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a b s t r a c t

Nuclear cardiology is one of the most important non-invasive imaging methods in cardiac

imaging. It makes possible primarily functional assessment of the heart with quantification of

perfusion and systolic function. Development of new types of scanners for nuclear cardiology

brings more possibilities in research and clinical practice. This paper describes a brief review of

some applications of cadmium–zinc–telluride (CZT) scanners in comparison with conventional

cameras.
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Introduction

Nuclear cardiology is an established and well proved method
in non-invasive cardiac imaging. Its sensitivity and specificity
for diagnosis of myocardial ischaemia and viability assessment
have been reported in many studies [1–4]. For several decades,
the single-photon emission tomography (SPECT) scanners used
for cardiac imaging were the same as for general nuclear
medicine purposes. The conventional type of scanner (Fig. 1)
consists of a scintillation detector, using natrium iodide crystal
activated by thallium (NaI [Tl]). It works on principle of
luminescence, when impact of gamma radiation photon on
NaI [Tl] crystal causes a flash of visible light. This flash is
detected by photomultiplier tube (PMT), multiplied and trans-
formed to electric signal. The average spatial resolution of
scintillation scanners is about 1–2 cm and acquisition time
varies between approx. 10and 20 min according to administered
activity of radiopharmaceutics. The cadmium–zinc–telluride
(CZT) SPECT scanners have been introduced in the first decade
of 21st century [5]. The CZT detector works as a semiconductor
with direct conversion of gamma radiation to electric signal.
This mechanism results in better spatial resolution and
sensitivity, what means lower administered dose of radio-
pharmaceutics and/or shorter acquisition time. One of the most
frequently used systems is D-SPECT (Spectrum Dynamics,
Haifa, Israel), which uses pixelated CZT detector arrays in 9
vertical columns mounted in a 908 gantry geometry. The parallel
Fig. 1 – Conventional two-detector SPECT camera (Discovery
NM 630, GE Healthcare).
hole high sensitivity collimators are made of tungsten. Another
commercially available CZT camera is Discovery 530c (SPECT
alone – Fig. 2) or 570c (SPECT/CT) manufactured by GE
Healthcare (Haifa, Israel). This system is based on multi-pinhole
collimator system and an array of nineteen CZT pixelated
detectors. Spatial resolution was reported better in GE
Discovery (6.7 vs 8.6 mm); count sensitivity is higher in D-
SPECT (850 vs 460 counts per second per MBq). Both parameters
are better than the mean values for conventional SPECT
(15.3 mm of spatial resolution and sensitivity of 130 counts
per second per Mbq) [6]. This paper brings a brief review of
previously performed studies with CZT SPECT scanners.

Radiation dose reduction

Lowering of radiation doses is currently one of the most
frequent issues in diagnostic procedures. However, the
Fig. 2 – CZT camera with 908 arch of detectors (Discovery
530c, GE Healthcare).
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nuclear medicine methods are not the main source of
radiation exposure in healthcare in comparison with e.g.
computed tomography, the reduction of administered doses
of radiopharmaceutics is beneficial for patients and for nuclear
cardiology staff as well. First clinical experience with CZT
scanner and dose reduction was described by Duvall et al. [7].
Authors retrospectively analysed 717 patients, using GE
Discovery 530c. The examinations were performed during
four months, and patients were divided into three groups:
stress-only protocol with high dose, stress-only with low
dose and rest-stress protocol with standard dose of isotope.
The stress dose for low-dose protocol was 462.5 MBq, high
dose was 925–1332 MBq according to patient 's weight. The
low-dose rest dose was 296–481 MBq also adjusted to weight.
The administered activity was reduced by 70% in the low-dose
and 30% in the high-dose stress -only group in comparison
with usually used doses. This results also in lower mean
effective doses – 4.2 mSv, 8.0 mSv and 11.8 mSv in low-dose
stress-only, high-dose stress-only and rest-stress group
respectively. The image quality was assessed as good or
excellent in more than 90% in all groups. In another study, the
shortening of acquisition time with low administered dose
did not affect image quality and diagnostic accuracy in
comparison with scintillation camera [8]. Acquisition times
were 5 and 8 min for rest, 3 and 5 min for stress images on
CZT camera and 15 min for stress on conventional SPECT.
There was no significant difference between mean perfusion
deficit, ejection fraction or left ventricular volumes measured
by shorter or longer acquisition time on CZT camera and
between CZT and conventional camera. The images obtained
by CZT SPECT showed significantly better quality despite
shorter time and lower total impulse count. Radiation
exposure in rest-stress low-dose protocol was almost one-
half of that in conventional protocol with Tc-99 m sestamibi.
Also ultra low-dose protocol (with radiation exposure about
1 mSv) proved good correlation between image quality,
ejection fraction and total perfusion deficit obtained by
conventional and CZT camera [9].

Diagnosis of coronary artery disease

The invasive coronary angiography is considered as a ‘‘gold
standard’’ in diagnosis of coronary artery disease (CAD).
Conventional SPECT systems proved good sensitivity and
specificity in many studies; the values are about 73–92% for
sensitivity and 63–87% for specificity [10]. Comparison of
myocardial perfusion imaging using CZT SPECT and invasive
coronary angiography showed more than 90% sensitivity for
detection ≥70% stenosis of epicardial artery [11]. The specificity
was lower, according to patients' selection it varied between
36.9 and 55.6% and diagnostic accuracy varied between 68.7
and 71.6%. Better results can be achieved with hybrid imaging
(SPECT/CT) and attenuation correction [12]. This may improve
image quality particularly in obese patients, and reported
sensitivity, specificity, positive and negative predictive values
and diagnostic accuracy were 87, 67, 92, 53 and 83% respectively.
The assessment of specificity of SPECT is problematic, because
patients with negative perfusion imaging are mostly not
referred for coronary angiography. Some studies predict
sensitivity and specificity from normalcy rate in cohorts of
patient with very low pre-test probability of CAD, but current
guidelines for CAD diagnosis and treatment [10] do not
recommend performing stress testing in patients with very
low pre-test probability (<15%). Furthermore, the higher
sensitivity and better spatial resolution can lead to imaging
of smaller and non-severe perfusion defects due to endothelial
dysfunction in patients without significant epicardial coronary
artery stenosis, and it may also affect specificity of CZT cameras
[12]. The assessment of left ventricular function and volumes is
also more accurate using CZT camera in comparison with
conventional devices [13]. Use of invasive coronary angiography
as a reference method may produce another bias, because it is
comparison of anatomical and functional method. Fractional
flow reserve can provide relevant information about signifi-
cance of stenosis and this method was used by Mouden et al. [14]
in group of patients with intermediate coronary artery stenosis
(40–80%). The cut-off value of<0.75 was set for FFR as abnormal.
Myocardial perfusion imaging with CZT camera showed
ischaemia in 31%, FFR was <0.75 in 20%, and patients with
positive SPECT had significantly lower FFR value (0.77 � 0.12 vs
0.83 � 0.07;p = 0.001). Concordance between SPECT and FFR was
73%, 8% of SPECT were false negative,and 19% false positive. The
benefit of CZT technology is also presented in patients with
coronary multivessel disease. In the study of Gimelli et al. [15],
CZT SPECT from 20 patients with 2- or 3-vessel disease identified
correctly all significant coronary artery stenosis in 17 patients
versus 6 by standard system, so use of CZT SPECT is favourable
in these patients due to better sensitivity.

Sympathetic innervation imaging

The importance of assessment of myocardial sympathetic
innervation using 123I-metaiodobenzylguanidine (MIBG) was
reported in several papers [16–18], but all these studies were
performed on scintillation gamma cameras. Most frequently
used parameters were heart-to-mediastinum ratio (H/M) and
MIBG myocardial washout rate.

Initial experience with use of CZT camera in myocardial
sympathetic innervation imaging was described by Gimelli
et al. [19]. The authors used MIBG defect score, calculated from
17 segment left ventricular model and five-point scale
(0 = normal, 4 = absence of tracer uptake) and segmental
radiotracer uptake calculated as percentage of peak tracer
uptake. Furthermore, the mechanical dyssynchrony of the
left ventricle was evaluated, using regional time to peak
contraction (TTP) measurements. The regional TTP is the
maximum heart wall contraction expressed as percentage of
the cardiac cycle [20]. This study showed independent
association of regional MIBG uptake and left ventricular
dyssynchrony, patients with the presence of dyssynchrony
had higher mean MIBG early defect score (29 vs 18, p = 0.014)
and authors implicate it represents significant relation
between myocardial contraction synchronicity and degree
of sympathetic denervation. Also direct comparison of MIBG
uptake and myocardial perfusion assessed by 99mTc tetro-
fosmin SPECT confirmed association of impaired sympathetic
innervation and perfusion defects expressed as summed
rest score [21].
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Other applications

One of the main problems of perfusion SPECT is that it shows
only relative perfusion. That may produce diagnostic bias
especially in patients with multiple coronary stenoses, e.g.
balanced triple vessel disease. The fast data acquisition of
the CZT scanners makes it possible to assess the myocardial
perfusion reserve at rest and during vasodilator stress.
Ben-Haim et al. [22] described experimental protocol using
dynamic SPECT images acquired at rest and then during
pharmacological stress with list-mode acquisition. After
dynamic images, the standard rest and stress images were
recorded as well. Regional and global activity curves were
obtained from dynamic images and myocardial perfusion
reserve index (MPR) was calculated as ratio of the stress and
rest values. Patients with normal perfusion scans had higher
MPR index (1.61. vs 1.27, p = 0.0002). In regional analysis,
coronary territories with abnormal total perfusion deficit (TPD
≥5% calculated by QPS software) had lower MPR index (1.27 vs
1.45, p = 0.003) and significant association between regional
TPD and MPR index was confirmed by multivariable analysis.
The CZT technology also brings new possibilities using dual-
isotope imaging. In a study with 214 patients [23], the stress
201-thallium and rest 99m-technetium imaging was used,
and this study showed sensitivity 94%, specificity 50%
(normalcy rate 92%), and diagnostic accuracy 83%, with
reported mean estimated effective dose 12 � 9 mSv. Authors
presented advantages of dual isotope imaging, as better
extraction fraction of thallium that improves myocardial
ischaemia detection. Shortening of examination time (whole
stress-rest protocol in this study was performed within 1 h)
can lead to higher patient flow in nuclear cardiology depart-
ment and better efficiency in CZT camera utilization.
Radionuclide ventriculography can also be performed by
CZT SPECT. Jensen et al. [13] reported better inter- and
intraobserver variability in left ventricular ejection fraction
assessment using CZT SPECT versus conventional NaI
planar or SPECT camera. The mean LVEF values obtained by
NaI SPECT were significantly higher than those from CZT
SPECT or NaI planar imaging. This was caused by higher end
diastolic volumes measured by NaI SPECT when end-systolic
volumes did not significantly differ. These findings were
also confirmed in another study [24], but authors also
mentioned limitations of this system – e.g. small field of view
(FOV) with approximately 19 cm diameter [25], and in
subgroup of obese patients it is not possible to get good
position of the heart in FOV, so use of CZT SPECT in these
patients is not recommended. Also financial issues are
important and purchasing prices can be almost twice as
higher (with respect to local additional taxes) than in
conventional system, so CZT SPECT is useful mainly in larger
centres with high number of patients.

Conclusion

The cadmium–zinc–telluride SPECT scanners bring new possi-
bilities to non-invasive cardiac functional imaging and the data
from previously published studies are very promising. However,
it is necessary to mention some pitfalls such as high
purchase costs, smaller field of view and absence of real
specificity data because only selected patients are subse-
quently sent for a reference method as coronary angiography.
Also use of coronary angiography as a reference method is
problematic, because is not a functional but an anatomical
imaging method, so assessment of coronary artery stenosis
by FFR is better to compare with myocardial perfusion
imaging data.
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