣∣∣� a

1−t1∫
t1

∣∣Gi(t2, s)∣∣ds 1− 2t2
2

.

From condition (B2), it implies that forv ∈ P(γ, θ,α, a, b, c),∣∣f (Am−1
(
cv(t)

)
,B
(
Am−2

(
cv(t)

))
, . . . ,B

(
cv(t)

)
, cv(t), v(t)

)∣∣� 1

t1(t2 − t1)
for t ∈D,

and so

α(T v)=
∣∣∣∣∣
t1∫

0

1∫
0

G0(t, s)f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,

B
(
cv(s)

)
, cv(s), v(s)

)
ds dt

∣∣∣∣∣
=
∣∣∣∣∣

1∫
G1(t1, s)f

(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,
0
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B
(
cv(s)

)
, cv(s), v(s)

)
ds

∣∣∣∣∣
>

∣∣∣∣∣
∫
D

G1(t1, s)f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,

B
(
cv(s)

)
, cv(s), v(s)

)
ds

∣∣∣∣∣
� a

t1(t2 − t1)

∣∣∣∣∣
∫
D

G1(t, s) ds

∣∣∣∣∣= a.
To show that the second part of(A2) holds, letv ∈ P(γ,ψ,β,h, d, c) and then

h�
∣∣cv(t)∣∣� d for t ∈U and

∣∣cv(t)∣∣< c
2

for t ∈ [0,1],
and so fort ∈ U ,

∣∣A1
(
cv(t)

)∣∣ ∈
[
h

∫
U

∣∣G1(t, s)
∣∣ds, d ∫

U

∣∣G1(t, s)
∣∣ds + c

2

∫
[0,1]\U

∣∣G1(t, s)
∣∣ds

]
,

∣∣B(cv(t))∣∣� ∣∣∣∣Bcv
(

1

r

)∣∣∣∣�
∣∣∣∣∣

1−1/r∫
1/r

tcv(t) dt

∣∣∣∣∣� c2 1− 2/r

2
.

Inductively, if t ∈ U , then for 2� j �m− 1 and 1� i �m− 2,

∣∣Aj (cv(t))∣∣ ∈
[
h

∫
U

∣∣Gj(t, s)∣∣ds, d
∫
U

∣∣Gj(t, s)∣∣ds + c
2

∫
[0,1]\U

∣∣Gj(t, s)∣∣ds
]
,

∣∣B(Ai(cv(t)))∣∣�
∣∣∣∣B
(
Ai

(
cv

(
1

r

)))∣∣∣∣=
∣∣∣∣∣

1/r∫
1−1/r

tAi
(
cv(t)

)
dt

∣∣∣∣∣

�
1/r∫

1−1/r

t

(
d

∫
U

∣∣Gi(t, s)∣∣ds + c
2

∫
[0,1]\U

∣∣Gi(t, s)∣∣ds
)
dt

�
(
d + c

2

)
1

8i
1− 2/r

2
.

From condition(B1), it implies that forv ∈ P(γ,ψ,β,h, d, c),
∣∣f (Am−1

(
cv(t)

)
,B
(
Am−2

(
cv(t)

))
, . . . ,B

(
cv(t)

)
, cv(t), v(t)

)∣∣< 8r2

r2 − 4

(
d − c

r2

)
for t ∈ U,

and so
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) in

t
tric
β(T v)=
∣∣∣∣∣

1∫
0

G1

(
1

2
, s

)
f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,

B
(
cv(s)

)
, cv(s), v(s)

)
ds

∣∣∣∣∣
�
∣∣∣∣∣2

1/r∫
0

G1

(
1

2
, s

)
f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,

B
(
cv(s)

)
, cv(s), v(s)

)
ds

∣∣∣∣∣
+
∣∣∣∣∣2

1/2∫
1/r

G1

(
1

2
, s

)
f
(
Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,

B
(
cv(s)

)
, cv(s), v(s)

)
ds

∣∣∣∣∣
< 2 · 2c

1

4r2
+ 2
r2 − 4

16r2
8r2

r2 − 4

(
d − c

r2

)
= d.

We show next that for allv ∈ P with θ(v) > (t2/t1)a or ψ(v) < (2/r)d , the inequality
α(v) > a or β(v) < d always holds.

Forv ∈ P , we have(−1)mv′ � 0, that is,((−1)mcv)′′ � 0. Therefore,|cv| is a concave
function, and so

|cv(t1)|
t1

� |cv(t2)|
t2

,

that is,α(v) � (t1/t2)θ(v) > a. By the same reasoning, ifv ∈ P , andψ(v) < 2d/r, we
have

|cv(1/r)|
1/r

� |cv(1/2)|
1/2

,

that is,β(v)� (r/2)ψ(v) < d . The above arguments suggest that conditions (A3)–(A4
Lemma 4 also hold.

Therefore, the hypotheses of Lemma 4 are satisfied and then the operatorT has at leas
three fixed pointsv1, v2, v3 ∈ P(r, c), which, respectively, correspond to three symme
positive solutionsy1, y2, y3 of problem (1) by

yi(t)=Am−1
(
cvi(t)

)=
1∫

0

Gm−1(t, s)cvi(s) ds, t ∈ [0,1], i = 1,2,3.

Sincevi , i = 1,2,3, satisfyβ(v1) < d , a < α(v2), andd < β(v3), α(v3) < a, thenyi ,
i = 1,2,3, respectively, satisfy
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∥∥y(2m−1)
i

∥∥� c, i = 1,2,3,

max
t∈U

∣∣y(2m−2)
1 (t)

∣∣< d, min
t∈D

∣∣y(2m−2)
2 (t)

∣∣> a,
max
t∈U

∣∣y(2m−2)
3 (t)

∣∣> d, and min
t∈D

∣∣y(2m−2)
3 (t)

∣∣< a.
The proof is complete. ✷

4. The nonautonomous singular case

Theorem 2. Assume there existt1, t2,1/r such that(14)holds, and real numbers0< h=
2d/r < d < a < b= (t2/t1)a � c such thatf satisfies all the following conditions:

(C1) ∃ q1 ∈C((0,1), [0,∞)) such that∣∣f (t, um−1(t), vm−2(t), um−2(t), vm−3(t), . . . , u1(t), v0(t), u0(t), v(t)
)∣∣

<
8r2

r2 − 4

(
d − c

r2

)
q1(t)

and
∫
U sq1(s) ds � 1/2 for all(∣∣v(t)∣∣, ∣∣v0(t)

∣∣, ∣∣vi(t)∣∣, ∣∣u0(t)
∣∣, ∣∣uj (t)∣∣)

∈ [0, c] ×
[
0,
c

2

1− 2/r

2

]
×
[
0,

(
d + c

2

)
1

8i
1− 2/r

2

]

× [h,d] ×
[
h

∫
U

∣∣Gj(t, s)∣∣ds, d
∫
U

∣∣Gj(t, s)∣∣ds

+ c
2

∫
[0,1]\U

∣∣Gj (t, s)∣∣ds
]
,

where1 � i �m− 2, 1 � j �m− 1, andt ∈ U ;
(C2) ∃ q2 ∈C((0,1), [0,∞)) such that∣∣f (t, um−1(t), vm−2(t), um−2(t), vm−3(t), . . . , u1(t), v0(t), u0(t), v(t)

)∣∣
� a

t1(t2 − t1)q2(t)

and
∫
D
sq2(s) ds � 1/2 for all(∣∣v(t)∣∣, ∣∣v0(t)

∣∣, ∣∣u0(t)
∣∣, ∣∣vi(t)∣∣, ∣∣uj (t)∣∣)

∈ [0, c] ×
[
a

1− 2t2
2

,
c

2

1− 2t2
2

]

× [a, b] ×
[
a

1− 2t2
2

1−t1∫ ∣∣Gi(t2, s)∣∣ds, c
2

1

8i
1− 2t2

2

]

t1
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ase.
:

×
[
a

∫
D

∣∣Gj(t, s)∣∣ds, b
∫
D

∣∣Gj(t, s)∣∣ds + c
2

∫
[0,1]\D

∣∣Gj(t, s)∣∣ds
]

⊂ [0, c] ×
[
a

1− 2t2
2

,
c

2

1− 2t2
2

]
× [a, b]

×
[
0,
c

2

1

8i
1− 2t2

2

]
×
[
0,

(
b+ c

2

)
1

8j

]
,

where1 � i �m− 2, 1� j �m− 1, andt ∈D;
(C3) ∃q3 ∈ C((0,1), [0,∞)) such that∣∣f (t, um−1(t), vm−2(t), um−2(t), vm−3(t), um−3(t), . . . ,

u1(t), v0(t), u0(t), v(t)
)∣∣� 2cq3(t)

and
∫ 1

0 sq3(s) ds � 1/2 for all(∣∣v(t)∣∣, ∣∣u0(t)
∣∣, ∣∣vi(t)∣∣, ∣∣uj (t)∣∣)

∈ [0, c] ×
[
0,
c

2

]
×
[
0,

c

4× 8i

]
×
[

0,
c

2

1∫
0

∣∣Gj(t, s)∣∣ds
]

⊂ [0, c] ×
[
0,
c

2

]
×
[
0,

c

4× 8i

]
×
[
0,

c

2× 8j

]
,

where0 � i �m− 2, 1 � j �m− 1, andt ∈ (0,1).

Then the Lidstone BVP(2) has at least three symmetric positive solutionsy1, y2, y3, such
that ∥∥y(2m−1)

i

∥∥� c, i = 1,2,3,

max
t∈U

∣∣y(2m−2)
1 (t)

∣∣< d, min
t∈D

∣∣y(2m−2)
2 (t)

∣∣> a,
max
t∈U

∣∣y(2m−2)
3 (t)

∣∣> d, and min
t∈D

∣∣y(2m−2)
3 (t)

∣∣< a.
Proof. We prove the theorem by using the similar reasoning with the autonomous c

Let v(t)= y(2m−1)(t) for t ∈ [0,1], then problem (2) becomes the following problem

v′(t)= f (t,Am−1(cv(t)),B(Am−2(cv(t))), . . . ,

A1(cv(t)),B(cv(t)), cv(t), v(t)), 0< t < 1,∫ 1
0 v(s) ds = 0.

Define a completely continuous operatorS :C[0,1] → C[0,1] by

Sv(t)=
1∫

0

G0(t, s)f
(
s,Am−1

(
cv(s)

)
,B
(
Am−2

(
cv(s)

))
, . . . ,

A1
(
cv(s)

)
,B
(
cv(s)

)
, cv(s), v(s)

)
ds, 0 � t � 1.

Condition (H) suggests the significance ofS.



688 B. Zhang, X. Liu / J. Math. Anal. Appl. 284 (2003) 672–689

nding
ere is

y the
Let X denote the Banach spaceC[0,1] with the max norm, and define a coneP ⊂ X
by

P = {
v ∈X ∩C1(0,1) | v(t)+ v(1− t)= 0,

t ∈ [0,1], (−1)mv′(t)� 0, t ∈ (0,1)}.
Obviously, it suffices to prove that the operatorS has at least three fixed points inP .

The rest of the proof is similar with the Theorem 1, so we omit it.✷
Remark. Since problem(∗) is a special case of problem (1), the growth conditions onf ,
(B1) and (B2), which we have obtained in Theorem 1, are better than the correspo
conditions (G1) and (G2) in Theorem 2 performed in [1], and in the case of (B3), th
only a difference of a constant from (G3) in [1].

We now give a simple example to show that there exist functions which satisf
growth conditions imposed in Theorem 1.

Example. Considering the following BVP:{
y ′′(t)= f (y(t), y ′(t)), t ∈ [0,1],
y(0)= y(1)= 0,

(18)

where

−f (u, v)=




6(1− √
u2 + v2 ), u2 + v2 � 1,

92(|u| − 1), 1 � |u| � 2,
92(3− |u|), 2 � |u| � 3,
0, elsewhere.

It is obvious thatf ∈ C(R2, (−∞,0]) andf is even aboutv. We lett1 = 1/4, t2 = 40/81,
1/r = 0.1, a = 184/151, c = 46, d = 1.053, which satisfy 0< (2/r)d < d < a <
(t2/t1)a < c and 0< t1< t2< 1/2, 0< 1/r � t2.

(1) When 0� |v| � c, (2/r)d � |u| � d , we show that

∣∣f (u, v)∣∣< 8r2

r2 − 4

(
d − c

r2

)
.

In fact,

∣∣f (u, v)∣∣� 92(d − 1)= 4.876<
8r2

r2 − 4

(
d − c

r2

)
= 25

3
(d − 0.46)= 4.94.

(2) When 0� |v| � c, a � |u| � (t2/t1)a, we show that∣∣f (u, v)∣∣� a

t1(t2 − t1) .
In fact, since|f (a, v)| = |f (4 − a, v)| and(t2/t1)a = 160× 184/(81× 151) < 4 − a =
420/151, we have∣∣f (u, v)∣∣� 92(a− 1)= 92× 33 = 239844

>
a = 238464

.

151 151× 79 t1(t2 − t1) 151× 79
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ve so-

utions,

. Hot-

1991)

oblem,

value

ivatives,

5.
blems,

999)
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(3) When 0� |v| � c, 0� |u| � c/2, |f (u, v)| � 92= 2c is obvious.
Hence, according to Theorem 1, BVP (18) has at least three symmetric positi

lutions y1, y2, y3, and ‖yi‖ � c, i = 1,2,3, |y1(t)| < d , t ∈ U , |y2(t)| > a, t ∈ D,
|y3(t)|< a, t ∈D, and|y3(t)|> d , t ∈ U .
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