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Abstract

We show that a generic vector 'eld on an a.ne space of positive characteristic admits an
invariant algebraic hypersurface. This contrasts with Joaunolou’s Theorem that shows that in
characteristic zero the situation is completely opposite. That is, a generic vector 'eld in the
complex plane does not admit any invariant algebraic curve. c© 2001 Elsevier Science B.V. All
rights reserved.

MSC: 13N15; 14Rxx

1. Introduction

Jouanolou, in his celebrated Lecture Notes [3], proved that a generic vector 'eld of
degree greater than one on P2C does not admit any invariant algebraic curve. Here, by
generic we mean: outside an enumerable union of algebraic varieties. In this paper,
we investigate what happens if we change the 'eld of complex numbers to a 'eld of
positive characteristic.
It turns out that the situation is completely di?erent, and we prove that outside an

algebraic variety in the space of a.ne vector 'elds of a 'xed degree a vector 'eld
does admit an invariant algebraic hypersurface. More precisely, we prove the following
result.
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Theorem 1. Let X be a vector 4eld on An
k ; where k is a 4eld of positive characteristic.

If the divergent of X is di7erent from zero; then X admits an invariant algebraic
hypersurface. If div(X )= 0 then the polynomials cutting out invariant hypersurfaces
appear as factors of a polynomial F completely determined by X .

Our methods are quite elementary, and we start by investigating collections of n
vector 'elds on the n-dimensional a.ne space over any 'eld, and their dependency
locus. We give conditions for the dependency locus to be invariant by every vector
'eld in the collection. In positive characteristic such conditions imply Theorem 1.
Despite its simplicity the theorem and its proof illustrate some particular features of

vector 'elds in positive characteristic.

2. Preliminaries

In this section, we de'ne the basic vocabulary that will be used in the rest of the
paper. We try to keep the language as simple as possible.

2.1. Derivations and vector 4elds

Denote by R the ring k[x1; : : : ; xn], and by 	(An) the graded R-module of di?erential
forms.

De�nition 1. A k-derivation X of R is a k-linear transformation of R in itself that
satis'es Leibniz’s rule, i.e. X (ab)= aX (b) + bX (a) for arbitrary a; b∈R.

A derivation X can be written as X =
∑n

i=1 X (xi)@=@xi, and understood as a vector
'eld on An

k .

De�nition 2. The inner product of X and a p-form ! is the (p−1)-form iX! de'ned
as

iX!(v1; : : : ; vp−1)=!(X; v1; : : : ; vp−1):

Note that iX is an antiderivation of degree −1 of 	(An).

De�nition 3. Given a vector 'eld X on An
k , its Lie derivative LX is the derivation of

degree 0 of 	(An) de'ned by

LX = iX d+ diX :

The proof of the next proposition can be found in [2, p. 93 and 94].

Proposition 1. If X and Y are two vector 4elds on An; then

[LX ; iY ] = i[X;Y ]; [LX ; LY ] =L[X;Y ]:
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De�nition 4. We say that the hypersurface given by the reduced equation (F =0) is
invariant by X if X (F)=F is a polynomial. In case that X (F)= 0 we say that F is a
'rst integral or a non-trivial constant of derivation of X .

2.2. Derivations in characteristic p

The derivations in positive characteristic have very particular properties when com-
pared with the derivations in characteristic zero. Some of these special properties can
be seen in the next two results, and these will be essential for the proof of Theorem 1.

Proposition 2. Let X be a derivation over a 4eld of characteristic p¿ 0. Then Xp is
a derivation.

Proof. It is su.cient to verify that Xp satis'es Leibniz’s rule. In fact,

Xp(fg)=
p∑
i=1

(
p
i

)
Xp−i(f)X i(g)=Xp(f)g+ Xp(g)f:

Theorem 2. Let X be a derivation of R; where k is a 4eld of characteristic p¿ 0.
Then X admits a non-trivial constant of derivation if and only if X ∧ Xp ∧ · · · ∧
Xpn−1

= 0.

Proof. See Lecture III on [5] (more precisely p. 56 and 57) or [1].

3. Invariant hypersurfaces in Ank

In this section, we de'ne the notion of a polynomially involutive family of vector
'elds and show how it can be used to guarantee the existence of invariant algebraic
hypersurfaces for vector 'elds in such a family.

3.1. Dependency locus of vector 4elds

De�nition 5. Let X1; : : : ; Xn be vector 'elds on An
k . Their dependency locus is the

hypersurface cut out by Dep(X1; : : : ; Xn), where

Dep(X1; : : : ; Xn)= iX1 · · · iXndx1 ∧ · · · ∧ dxn:

Example 1. If X = @=@x and Y =− y(@=@x) + x(@=@y), then Dep(X; Y )= x.

Example 2. Let X =(x3 − 1)x(@=@x) + (y3 − 1)y(@=@y) and Y =(x3 − 1)y2(@=@x) +
(y3 − 1)x2(@=@y). Then Dep(X; Y )= (x3 − 1)(y3 − 1)(x3 − y3). Observe that every
vector 'eld of the form sX + tY has at least nine invariant lines, which are given by
the equation (x3 − y3)(x3 − 1)(y3 − 1)=0. The family of vector 'elds sX + tY was
studied by Lins Neto in [4].
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Proposition 3. If X1; : : : ; Xn are generically independent vector 4elds in An
k then there

exist polynomials p(k)ij and a non-negative integer m such that

[Xi; Xj] =
n∑

k=1

p(k)ij

Dep(X1; : : : ; Xn)m
Xk :

Proof. In the principal open set An \ (Dep(X1; : : : ; Xn)= 0)=An
Dep(X1 ;:::; Xn) the vector

'elds are independent, whence the lemma follows.

Lemma 1 (Fundamental lemma). Let X1; : : : ; Xn be vector 4elds on An
k and a(k)ij be

rational functions such that [Xi; Xj] =
∑n

k=1 a
(k)
ij Xk : Denoting Dep(X1; : : : ; Xn) by F;

then

iXk� ∧ dF =



(−1)k+1 div(Xk) +

n∑
j=k+1

a( j)kj +
k−1∑
i=1

(−1)i−k+1a(i)ik


F


�;

where �=dx1 ∧ · · · ∧ dxn .

Proof. The proof of the lemma follows from a few manipulations with the formulas
given in Proposition 1. From the de'nition of the Lie derivative, we can see that

dDep(X1; : : : ; Xn) = diX1 · · · iXn�=(LX1 − iX1d)iX2 · · · iXn�

=
n∑

i=1

(−1)i+1iX1 · · · iXi−1LXi iXi+1 · · · iXn�:

We can write the last expression on the formula above as

n∑
i=1

(−1)i+1iX1 · · · iXi−1LXi iXi+1 · · · iXn�

=
n∑

i=1

(−1)i+1

div(Xi)�i +

n∑
j=i+1

iX1 · · · iXi−1 iXi+1 · · · iXj−1 i[Xi;Xj]iXj+1 · · · iXn


�

=
n∑

i=1

(−1)i+1

div(Xi)�i +

n∑
j=i+1

(−1)i−j+1a(i)ij �j + a( j)ij �i


 ;

where �i= iX1 · · · iXi−1 iXi+1 · · · iXn�. Observing that iXk� ∧ �l=  kl(iX1 · · · iXn�)�; we
obtain

iXk� ∧ diX1 · · · iXn�

=




(−1)k+1div(Xk) +

n∑
j=k+1

a( j)kj +
k−1∑
i=1

(−1)i−k+1a(i)ik


 iX1 · · · iXn�


�:

But this last expression is exactly our thesis.
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3.2. Polynomially involutive vector 4elds

De�nition 6. A collection of vector 'elds X1; : : : ; Xn of An
k is polynomially involutive

if there exist polynomials p(k)ij such that

[Xi; Xj] =
n∑

k=1

p(k)ij Xk :

Example 3. If X = @=@x and Y =−y(@=@x)+ x(@=@y), then [X; Y ] = @=@y=Y=x+yY=x.
Hence X and Y are not polynomially involutive.

Example 4. Let X =(x3 − 1)x(@=@x) + (y3 − 1)y(@=@y) and Y =(x3 − 1)y2(@=@x) +
(y3 − 1)x2(@=@y) be the vector 'elds given in Example 2. Then X and Y are polyno-
mially involutive.

Proposition 4. Let k be a 4eld and X1; : : : ; Xn a collection of vector 4elds on An
k .

Suppose that {Xi}ni=1 is a polynomially involutive system of vector 4elds. If the de-
pendency locus is not a constant of derivation then it is invariant by Xj for each
j=1; : : : ; n.

Proof. Let F :=Dep(X1; : : : ; Xn). By the fundamental lemma,

Xk(F)=
iXk� ∧ dF

�
=


(−1)k+1div(Xk) +

n∑
j=k+1

a( j)kj +
k−1∑
i=1

(−1)i−k+1a(i)ik


F:

Since {Xi}ni=1 is a polynomially involutive system of vector 'elds, one can see that

Xk(F)
F

is a polynomial. Therefore, if dF is di?erent from zero, the dependency locus is in-
variant by Xj.

In general the converse of the proposition above does not hold. For instance if we
consider the vector 'elds X; Y; Z on A3C given by X =y(@=@x)+x(@=@y)+z(@=@z); Y =
x(@=@x)+z(@=@y) and Z = @=@x. Then Dep(X; Y; Z)= z2 and [X; Z] = @=@y=(Y −xZ)=z.
Therefore, the vector 'elds X; Y; Z are not polynomially involutive, but the dependency
locus is invariant by all of them. If we restrict to the two-dimensional case we have

Proposition 5. Let X and Y be vector 4elds on A2k . If Dep(X; Y ) is invariant by both
X and Y then X and Y are polynomially involutive.

Proof. We know that [X; Y ] = (p=Dep(X; Y )m)Y+(q=Dep(X; Y )m)X . By the fundamen-
tal lemma

X (Dep(X; Y ))=
(
div(X ) +

q
Dep(X; Y )m

)
Dep(X; Y )
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and from our hypotheses we can deduce that q=Dep(X; Y )m is a polynomial. Mutatis
mutandis, we can conclude that p=Dep(X; Y )m is also a polynomial. Hence, X and Y
are polynomially involutive.

4. Proof of Theorem 1

If k is a 'eld of positive characteristic p and X is a vector 'eld on An
k , it is fairly

simple to decide whether or not X has an invariant hypersurface. This simplicity is in
sharp contrast with the characteristic zero case, where decidability is not known.
The fact is that in positive characteristic we have a polynomially involutive system

of vector 'elds canonically associated to X . When X is a vector 'eld on An
k , the

polynomially involutive system is

X; X p; : : : ; X pn−1
:

In fact the former system is commutative. By Theorem 2, if

Dep(X; : : : ; X pn−1
) = 0

then X admits a 'rst integral and, in particular, an invariant hypersurface. If div(X ) �=0
and

Dep(X; : : : ; X pn−1
) �=0

then by Proposition 4 X admits an invariant hypersurface. When div(X )= 0, if there
exists an invariant hypersurface then its reduced equation will divide Dep(X; : : : ; X pn−1

).
In fact if F is an invariant algebraic hypersurface then F divides X (F), and conse-
quently, F also divides X k(F), for any positive integer k. This is su.cient to guarantee
that F cut out the dependency locus of X ,. . . ,Xp−1.

Example 5. In general, when div(X )= 0, we cannot guarantee the existence of an
invariant hypersurface. For example, if X =y3(@=@x) + x(@=@y) and we are in charac-
teristic two, then X 2 = xy2(@=@x) + y3(@=@y) and Dep(X; X 2)= (y3 + xy)2. Therefore
the only possible invariant curves are y and y2 + x, which are not invariant as one can
promptly verify. Hence X does not admit any invariant curve.

Corollary 1. Let X be a vector 4eld on A2k ; where k is a 4eld of characteristic p¿ 0.
If the degree of X is less than p− 1 then X admits an invariant curve.

Proof. By Theorem 1 we can suppose that div(X )= 0. Then the 1-form != iX dx1∧dx2
is closed, and its coe.cients have degree smaller than p−1. In this case, the closedness
is su.cient to guarantee that !=df, for some f∈R.

Example 6. Over the complex numbers, Jouanolou [3] showed that X =(1−xyd)(@=@x)+
(xd−yd+1)(@=@y) does not have any algebraic invariant curve for d¿ 2. In characteris-
tic two, for example, if d is odd then x2d+1yd−1+xdyd+xd−1+y2d+1 is invariant, and
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if d is even X has a 'rst integral of the form yd+1x+ xd+1 +y. Observe that for d=2
the 'rst integral is Klein’s quartic, a curve of genus 3 that has 168 automorphisms.
Hence, in characteristic two Jouanolou’s example has many more automorphisms than
in characteristic zero, where it has 42.
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